Строение и функции наружного, среднего и внутреннего уха. Костная передача звуков. Бинауральный слух. Наружное ухо Как звук попадает в ухо

Слуховая система человека – сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим.

В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу (его длина составляет около 3 см, а диаметр - около 0.5) и попадает в среднее ухо, где ударяется о барабанную перепонку, представляющую собой тонкою полупрозрачную мембрану. Барабанная перепонка преобразует звуковую волну в вибрации (усиливая эффект от слабой звуковой волны и ослабляя от сильной). Эти вибрации передаются по присоединенным к барабанной перепонке косточкам - молоточку, наковальне и стремечку – во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром около 0.2 мм и длинной около 4 см. Эта трубка называется улиткой. Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки (более 20 тысяч волокон). Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты – окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом он заключается в анализе месторасположения затронутых колебаниями нервных окончаний, а также в анализе частоты импульсов, поступающих в мозг от нервных окончаний.

Существует целая наука, изучающая психологические и физиологические особенности восприятия звука человеком. Эта наука называется психоакустикой . В последние несколько десятков лет психоакустика стала одной из наиболее важных отраслей в области звуковых технологий, поскольку в основном именно благодаря знаниям в области психоакустики современные звуковые технологии получили свое развитие. Давайте рассмотрим самые основные факты, установленные психоакустикой.

Основную информацию о звуковых колебаниях мозг получает в области до 4 кГц. Этот факт оказывается вполне логичным, если учесть, что все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе, до 4 кГц (голоса других людей и животных, шум воды, ветра и проч.). Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты – за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов.

В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном . Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука. В соответствии с определением международной организации стандартов, высота звука - это субъективная характеристика, распределяющая звуки по некоторой шкале от низких к высоким. На воспринимаемую высоту звука влияет, главным образом, частота основного тона (период колебаний), при этом общая форма звуковой волны и ее сложность (форма периода) также могут оказывать влияние на нее. Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим (например, в звуке хлопка или выстрела тон не является периодическим и по сему слух не способен оценить его высоту).

Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум . В случае если спектр дискретен (то есть, на графике спектра присутствуют явно выраженные пики), то звук воспринимается как тон, если имеет место один пик, или как созвучие , в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов (осцилляторов) . Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука.

Очень важной характеристикой слуховой системы человека является способность различать два тона с разными частотами. Опытные проверки показали, что в полосе от 0 до 16 кГц человеческий слух способен различать до 620 градаций частот (в зависимости от интенсивности звука), при этом примерно 140 градаций находятся в промежутке от 0 до 500 Гц.

На восприятии высоты звука для чистых тонов сказываются также интенсивность и длительность звучания. В частности, низкий чистый тон покажется еще более низким, если увеличить интенсивность его звучания. Обратная ситуация наблюдается с высокочастотным чистым тоном – увеличение интенсивности звучания сделает субъективно воспринимаемую высоту тона еще более высокой.

Длительность звучания сказывается на воспринимаемой высоте тона критическим образом. Так, очень кратковременное звучание (менее 15 мс) любой частоты покажется на слух просто резким щелчком – слух будет неспособен различить высоту тона для такого сигнала. Высота тона начинает восприниматься лишь спустя 15 мс для частот в полосе 1000 – 2000 Гц и лишь спустя 60 мс – для частот ниже 500 Гц. Это явление называется инерционностью слуха . Инерционность слуха связана с устройством базилярной мембраны. Кратковременные звуковые всплески не способны заставить мембрану резонировать на нужной частоте, а значит мозг не получает информацию о высоте тона очень коротких звуков. Минимальное время, требуемое для распознавания высоты тона, зависит от частоты звукового сигнала, а, точнее, от длины волны. Чем выше частота звука, тем меньше длина звуковой волны, а значит тем быстрее «устанавливаются» колебания базилярной мембраны.

В природе мы почти не сталкиваемся с чистыми тонами. Звучание любого музыкального инструмента является сложным и состоит из множества частотных составляющих. Как мы сказали выше, даже для таких звуков слух способен установить высоту их звучания, в соответствии с частотой основного тона и/или его гармоник. Тем не менее, даже при одинаковой высоте звучания, звук, например, скрипки отличается на слух от звука рояля. Это связано с тем, что помимо высоты звучания слух способен оценить также общий характер, окрас звучания, его тембр . Тембром звука называется такое качество восприятия звука, которое, в не зависимости от частоты и амплитуды, позволяет отличить одно звучание от другого. Тембр звука зависит от общего спектрального состава звучания и интенсивности спектральных составляющих, то есть от общего вида звуковой волны, и фактически не зависит от высоты основного тона. Немалое влияние на тембр звучания оказывает явление инерционности слуховой системы. Это выражается, например, в том, что на распознавание тембра слуху требуется около 200 мс.

Громкость звука – это одно из тех понятий, которые мы употребляем ежедневно, не задумываясь при этом над тем, какой физический смысл оно несет. Громкость звука – это психологическая характеристика восприятия звука, определяющая ощущение силы звука. Громкость звука, хотя и жестко связана с интенсивностью, но нарастает непропорционально увеличению интенсивности звукового сигнала. На громкость влияет частота и длительность звукового сигнала. Чтобы правильно судить о связи ощущения звука (его громкости) с раздражением (уровнем силы звука), нужно учитывать, что изменение чувствительности слухового аппарата человека не точно подчиняется логарифмическому закону.

Существуют несколько единиц измерения громкости звука. Первая единица – «фон » (в англ. обозначении - « phon»). Говорят, «уровень громкости звука составляет n фон», если средний слушатель оценивает сигнал как равный по громкости тону с частотой 1000 Гц и уровнем давления в n дБ. Фон, как и децибел, по сути не является единицей измерения, а представляет собой относительную субъективную характеристику интенсивности звука. На рис. 5 представлен график с кривыми равных громкостей.

Каждая кривая на графике показывает уровень равной громкости с начальной точкой отсчета на частоте 1000 Гц. Иначе говоря, каждая линия соответствует некоторому значению громкости, измеренной в фонах. Например, линия «10 фон» показывает уровни сигнала в дБ на разных частотах, воспринимаемых слушателем как равные по громкости сигналу с частотой 1000 Гц и уровнем 10 дБ. Важно заметить, что приведенные кривые не являются эталонными, а приведены в качестве примера. Современные исследования ясно свидетельствуют, что вид кривых в достаточной степени зависит от условий проведения измерений, акустических характеристик помещения, а также от типа источников звука (громкоговорители, наушники). Таким образом, эталонного графика кривых равных громкостей не существует.

Важной деталью восприятия звука слуховым аппаратом человека является так называемый порог слышимости - минимальная интенсивность звука, с которой начинается восприятие сигнала. Как мы видели, уровни равной громкости звука для человека не остаются постоянным с изменением частоты. Иными словами, чувствительность слуховой системы сильно зависит как от громкости звука, так и от его частоты. В частности, и порог слышимости также не одинаков на разных частотах. Например, порог слышимости сигнала на частоте около 3 кГц составляет чуть менее 0 дБ, а на частоте 200 Гц – около 15 дБ. Напротив, болевой порог слышимости мало зависит от частоты и колеблется в пределах 100 – 130 дБ. График порога слышимости представлен на рис. 6. Обратим внимание, что поскольку, острота слуха с возрастом меняется, график порога слышимости в верхней полосе частот различен для разных возрастов.

Частотные составляющие с амплитудой ниже порога слышимости (то есть находящиеся под графиком порога слышимости) оказываются незаметными на слух.

Интересным и исключительно важным является тот факт, что порог слышимости слуховой системы, также как и кривые равных громкостей, является непостоянным в разных условиях. Представленные выше графики порога слышимости справедливы для тишины. В случае проведения опытов по измерению порога слышимости не в полной тишине, а, например, в зашумленной комнате или при наличии какого-то постоянного фонового звука, графики окажутся другими. Это, в общем, совсем не удивительно. Ведь идя по улице и разговаривая с собеседником, мы вынуждены прерывать свою беседу, когда мимо нас проезжает какой-нибудь грузовик, поскольку шум грузовика не дает нам слышать собеседника. Этот эффект называется частотной маскировкой . Причиной появления эффекта частотной маскировки является схема восприятия звука слуховой системой. Мощный по амплитуде сигнал некоторой частоты f m вызывает сильные возмущения базилярной мембраны на некотором ее отрезке. Близкий по частоте, но более слабый по амплитуде сигнал с частотой f уже не способен повлиять на колебания мембраны, и поэтому остается «незамеченным» нервными окончаниями и мозгом.

Эффект частотной маскировки справедлив для частотных составляющих, присутствующих в спектре сигнала в одно и то же время. Однако в виду инерционности слуха, эффект маскировки может распространяться и во времени. Так некоторая частотная составляющая может маскировать другую частотную составляющую даже тогда, когда они появляются в спектре не одновременно, а с некоторой задержкой во времени. Этот эффект называется временн о й маскировкой . В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой . В случае же, когда маскирующий тон появляется позже маскируемого (возможен и такой случай), эффект называет пре-маскировкой .

2.5. Пространственное звучание.

Человек слышит двумя ушами и за счет этого способен различать направление прихода звуковых сигналов. Эту способность слуховой системы человека называют бинауральным эффектом . Механизм распознавания направления прихода звуков сложен и, надо сказать, что в его изучении и способах применения еще не поставлена точка.

Уши человека расставлены на некотором расстоянии по ширине головы. Скорость распространения звуковой волны относительно невелика. Сигнал, приходящий от источника звука, находящегося напротив слушателя, приходит в оба уха одновременно, и мозг интерпретирует это как расположение источника сигнала либо позади, либо спереди, но не сбоку. Если же сигнал приходит от источника, смещенного относительно центра головы, то звук приходит в одно ухо быстрее, чем во второе, что позволяет мозгу соответствующим образом интерпретировать это как приход сигнала слева или справа и даже приблизительно определить угол прихода. Численно, разница во времени прихода сигнала в левое и правое ухо, составляющая от 0 до 1 мс, смещает мнимый источник звука в сторону того уха, которое воспринимает сигнал раньше. Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц. Направление прихода звука для частот расположенных выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве. Поэтому интенсивность звуковых волн, доходящих до левого и правого ушей слушателя, отличаются на столько, что позволяет мозгу определять направление прихода сигнала по разнице амплитуд. Если звук в одном ухе слышен лучше, чем в другом, следовательно источник звука находится со стороны того уха, в котором он слышен лучше. Немаловажным подспорьем в определении направления прихода звука является способность человека повернуть голову в сторону кажущегося источника звука, чтобы проверить верность определения. Способность мозга определять направление прихода звука по разнице во времени прихода сигнала в левое и правое ухо, а также путем анализа громкости сигнала используется в стереофонии .

Имея всего два источника звука можно создать у слушателя ощущение наличия мнимого источника звука между двумя физическими. Причем этот мнимый источник звука можно «расположить» в любой точке на линии, соединяющей два физических источника. Для этого нужно воспроизвести одну аудио запись (например, со звуком рояля) через оба физических источника, но сделать это с некоторой временно й задержкой в одном из них и соответствующей разницей в громкости. Грамотно используя описанный эффект можно при помощи двухканальной аудио записи донести до слушателя почти такую картину звучания, какую он ощутил бы сам, если бы лично присутствовал, например, на каком-нибудь концерте. Такую двухканальную запись называют стереофонической. Одноканальная же запись называется монофонической .

На самом деле, для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи оказывается не всегда достаточно. Основная причина этого кроется в том, что стерео сигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, «окружить слушателя звуком» при этом не удается. По большому счету по той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофонической (четырехканальной) системой (два источника перед слушателем и два позади него). В целом, путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был «услышан» расставленной нами звукопринимающей аппаратурой (микрофонами), и не более того. Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к применению принципиально других подходов, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.

Одним из таких инструментов является использование функций HRTF (Head Related Transfer Function). Посредством этого метода (по сути – библиотеки функций) звуковой сигнал можно преобразовать специальным образом и обеспечить достаточно реалистичное объемное звучание, рассчитанное на прослушивание даже в наушниках.

Суть HRTF – накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания слуховой системой человека. Для создания библиотек HRTF используется искусственный манекен KEMAR (Knowles Electronics Manikin for Auditory Research) или специальное «цифровое ухо». В случае использования манекена суть проводимых измерений состоит в следующем. В уши манекена встраиваются микрофоны, с помощью которых осуществляется запись. Звук воспроизводится источниками, расположенными вокруг манекена. В результате, запись от каждого микрофона представляет собой звук, «прослушанный» соответствующим ухом манекена с учетом всех изменений, которые звук претерпел на пути к уху (затухания и искажения как следствия огибания головы и отражения от разных ее частей). Расчет функций HRTF производится с учетом исходного звука и звука, «услышанного» манекеном. Собственно, сами опыты заключаются в воспроизведении разных тестовых и реальных звуковых сигналов, их записи с помощью манекена и дальнейшего анализа. Накопленная таким образом база функций позволяет затем обрабатывать любой звук так, что при его воспроизведении через наушники у слушателя создается впечатление, будто звук исходит не из наушников, а откуда-то из окружающего его пространства.

Таким образом, HRTF представляет собой набор трансформаций, которые претерпевает звуковой сигнал на пути от источника звука к слуховой системе человека. Рассчитанные однажды опытным путем, HRTF могут быть применены для обработки звуковых сигналов с целью имитации реальных изменений звука на его пути от источника к слушателю. Не смотря на удачность идеи, HRTF имеет, конечно, и свои отрицательные стороны, однако в целом идея использования HRTF является вполне удачной. Использование HRTF в том или ином виде лежит в основе множества современных технологий пространственного звучания, таких как технологии QSound 3 D (Q3 D), EAX, Aureal3 D (A3 D) и другие.



Пение птиц, приятная мелодия, счастливый смех веселого ребенка… Какой была бы наша жизнь без звуков? Не многие задумываются о том, какие сложные механизмы мы носим в своем теле. Наша способность слышать зависит от чрезвычайно сложной, взаимосвязанной и детально спроектированной системы. «Ухо слышащее и глаз видящий - и то и другое создал Господь» (Притчи 20:12). Он не желает, чтобы по поводу авторства этой системы у нас были какие-либо сомнения. Совсем наоборот, Бог хочет, чтобы человек твердо ходил в осознании истинности Сотворения: «Познайте, что Господь есть Бог, и что Он сотворил нас, и мы принадлежим Ему» (Псалом 99:3).

Слух человека устроен так, чтобы улавливать широкий диапазон звуковых волн, превращать их в миллионы электрических импульсов, направляя их далее в мозг для глубокого и быстрого анализа. Все звуки на самом деле "слушаются" мозгом и потом представляются нам как поступающие от внешнего источника. Как же работает система слуха?

Процесс начинается со звука - колебательного движения воздуха - вибрации, при которой к слушателю распространяются импульсы давления воздуха, достигающие, в конце концов, барабанной перепонки. Наше ухо чрезвычайно чувствительно и способно воспринимать изменения давления всего в 0,0000000001 атмосфер.

Ухо состоит из 3-х частей: наружное, среднее и внутреннее. Звук достигает вначале внешнее ухо через воздух, ударяя потом барабанную перепонку. Перепонка передает вибрацию косточкам. Здесь происходит смена способа проведения звука - от воздуха к косточкам. Потом звук переходит к внутреннему уху, где он передается с помощью жидкости. Таким образом, в процессе слуха задействуются 3 способа передачи звука: воздух, кость, жидкость. Давайте детальней их рассмотрим.

Слух человека: путешествие звука

Вначале звук достигает ушных раковин, которые действуют как спутниковые тарелки. (Рис.1) Ушная раковина человека имеет свой неповторимый рельеф из выпуклостей, вогнутостей и канавок, благодаря чему звук поступает от ушной раковины к слуховому каналу по двум путям. Это необходимо для тончайшего акустического и трехмерного анализа, позволяя распознавать направление и источник звука, что важно для языкового общения.

Рис.1 Источник: APP, www.apologeticspress.org

Ушная раковина также усиливает звуковые волны, которые далее входят в слуховой канал - пространство от раковины к барабанной перепонке длиной около 2,5 см и диаметром около 0,7 см. Здесь уже напрямую виден дизайн Господа - наш палец толще слухового канала! В противном случае мы повредили бы слух еще в младенчестве. Этот проход имеет такую форму, что создает резонанс оптимального диапазона.

Еще одной его интересной характеристикой является наличие воска (ушной серы), который постоянно выделяется из 4000 желез. Он имеет антисептические свойства, защищая ухо от бактерий и насекомых. Но как же тогда этот узкий проход постоянно очищается? Господь побеспокоился и об этой детали, создав очистительный механизм.

Оказывается, внутри прохода любые частички двигаются спиралевидно, так как клетки на поверхности слухового канала выстраиваются в форме спирали, направленной наружу. Кроме этого эпидермис (верхний слой кожи) растет там в стороны, а не вверх, как обычно это происходит на коже. Отпадая, он движется спиралевидно наружу к ушной раковине, постоянно унося с собой воск. Без такой системы очистки наше ухо быстро забилось бы.

Слух человека: среднее ухо мастерски решает сложнейшую задачу физики

Вы пытались когда-либо докричаться до человека, находящегося под водой? Это практически невозможно, так как 99,9% звука, идущего по воздуху, отражается водой. Но в нашем ухе звук движется к чувствительным клеткам улитки через жидкость, так как эти клетки не могут находиться в воздухе. Как же решается в нашем ухе эта сложнейшая задача перехода звука от воздуха к жидкости? Нам необходимо согласующее устройство. Эту роль у нас выполняет среднее ухо, состоящее из мембраны, специальных косточек, мышц и нервов. (См. Рис. 2)

Достигнув барабанной перепонки, звук заставляет ее колебаться. Покачиваясь, она приводит в движение молоточек, чья рукоятка прикреплена к перепонке. Молоточек, в свою очередь, вынуждает двигаться следующую косточку, которая называется наковальней. Между ними находится хрящевой сустав, который, как и все остальные суставы, для поддержания работы должен постоянно смазываться. Господь позаботился и об этом - все делается автоматически без нашего участия, так что нам нечего беспокоиться.

Нижняя часть наковальни, выглядящая как ось, передает движение следующей косточке, называемой стремечко (по форме она напоминает стремя). В результате передачи движения, стремечко постоянно толкается. Нижнее овальное основание стремечка напоминает поршень и входит в овальное окно улитки. Этот поршень соединен с овальным окном специальным креплением, прочным, но при этом подвижным, так что поршень двигается взад и вперед в овальном окне.

Барабанная перепонка поразительно чувствительна. Она способна реагировать на вибрацию диаметром всего в один атом водорода! Еще удивительней есть то, что перепонка при этом является живой тканью с кровяными сосудами и нервами. Кровяные клетки в тысячи раз больше атома водорода и при движении в сосудах постоянно колеблют перепонку, но при этом она все равно способна уловить звуковое колебание размером в один атом водорода. Это возможно благодаря чрезвычайно эффективной системе фильтрации шума. После определения даже самого слабого колебания перепонка может вернуться в исходное положение за 5 тысячных секунды. Если бы она не смогла возвращаться в регулярное состояние так быстро, то каждый звук, попадающий в ухо, отдавался бы эхом.

Молоточек, наковальня и стремечко - самые крошечные косточки в нашем теле. И у этих косточек есть мышцы и нервы! Одна мышца прикрепляется сухожилием к рукоятке молоточка, другая - к стремечку. Что же они делают? При громком звуке нужно понижать чувствительность всей системы, чтобы ее не повредить. При резком громком звуке мозг реагирует гораздо быстрее, чем мы успеваем осознать услышанное, при этом он мгновенно вынуждает мышцы сокращаться и притуплять чувствительность. Время реагирования на громкий звук составляет всего лишь около 0,15 секунды.

Определенно, генетические мутации или случайные пошаговые изменения, предлагаемые эволюционистами, не могут быть ответственны за развитие такого сложного механизма. Давление воздуха внутри среднего уха должно быть таким же, как и давление вне барабанной перепонки. Проблема в том, что воздух внутри поглощается телом. Это приводит к понижению давления в среднем ухе и снижению чувствительности перепонки из-за того, что она вдавливается внутрь более высоким внешним давлением воздуха.

Для решения этой проблемы ухо оснащено специальным каналом, известным как евстахиева труба. Это пустая трубочка длиной в 3,5 см, идущая от внутреннего уха к задней части носа и глотки. Она обеспечивает обмен воздуха между средним ухом и окружающей средой. При глотании, зевании и жевании специальные мышцы открывают Евстихееву трубку, впуская внешний воздух. Так обеспечивается равновесие давлений. Нарушения работы трубки приводит к болям, затянувшейся закупорке и даже к кровотечению в ухе. Но как же она возникла изначально, и какие части среднего уха появились первыми? Как они функционировали один без другого? Анализ всех частей уха и важность каждого из них для слуха человека демонстрирует присутствие неснижаемой сложности (весь орган должен был возникнуть как одно целое, иначе он не смог бы функционировать), что мощно свидетельствует о сотворении.

Слух человека: внутреннее ухо: система невероятной сложности

Итак, звук прошел через воздух к барабанной перепонке, и в виде вибрации передался косточкам. Что же дальше? А дальше эти механические движения должны превратиться в электрические сигналы. Это чудо превращения происходит во внутреннем ухе. Внутреннее ухо состоит из улитки и присоединенных к ней нервов. Здесь мы так же наблюдаем очень сложную конструкцию.

Обладание двумя ушами помогает нам вычислять месторасположение звука. Разница во времени достижения звуком ушей может быть всего 20 миллионных секунды, но этого запаздывания достаточно для определения источника звука.

Улитка - это специальный орган внутреннего уха, который устроен в виде лабиринта и наполнен специальной жидкостью (перилимфой). Смотрите Рис.1 и Рис.3. тройное покрытие, которое обеспечивает прочность и герметичность. Это необходимо для тонких процессов, происходящих в ней. Мы помним, что последняя косточка (стремечко) входит в овальное окно улитки (Рис.2 и Рис.3). Получив вибрацию от барабанной перепонки, стремечко двигается в этом окне своим поршнем взад и вперед, создавая колебания давления внутри жидкости. Другими словами, стремечко передает звуковую вибрацию улитке.

Эта вибрация распространяется в жидкости улитки и достигает там специального органа слуха, Кортиева органа. Он и превращает вибрации жидкости в электрические сигналы, которые через нервы идут в мозг. Так как улитка полностью наполнена жидкостью, как же поршню удается входить в нее? Вспомните, как практически невозможно засунуть пробку в полностью наполненную бутылку. Из-за большой плотности жидкости ее трудно сжать.

Оказалось, что внизу улитки есть круглое окно (как задний выход), покрытое гибкой мембраной. Когда поршень стремечка входит в овальное окно, мембрана круглого окна внизу выпячивается под давлением в жидкости. Это похоже на то, если бы у бутылки было резиновое дно, прогибающееся каждый раз при вталкивании пробки. Благодаря такому гениальному устройству облегчения давления стремечко может передавать вибрацию звука к жидкости улитки.

Однако импульсы давления распространяются в жидкости не простым образом. Чтобы понять, как они распространяются, заглянем внутрь лабиринта улитки (См. Рис 3 и Рис. 4). Канал лабиринта состоит из трех каналов - верхний (вестибулярная лестница), нижний (барабанная лестница) и канал посередине (улитковый проток). Они не соединены между собой и идут в лабиринте параллельно.

От поршня давление идет вверх в лабиринте к вершине улитки только по верхнему каналу (а не по всем трем). Там, через специальное соединительное отверстие, давление переходит в нижний канал, который идет по лабиринту обратно вниз и выходит в круглом окне. На рисунке 3 красной стрелкой обозначен путь давления от овального окна вверх по кругу в лабиринте. На вершине давление переходит в другой канал, обозначенный синей стрелкой, и направляется по нему вниз к круглому окну. Но зачем все это? Как это помогает нам слышать?

Дело в том, что посередине двух каналов лабиринта есть третий канал (улитковый проток), также наполненный жидкостью, но отличающейся от жидкости в двух других каналах. Этот средний канал не соединен с двумя другими. Он отделен от верхнего гибкой пластинкой (Рейснерова мембрана), а от нижнего канала - эластичной пластинкой (базилярная мембрана). Проходя по верхнему каналу вверх лабиринта, звук в жидкости колеблет верхнюю пластинку. Идя обратно вниз улитки по нижнему каналу, звук в жидкости колеблет нижнюю пластинку. Таким образом, когда звук идет через жидкость лабиринта вверх улитки и обратно вниз, пластины среднего канала колеблются. После прохода звука их колебание постепенно угасает. Как же колебание пластинок среднего канала обеспечивает нам слух?

Между ними находится наиболее важная часть слуховой системы - Кортиев орган. Он чрезвычайно меленький, но без него мы были бы глухими. Нервные клетки Кортиевого органа превращают колебательные движения пластинок в электрические сигналы. Они называются волосковыми клетками и играют огромную роль. Как же волосковым клеткам Кортиевого органа удается превратить колебание пластинок в электрические сигналы?

Посмотрите на рисунок 4 и 5. Дело в том, что эти клетки находятся в контакте сверху со специальной покровной мембраной Кортиевого органа, которая похожа на твердое желе. На вершине волосковых клеток расположено от 50 до 200 ресничек, называемых стереоцилиями. Они входят в покровную мембрану.

Рис.7

Когда звук идет через лабиринт улитки, пластинки среднего канала колеблются, и это вызывает колебание желеподобной покровной мембраны. А ее движение вызывает колебание стериоцилий волосковых клеток. Колыхание стериоцилий вынуждает волосковые клетки производить электрические сигналы, которые посылаются далее в мозг. Потрясающе, не так ли? Кортиев орган имеет около 20 000 волосковых клеток, которые делятся на внутренние и внешние (Рис.5 и Рис.6). Но как колебание ресничек производит электрические сигналы?

Оказывается, движение стериоцилий вызывает открытие и закрытие специальных ионных каналов на их поверхности (Рис.7). Каналы, открываясь, впускают ионы во внутрь, что изменяет электрический заряд внутри волосковой клетки. Изменения электрического заряда дают возможность волосковой клетке посылать электрические сигналы в мозг. Эти сигналы трактуются мозгом как звук. Проблема в том, что мы должны открывать канал для ионов и закрывать его со скоростью вплоть до самой высокой улавливаемой нами частоты звука - до 20 000 раз в секунду. Что-то должно открывать и закрывать миллионы этих каналов на поверхности ресничек со скоростью до 20 000 раз в секунду. Ученые обнаружили, что для этого к поверхностям стериоцилий прикреплена молекулярная пружина!!! (Рис.7.) Быстро растягиваясь и сжимаясь при колебании ресничек, она и обеспечивает такую высокую скорость открытия и закрытия каналов. Гениальный дизайн!

Слух человека: слушаем на самом деле мозгом

Улитка способна уловить каждый инструмент в оркестре и заметить пропущенную ноту, слышать каждый вздох и разобрать шепот - все с поразительной скоростью дискретизации до 20 000 раз за секунду. Мозг интерпретирует сигналы и определяет частоту, силу и значение сигналов. В то время как большое фортепиано имеет 240 струн и 88 клавиш, внутренне ухо имеет 24 000 "струн" и 20 000 "клавиш", которые позволяют нам слышать невероятное количество и разнообразие звуков.

Описанное выше - это только половина пути, так как самое сложное происходит в мозге, которым мы в действительности и "слышим". Наши уши достаточно чувствительны, чтобы услышать, как перо скользит по одежде, но при этом мы не слышим, как кровь идет через капилляры в нескольких миллиметрах от ушей. Если бы мы постоянно слышали наше дыхание, глотание слюны, каждое сердцебиение, движение суставов и т.д., мы никогда не смогли бы ни на чем сфокусироваться. Наш мозг автоматически приглушает некоторые звуки, в некоторых случаях он их вообще блокирует. Вдохните воздух и посмотрите, сможете ли вы его услышать. Конечно же, сможете, но вы обычно не слышите. За последние 24 часа вы вдохнули примерно 21 000 раз. Слуховая часть мозга человека работает как служба безопасности, слушая каждый звук и говоря, что нам нужно слышать, а что нет. Звуки могут также вызывать воспоминания.

Вывод

Очевидным есть тот факт, что все части уха необходимы для обеспечения слуха человека. Например, если все компоненты будут на месте, но не будет барабанной перепонки, то как звук перейдет к косточкам и улитке? Какой смысл тогда в наличии лабиринта, Кортиевого органа и нервных клеток, если звук к ним даже не дойдет? Если будет все на месте, включая перепонку, но будет отсутствовать "всего лишь" овальное окно или, скажем, жидкость в улитке, то слуха не будет, так как звук не сможет дойти до нервных клеток.

Отсутствие малейшей детали сделает нас глухими, а наличие всей остальной системы - бесполезной. Мало того, каждая "малейшая деталь" в этой цепочка в действительности сама является системой из множества составляющих. Барабанная перепонка, например, состоит из специальной живой ткани, креплений к молоточку, нервов, сосудов и т.д. Улитка - это лабиринт, тройное покрытие, три отдельных канала, разные жидкости, гибкие пластины протока и т.д.

Глупо верить, что такая удивительная сложность произошла случайно в результате пошаговой эволюции. Наблюдаемая сложность системы слуха у человека указывает на историческую реальность сотворения Адама Богом, как об этом и говорит Слово Божье. «Ухо слышащее и глаз видящий - и то и другое создал Господь» (Притчи 20:12).

В следующих выпусках мы продолжим исследование Божьего дизайна человеческого тела. Надеюсь, данная статья помогла вам глубже осознать Его мудрость и Его любовь к вам. «Славлю Тебя, ибо я чудно устроен, и душа моя вполне осознает это» (Псалом 138:13). Воздайте Богу хвалу и благодарность, ведь Он достоин!

Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа.

Прежде всего, отметим, что слуховой анализатор имеет четыре части:

  1. Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха.
  2. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при помощи евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при помощи одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека
  3. Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.

Слуховые пути

Ими являются совокупность волокон, которые проводят нервные импульсы от самой улитки и до слуховых центров вашей головы. Именно благодаря путям наш мозг воспринимает тот или иной звук. Находятся слуховые центры в височных долях мозга. Звук, который проходит через внешнее ухо к головному мозгу продолжается около десяти миллисекунд.

Как мы воспринимаем звук

Человеческое ухо перерабатывает получаемые из окружающей среды звуки в специальные механические колебания, которые потом преобразовывают движения жидкости в улитке в электрические импульсы. Они по путям центральной слуховой системы переходят в височные части мозга, чтобы затем быть распознанными и обработанными. Теперь уже промежуточные узлы и сам головной мозг извлекает некую информацию относительно громкости и высоты звучания, а также друге характеристики, такие как время улавливания звука, направление звука и другие. Таким образом, мозг может воспринимать полученную информацию от каждого уха по очереди или совместно, получая единое ощущение.

Известно, что внутри нашего уха хранятся некие «шаблоны» уже изученных звуков, которые наш мозг распознал. Именно они помогают мозгу правильно сортировать и определять первоисточник информации. Если звук снижается, то мозг соответственно начинает получать неправильную информацию, что может привести к неправильному толкованию звуков. Но не только звуки могут искажаться, со временем головной мозг тоже подвергается неправильной трактовке тех или иных звуков. Результатом может оказаться неправильная реакция человека или неверная трактовка информации. Чтобы правильно слышать и достоверно трактовать услышанное, нам понадобится синхронная работа, как мозга, так и слухового анализатора. Именно поэтому можно отметить, что человек слышит не только ушами, но и головным мозгом.

Таким образом, строение уха человека достаточно сложное. Только согласованная работа всех частей органа слуха и головного мозга позволит нам правильно понимать и трактовать услышанное.

Звуковая волна является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают её колебания. В фазе повышения давления или сгущения барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молотка, благодаря подвешивающим связкам смещается кнаружи, а длинный росток наковальни - кнутри, смещая, таким образом, кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение волны по лестнице преддверия передают колебательные движения мембране Рейсснера, а та в свою очередь приводит в движение эндолимфу и через основную мембрану - перилимфу барабанной лестницы. В результате такого перемещения перилимфы возникают колебания основной и рейсснеровской мембран. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге приводит к смещению в сторону барабанной полости мембраны окна преддверия. В фазе снижения давления происходит возврат передающей системы в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо является основным. Другим путем проведения звуков к спиральному органу является костная (тканевая) проводимость. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм костно-тканевой передачи звука может иметь двоякий характер. В одном случае звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану круглого окна и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой - инерционный вариант. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа и, следовательно, основная и рейсснерова мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание кос­тей черепа можно вызвать прикосновением к нему звучащего камертона или телефона. Таким образом, костный путь передачи при нарушении передачи звука через воздух приобретает большое значение.

Ушная раковина. Роль ушной раковины в физиологии слуха человека невелика. Некоторое значение она имеет в ототопике и как коллекторы звуковых волн.

Наружный слуховой проход. Представляет собой форму трубки, благодаря чему является хорошим проводником звуков в глубину. Ширина и форма слухового прохода не играет особой роли при звукопроведении. Вместе с тем механическая закупорка его препятствует распространению звуковых волн к барабанной перепонке и приводит к заметному ухудшению слуха. В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, что обеспечивает стабильность упругих сред барабанной полости. В силу особого строения наружного уха, давление звуковой волны в наружном слуховом проходе в два раза больше, чем в свобод­ном звуковом поле.

Барабанная перепонка и слуховые косточки. Основная роль барабанной перепонки и слуховых кос­точек заключается в трансформации звуковых колебаний большой ампли­туды и малой силы в колебания жидкостей внутреннего уха с малой амплитудой и большой силой (давлением). Колебания барабанной пере­понки приводят в соподчинение движение молоточек, наковальню и стремя. В свою очередь стремя передает колебания перилимфе, которое вызывает смещение мембран улиткового хода. Движение основной мемб­раны обусловливает раздражение чувствительных, волосковых клеток спирального органа, вследствие чего возникают нервные импульсы, следующие по слуховому пути в кору головного мозга.

Барабанная перепонка вибрирует в основном в своем нижнем квадранте с синхронным движением прикрепленного к ней молоточка. Ближе к периферии её колебания уменьшаются. При максимальной интенсивности звука колебания барабанной перепонки могут варьировать от 0,05 до 0,5 мм, причем на тоны низкой частоты размах колебаний больше, на тоны высокой частоты - меньше.

Трансформационный эффект достигается за счет разницы площади барабанной перепонки и площади основания стремени, соотношение которых составляет приблизительно 55:3 (соотношение площадей 18:1), а также благодаря рычажной системе слуховых косточек. При переводе в дБ рычажное действие системы слуховых косточек составляет 2 дБ, а повышение звукового давления вследствие разницы соотношения полезных площадей барабанной перепонки к основанию стремени обеспечивает усиление звука на 23 - 24 дБ.

По данным Бекеши /I960/, общий акустический выигрыш трансфор­матора звукового давления составляет 25 - 26 дБ. Это повышение давления компенсирует естественную потерю звуковой энергии, возникающую в результате отражения звуковой волны при переходе её из воз­душной среды в жидкую, особенно для низких и средних частот (Вульштеин JL, 1972).

Помимо трансформации звукового давления, барабанная перепонка; выполняет также функцию звукозащиты (экранирования) окна улитки. В норме звуковое давление, передаваемое через систему слуховых косточек к средам улитки, достигает окна преддверия несколько раньше, чем оно приходит к окну улитки через воздушную среду. Вследствие разницы давлений и сдвига фазы возникает движение перилимфы, вызывающее изгиб основной мембраны и раздражение рецепторного аппарата. При этом мембрана окна улитки колеблется синхронно с основанием стремени, но в противоположном направлении. При отсутствии барабанной перепонки этот механизм звукопередачи нарушается: следующая наружного слухового прохода звуковая волна одновременно в фазе достигает окна преддверия и улитки, в результате чего действие волны взаимно уничтожается. Теоретически при этом не должно быть сдвига перилимфы и раздражения чувствительных волосковых клеток. На caмом деле при полном дефекте барабанной перепонки, когда оба окна в равной степени доступны звуковым волнам, слух снижается до 45 - 50 Разрушение же цепи слуховых косточек сопровождается значительной потерей слуха (до 50-60 дБ).

Конструктивные особенности рычажной системы позволяют не только усиливать слабые звуки, но и выполнять в определённой мере защитную функцию - ослаблять передачу сильных звуков. При слабых звуках основание стремени колеблется главным образом вокруг вертикальной оси. При сильных звуках происходит скольжение в наковально-молоточковом суставе главным образом при низкочастотных тонах, в результате чего движение длинного отростка молоточка ограничивается. Наряду с этим основание стремени начинает колебаться преиму­щественно в горизонтальной плоскости, что также ослабляет переда звуковой энергии.

Помимо барабанной перепонки и слуховых косточек, защита внутреннего уха от избыточной звуковой энергии осуществляется в результате сокращения мышц барабанной полости. При сокращении мышцы стремени, когда акустический импеданс среднего уха резко возрастает, чувствительность внутреннего уха к звукам главным образом низкой частоты снижается до 45 дБ. Исходя из этого, существует мнение, стременная мышца предохраняет внутреннее ухо от избыточной энергии низкочастотных звуков (Ундриц В.Ф. и др., 1962; Мороз Б.С., 1978)

Функция мышцы, натягивающей барабанную перепонку, остается недостаточно изученной. Полагают, что она в большей степени связана с вентиляцией среднего уха и поддерживанием нормального давления в барабанной полости, чем с защитой внутреннего уха. Обе внутриушные мышцы сокращаются также при открытии рта, глотании. В этот момент чувствительность улитки к восприятию низких звуков снижается.

Звукопроводящая система среднего уха функционирует в оптималь­ном режиме, когда давление воздуха в барабанной полости и клетках сосцевидного отростка равно атмосферному давлению. В норме давление воздуха в системе среднего уха уравновешено с давлением внешней среды достигается это благодаря слуховой трубе, которая, открываясь в носоглотку, обеспечивает приток воздуха в барабанную полость. Одна­ко непрерывное поглощение воздуха слизистой оболочкой барабанной полости создает в ней слегка отрицательное давление, что требует постоянного выравнивания его с атмосферным давлением. В спокойном состоянии слуховая труба обычно закрыта. Она открывается при глота­нии или зевании в результате сокращения мышц мягкого неба (натяги­вающей и поднимающей мягкое нёбо). При закрытии слуховой трубы в ре­зультате патологического процесса, когда воздух не поступает в ба­рабанную полость, возникает резко отрицательное давление. Это при­водит к снижению слуховой чувствительности, а также к транссудации серозной жидкости из слизистой оболочки среднего уха. Потеря слуха при этом преимущественно на тоны низких и средних частот достигает 20 - 30 дБ. Нарушение вентиляционной функции слуховой трубы сказы­вается также на внутрилабиринтном давлении жидкостей внутреннего уха, что в свою очередь ухудшает проведение низкочастотных звуков.

Звуковые волны, вызывая перемещение лабиринтной жидкости, при­водят в колебание основную мембрану, на которой расположены чувст­вительные волосковые клетки спирального органа. Раздражение волосковых клеток сопровождается нервным импульсом, поступающим в спиральный ганглий, а затем по слуховому нерву к центральным отделам анализатора.

Для нашей ориентации в окружающем мире слух играет такую же роль, как и зрение. Ухо позволяет нам общаться друг с другом при помощи звуков оно имеет специальную чувствительность к звуковым частотам речи. С помощью уха человек улавливает различные звуковые колебания воздуха. Вибрации, которые идут от предмета (источник звука), передаются через воздух играющий роль передатчика звука, улавливаются ухом. Человеческое ухо воспринимает колебания воздуха с частотой от 16 до 20 000 Гц. Вибрации с большей частотой относятся к ультразвуковым, но человеческое ухо их не воспринимает. Способность различать высокие тона с возрастом уменьшается. Способность улавливать звук двумя ушами даёт возможность определять, где он находится. В ухе колебания воздуха преобразуются в электрические импульсы, которые воспринимаются мозгом как звук.

В ухе расположен и орган восприятия движения и положения тела в пространстве - вестибулярный аппарат . Вестибулярная система играет большую роль в пространственной ориентации человека, анализирует и передаёт информацию об ускорениях и замедлениях прямолинейного и вращательного движения, а также при изменении положения головы в пространстве.

Строение уха

Исходя из внешнего строения ухо делится на три части. Первые две части уха, наружное (внешнее) и среднее, проводят звук. Третья часть - внутреннее ухо - содержит слуховые клетки, механизмы для восприятия всех трёх особенностей звука: высоты, силы и тембра.

Наружное ухо - выступающая часть наружного уха называется ушной раковиной , её основу составляет полужёсткая опорная ткань - хрящ. Передняя поверхность ушной раковины имеет сложное строение и непостоянную форму. Она состоит из хряща и фиброзной ткани, за исключением нижней части - дольки (ушной мочки) образованной жировой клетчаткой. В основании ушной раковины имеется передняя, верхняя и задняя ушные мышцы, движения которой ограничены.

Кроме акустической (звукоулавливающей) функции, ушная раковина выполняет защитную роль, предохраняя слуховой проход в барабанную перепонку от вредного воздействия окружающей среды (попадания воды, пыли, сильных воздушных потоков). Как форма, так и величина ушных раковин индивидуальны. Длина ушной раковины у мужчин 50–82 мм и ширина 32–52 мм, у женщин размеры несколько меньше. На маленькой площади ушной раковины представлена вся чувствительность тела и внутренних органов. Поэтому можно использовать её для получения биологически важной информации о состоянии любого органа. Ушная раковина концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

Наружный слуховой проход служит для проведения звуковых колебаний воздуха от ушной раковины к барабанной перепонке. Наружный слуховой проход имеет длину от 2 до 5 см. его наружная треть образована хрящевой тканью, а внутренние 2/3 - костной. Наружный слуховой проход дугообразно изогнут в верхнее-заднем направлении, и легко выпрямляется при оттягивании ушной раковины вверх и назад. В коже слухового прохода находятся особые железы, выделяющие секрет желтоватого цвета (ушная сера), функция которой: защита кожи от бактериальной инфекции и инородных частиц (попадание насекомых).

Наружный слуховой проход отделяется от среднего уха барабанной перепонкой, всегда втянутой внутрь. Это тонкая соединительно-тканная пластинка, покрытая снаружи многослойным эпителием, а изнутри - слизистой оболочкой. Наружный слуховой проход служит для проведения звуковых колебаний к барабанной перепонке, которая отделяет наружное ухо от барабанной полости (среднего уха).

Среднее ухо , или барабанная полость, представляет собой небольшую заполненную воздухом камеру, которая расположена в пирамиде височной кости и отделена от наружного слухового прохода барабанной перепонкой. Эта полость имеет костные и перепончатую (барабанная перепонка) стенки.

Барабанная перепонка - это малоподвижная мембрана толщиной 0,1 мкм, сплетённая из волокон, которые идут в различных направлениях и неравномерно натянуты в разных участках. Благодаря такому строению барабанная перепонка не имеет собственного периода колебаний, что приводило бы к усилению звуковых сигналов, совпадающих с частотой собственных колебаний. Она начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход. Через отверстие на задней стенке барабанная перепонка сообщается с сосцевидной пещерой.

Отверстие слуховой (евстахиевой) трубы расположено в передней стенке барабанной полости и ведёт в носовую часть глотки. Благодаря этому атмосферный воздух может попадать в барабанную полость. В норме отверстие евстахиевой трубы закрыто. Оно открывается во время глотательных движений или зевания, способствуя выравниванию давления воздуха на барабанную перепонку со стороны полости среднего уха и наружного слухового отверстия, тем самым она предохраняется от разрывов, приводящих к нарушению слуха.

В барабанной полости лежат слуховые косточки . Они имеют очень маленькие размеры и соединяются в цепочку, которая простирается от барабанной перепонки до внутренней стенки барабанной полости.

Самая наружная косточка - молоточек - своей рукояткой соединена с барабанной перепонкой. Головка молоточка соединяется с наковальней, которая подвижно сочленяется с головкой стремени .

Слуховые косточки получили такие названия из-за своей формы. Косточки покрыты слизистой оболочкой. Две мышцы регулируют движение косточек. Соединение косточек такое, что способствует усилению давления звуковых волн на мембрану овального окна в 22 раза, что даёт слабым звуковым волнам приводить в движение жидкость в улитке .

Внутреннее ухо заключено в височной кости и представляет собой систему полостей и каналов, расположенных в костном веществе каменистой части височной кости. В совокупности они формируют костный лабиринт, внутри которого находится перепончатый лабиринт. Костный лабиринт представляет собой костные полости различной формы и состоит из преддверия, трёх полукружных каналов и улитки. Перепончатый лабиринт состоит из сложной системы тончайших перепончатых образований, находящихся в костном лабиринте.

Все полости внутреннего уха заполнены жидкостью. Внутри перепончатого лабиринта - эндолимфа, а жидкость, омывающая перепончатый лабиринт снаружи - перелимфа и по составу схожа со спинно-мозговой жидкостью. Эндолимфа отличается от перелимфы (в ней больше ионов калия и меньше ионов натрия) - несёт положительный заряд по отношению к перелимфе.

Предверие - центральная часть костного лабиринта, которая сообщается со всеми его частями. Сзади от преддверия расположены три костных полукружных канала: верхний, задний и латеральный. Латеральный полукружный канал лежит горизонтально, два других - под прямым углом к нему. Каждый канал имеет расширенную часть - ампулу. Внутри его содержится перепончатая ампула, заполненная эндолимфой. При движении эндолимфы во время изменения положения головы в пространстве раздражаются нервные окончания. По волокнам нерва возбуждение передаётся в головной мозг.

Улитка представляет собой спиральную трубку, образующую два с половиной оборота вокруг конусовидного костного стержня. Она является центральной частью органа слуха. Внутри костного канала улитки располагается перепончатый лабиринт, или улитковый проток, к которому подходят окончания улитковой части восьмого черепного нерва Колебания перилимфы передаются эндолимфе улиткового протока и активизирует нервные окончания слуховой части восьмого черепного нерва.

Преддверно-улитковый нерв состоит из двух частей. Преддверная часть проводит нервные импульсы от преддверия и полукружных каналов к вестибулярным ядрам моста и продолговатого мозга и далее - к мозжечку. Улитковая часть передаёт информацию по волокнам, следующим от спирального (кортиева) органа к слуховым ядрам ствола и далее - через ряд переключений в подкорковых центрах - к коре верхнего отдела височной доли полушария большого мозга.

Механизм восприятия звуковых колебаний

Звуки возникают благодаря колебаниям воздуха и усиливаются в ушной раковиной. Затем звуковая волна проводится по наружному слуховому проходу к барабанной перепонке, вызывая её колебания. Вибрация барабанной перепонки передаётся на цепь слуховых косточек: молоточек, наковальню и стремя. Основание стремени при помощи эластичной связки фиксировано к окну преддверия, благодаря чему колебания передаются на перилимфу. В свою очередь, через перепончатую стенку улиткового протока эти колебания переходят на эндолимфу, перемещение которой вызывает раздражение рецепторных клеток спирального органа. Возникающий при этом нервный импульс следует по волокнам улитковой части преддверно-улиткового нерва в головной мозг.

Перевод воспринимаемых органом слуха звуков как приятных и неприятных ощущений осуществляется в головном мозге. Нерегулярные звуковые волны формируют ощущения шума, а регулярные, ритмичные волны воспринимаются как музыкальные тоны. Звуки распространяются со скоростью 343 км/с при температуре воздуха 15–16ºС.