Зрение детей - возрастные особенности проблемы. Возрастное изменение зрения Взаимосвязь возрастных особенностей и остроты зрения проанализировать


Глазное яблоко у человека развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг), хрусталик - из эктодермы, сосудистая и фиброзная оболочка - из мезенхимы. В конце 1 -го, начале 2-го месяца внутриутробной жизни на боковых стенках первичного мозгового пузыря появляется небольшое парное выпячивание - глазные пузыри. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и преобразуется в наружную пигментную часть (слой). Из внутренней стенки этого пузыря образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосенсорный слой). На 2-м месяце внутриутробного развития прилежащая к глазному бокалу эктодерма утолщается,
затем в ней образуется хрусталиковая ямка, превращающаяся в хрустальный пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.
На 2-м месяце внутриутробной жизни в глазной бокал проникают мезенхимные клетки, из которых образуются внутри бокала кровеносная сосудистая сеть и стекловидное тело. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев - фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес кровеносные сосуды, находящиеся в капсуле хрусталика и стекловидном теле, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).
Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная железа развивается из выростов конъюнктивального эпителия в латеральной части формирующегося верхнего века.
Глазное яблоко у новорожденного относительно большое, его переднезадний размер составляет 17,5 мм, масса - 2,3 г. К 5 годам масса глазного яблока увеличивается на 70 %, а к 20-25 годам - в 3 раза по сравнению с новорожденным.
Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется. Хрусталик почти круглый. Особенно быстро растет хрусталик в течение 1-го года жизни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка 2,5 мм. По мере увеличения возраста ребенка толщина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.
Ресничное тело у новорожденного развито слабо. Рост и диф- ференцировка ресничной мышцы осуществляется довольно быстро.
Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.
Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. Функция слезоотделения появляется на 2-м месяце жизни ребенка. Жировое тело глазницы развито слабо. У людей пожилого и старческого возраста жировое
тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.
Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.
Аномалии развития глазного яблока. Сложное развитие глазного яблока приводит к появлению врожденных дефектов. Чаще других встречается неправильная кривизна роговицы или хрусталика, вследствие чего изображение на сетчатке искажается (астигматизм). При нарушенных пропорциях глазного яблока появляются врожденные близорукость (зрительная ось удлинена) или дальнозоркость (зрительная ось укорочена). Щель в радужке (колобома) чаще бывает в переднемедиальном ее сегменте. Остатки ветвей артерии стекловидного тела мешают прохождению света в стекловидном теле. Иногда встречается нарушение прозрачности хрусталика (врожденная катаракта). Недоразвитие венозного синуса склеры (шлеммов канал) или пространств радужно-роговичного угла (фон- тановых пространств) вызывает врожденную глаукому.
Вопросы для повторения и самоконтроля:

  1. Перечислите органы чувств, дайте каждому из них функциональную характеристику.
  2. Расскажите о строении оболочек глазного яблока.
  3. Назовите структуры, относящиеся к прозрачным средам глаза.
  4. Перечислите органы, которые относятся к вспомогательным аппаратам глаза. Какие функции выполняет каждый из вспомогательных органов глаза?
  5. Расскажите о строении и функциях аккомодационного аппарата глаза.
  6. Опишите проводящий путь зрительного анализатора от рецепторов, воспринимающих свет, до коры большого мозга.
  7. Расскажите об адаптации глаза к свету и о цветовом зрении.

Вы без труда отличите глаза ребенка от глаз взрослого человека.
Голубоватого оттенка склера, голубая радужка, расположенная близко
к роговице, узкий зрачок, глазные яблоки сведены к переносице.

Глаза новорожденного обладают только световой чувствительностью. Под действием света вызываются в основном защитные реакции (сужение зрачка, смыкание век, поворот глазных яблок).

Новорожденный не способен различать предметы и цвета. Центральное зрение появляется на 2–3 месяце жизни (низкое - 0,1), к 6–7 годам - 0,8–1,0.

Цветоощущение формируется в возрасте 2–6 месяцев (прежде всего с восприятия красного цвета). Бинокулярное зрение формируется позже других зрительных функций - на 4 году жизни.

Глаз новорожденного имеет значительно более короткую переднезаднюю ось (17–18 мм), чем глаз взрослого (23–24 мм). Передняя камера
к моменту рождения сформирована, но мелкая (до 2 мм) в отличие от взрослого (3,5 мм). Роговица малого диаметра (8–9 мм). Количество водянистой влаги у новорожденных меньше (до 0,2 см 3), чем у взрослых
(до 0,45 см 3).

Преломляющая сила глаза новорожденного более высокая (80–
90,9 дптр), преимущественно за счет различия в преломляющей силе хрусталика (43 дптр - у детей и 20 дптр - у взрослых). Глаз новорожденного имеет, как правило, гиперметропическую рефракцию (дальнозоркий). Хрусталик новорожденных имеет шаровидную форму, в его составе преобладают растворимые белки (кристаллины).

Роговица и конъюнктива малочувствительны. Поэтому в этот период особенно опасно попадание в конъюнктивальный мешок инородных тел, которые не вызывают раздражения глаз и могут обусловить тяжелое повреждение роговицы (кератиты) вплоть до ее разрушения. Зрачок у детей до 1 года узкий - 2 мм (у взрослых - 3–4 мм) и слабо реагирует на свет, т. к. дилататор почти не функционирует. У новорожденных присутствует слезоотделение только за счет выработки слезы добавочными слезными железами конъюнктивы, поэтому новорожденные дети плачут без слез. Слезоотделение слезной железой начинается с 2–4 месяцев. Ресничное тело недостаточно развито, и аккомодация отсутствует.

Склера новорожденных тонкая (0,4 мм), имеет голубоватый оттенок, т. к. сквозь нее просвечивает сосудистая оболочка. Радужка новорожденных имеет голубоватую окраску, т. к. в переднем мезодермальном листке пигмент почти отсутствует и через строму просвечивает задняя пигментная пластинка. Постоянную окраску радужка приобретает к 10–12 годам.

Оси глазниц новорожденного конвергируют кпереди, что создает видимость сходящегося косоглазия. Глазодвигательные мышцы при рождении тонкие.

В первые 3 года происходит интенсивный рост глаза. Рост глазного яблока продолжается до 14–15 лет.

РАЗВИТИЕ ГЛАЗА И ЕГО АНОМАЛИИ[†]

Глазное яблоко формируется из нескольких источников (табл.).
Сетчатка является производным нейроэктодермы и представляет собой парное выпячивание стенки diencephalon в виде однослойного пузырька на ножке (рис. 10). Посредством инвагинации его дистальной части глазной пузырек превращается в двухстенный глазной бокал. Внешняя стенка бокала преобразуется в пигментную, а внутренняя - в нервную часть сетчатки. Отростки ганглиозных клеток сетчатки прорастают в ножку
бокала и формируют зрительный нерв.

Поверхностная эктодерма, прилежащая к глазному бокалу, впячивается в его полость и формирует хрусталиковый пузырек. Последний
превращается в хрусталик после заполнения полости растущими хрусталиковыми волокнами. Через щель, расположенную между краями бокала и хрусталика, мезенхимные клетки проникают внутрь бокала, где участвуют в образовании стекловидного тела.

Сосудистая и фиброзная оболочки развиваются из мезенхимы. Отделение роговичной мезенхимы от хрусталика ведет к появлению передней камеры глаза.

Поперечнополосатая мускулатура является производной миотомов головы.

Веки представляют собой кожные складки, растущие навстречу друг другу и смыкающиеся между собой спереди от роговицы. В толще их формируются ресницы и железы.

Аномалии развития органа зрения человека являются причиной слепоты в 50 % случаев, возникают вследствие наследственных мутаций
и влияния тератогенных факторов.

В первые 4 недели эмбриональной жизни из-за патологического развития глазного пузырька возникают большие пороки развития. Например, анофтальм - врожденное отсутствие глаза, микрофтальмия - состояние, при котором глазной пузырек образуется, но не происходит его дальнейшее нормальное развитие, все структуры глаза патологически малы.

Помутнение хрусталика (врожденная катаракта) находится на первом месте среди врожденной патологии глаз. Чаще она развивается вследствие неправильного отшнуровывания хрусталикового пузырька от эктодермы. При нарушении отшнуровывания хрусталикового пузырька от эктодермы, слабости передней капсулы формируется передний лентиконус - выпячивание на передней поверхности хрусталика. Среди других видов врожденной патологии хрусталика необходимо отметить его смещение
с обычного места расположения: полное (вывих, luxatio) и неполное (подвывих, subluxatio). Причиной такой эктопии и смещения хрусталика
в переднюю камеру или стекловидное тело обычно являются аномалии развития ресничного тела и ресничного пояска. При нарушении или
замедлении обратного развития сосудистой сумки хрусталика ее остатки
в виде пигментных отложений образуют сетевидные структуры на передней капсуле - зрачковые мембраны. Иногда встречается врожденная афакия (отсутствие хрусталика), которая может быть первичной (когда
не происходит закладки хрусталика) и вторичной (его внутриутробное рассасывание).

В результате неполного закрытия эмбриональной щели на стадии глазного бокала формируются колобомы - щели век, радужки, зрительного нерва, хориоидеи.

Неполное рассасывание мезодермы в углу передней камеры ведет
к нарушению оттока внутриглазной жидкости из передней камеры глаза
и развитию глаукомы. При аномалии дренажной системы глаза может иметь место аниридия - отсутствие радужки.

Аномалии роговицы включают микрокорнею, или малую роговицу, при этом она уменьшена в сравнении с возрастной нормой более чем на
1 мм, т. е. диаметр роговицы новорожденного может быть не 9, а 6–7 мм; мегалокорнеа, или макрокорнея - большая роговица, т. е. ее размеры увеличены против возрастной нормы более чем на 1 мм; кератоконус - состояние роговицы, при котором значительно конусообразно выступает ее центральная часть; кератоглобус - характеризуется тем, что поверхность роговицы имеет чрезмерно выпуклую форму на всем протяжении.

Одна из аномалий первичного стекловидного тела - это его гиперпластичность. Возникает при нарушении обратного развития артерии стекловидного тела, которая врастает через сосудистую щель в полость глазного бокала.

Распространенная аномалия - опущение верхнего века (птоз) - может возникнуть в связи с недоразвитием мышцы, поднимающей верхнее веко, или в результате нарушения ее иннервации.

В случае нарушения формирования глазной щели веки остаются сросшимися - анкилоблефарон.

Возникновение аномалий зрительного нерва связано с закрытием глазной щели в процессе эмбриогенеза на стадии формирования вторичного глазного пузыря или глазного бокала, с задержкой врастания нервных волокон в ножку глазного бокала - гипоплазия (уменьшение
диаметра) и аплазия (отсутствие) зрительного нерва или с персистенцией (задержкой развития) стекловидного тела - препапиллярные мембраны над диском зрительного нерва, а также с аномальным разрастанием
миелина за решетчатую пластинку склеры внутрь глаза - миелиновые волокна зрительного нерва.

Многие аномалии глаза можно диагностировать с помощью метода эхографии лицевых структур плода уже во 2-м триместре беременности.

Словарь эпонимов[‡]

Мейбомиева (Meibomian ) железа - железа хряща века

Шлеммов (Schlemm ) канал - венозный синус склеры

Боуменова (Bowman´s ) мембрана - передняя пограничная пластинка
роговицы

Мембрана Бруха (Bruch´s ) - пограничная пластинка собственно сосудистой оболочки

Мышца Брюкке (Brocke´s ) - меридиональные волокна ресничной мышцы

Десцеметова (Descemet´s ) мембрана - задняя пограничная пластинка роговицы

Фонтановы (Fontana ) пространства - пространства между волокнами корнеосклеральной трабекулы

Мышца Горнера (Horner´s ) - часть круговой мышцы глаза, направляющейся к слезному мешку (pars lacrimalis)

Железа Краузе (Krause ) - слезная железа

Трабекула Леонардо да Винчи (Leonardo´s da Vinci ) - корнеосклеральная трабекула

Железа Молля (Moll´s ) - ресничная железа, открывающаяся на краю века

Мышца Мюллера (Müller´s ) - часть мышцы, поднимающей верхнее веко

Тенонова (Tenoni ) капсула - влагалище глазного яблока

Цинна (Zinn ) кольцо - общее сухожильное кольцо

Поясок Цинна (Zinn) - ресничный поясок

Железы Цейсса (Zeis ) - ресничные железы, открывающиеся на краю века


Введение................................................................................................... 3

Оптическая система глаза........................................................................ 3

Аккомодация глаза.................................................................................. 5

Гидродинамика глаза............................................................................... 7

Мышцы глаза........................................................................................... 9

Бинокулярное зрение............................................................................... 11

Кровоснабжение глаза............................................................................. 12

Слезный аппарат...................................................................................... 15

Сетчатка и зрительный путь.................................................................... 18

Возрастные особенности строения глаза................................................ 23

Развитие глаза и его аномалии................................................................ 24

Литература............................................................................................... 29



[*] Под термином оптической системы глаза, употребляемым в клинике, в анатомии понимают внутреннее ядро глаза.

[†] Аномалии (греч. anömalia) - врожденное стойкое, обычно не прогрессирующее, отклонение от нормальной структуры и функции.

[‡] Эпоним (греч. epönymos, epi - после, onoma - имя) - названия, носящие чье-либо имя (как правило, имя того, кто открыл данный орган, либо дал ему детальное описание). Жирным шрифтом выделены эпонимы, наиболее употребительные в клинической практике.

23-02-2012, 17:06

Описание

Основные задачи занятия . Изучить морфологические особенности зрительного анализатора у детей раннего возраста, условия для формирования и развития зрительных функций; рассмотреть физиологию зрительного акта; получить представление о центральном зрении и его возрастной динамике, основах и динамике цветового зрения; изучить субъективные и объективные методы исследования остроты зрения, цветоощущения у детей различного возраста; изучить возрастные особенности и методы исследования периферического, бинокулярного и стереоскопического зрения.

Порядок занятия . Зрительные функции исследуют друг у друга и у детей различного возраста с понижением функций вследствие аномалий рефракции, гидрофтальма, катаракты, отслойки сетчатки и т. д. Овладевают методикой работы с приборами, методами и особенностями исследования отдельных функций у детей различного возраста. Последовательно проверяются прямая и содружественная реакция зрачков на свет, реакция слежения и фиксации взгляда. Далее определяют ориентировочно остроту и поле зрения, цветоощущение и бинокулярное зрение. Вслед за ориентировочным исследованием зрительных функций определяют их на аппаратах.

Уже у ребенка 3 лет, если наладить с ним контакт, можно довольно точно определить остроту зрения.

Острота зрения - это способность различать отдельно две точки или детали предмета. Для определения остроты зрения служат детские таблицы (рис. 12),

Рис. 12. Таблицы Орловой для исследования остроты зрения у детей.

таблицы с оптотипами Ландольта, помещенные в аппарат Рота. Предварительно ребенку показывают таблицу с картинками на близком расстоянии. Затем проверяют остроту зрения при обоих открытых глазах с расстояния 5 м, а потом, закрывая поочередно то один, то другой глаз заслонкой (рис. 13),

Рис. 13. Полупрозрачный щиток-заслонка для выключения неисследуемого глаза.

исследуют зрение каждого глаза. Показ картинок или знаков начинают с верхних строчек. Детям школьного возраста показ букв в таблице Сивцева и Головина (рис. 14)

Рис. 14. Определение остроты зрения по таблице Головина - Сивцева.

следует начинать с самых нижних строк. Если ребенок видит почти все буквы 10-й строки, за исключением одной-двух, то острота зрения его равна 1,0. Эта строка должна располагаться на уровне глаз сидящего ребенка.

При оценке остроты зрения необходимо помнить о возрастной динамике центрального зрения, поэтому, если ребенок 3-4 лет видит знаки только 5-7-й строки, это не говорит еще о наличии органических изменений в органе зрения. Для исключения их необходимо тщательно осмотреть передний отрезок глаза и определить хотя бы вид рефлекса с глазного дна при узком зрачке.

Если нет помутнений в преломляющих средах глаза и нет даже косвенных признаков, свидетельствующих о патологии глазного дна, то наиболее часто снижение зрения может быть обусловлено аномалиями рефракции. Чтобы подтвердить или исключить и эту причину, необходимо попытаться улучшить зрение с помощью подставления соответствующих стекол перед глазом (рис. 15).

Рис. 15. Определение остроты зрения с коррекцией оптическими стеклами.

При проверке острота зрения может оказаться ниже 0,1; в таких случаях следует ребенка подводить к таблице (или таблицу подносить к нему), пока он не станет различать буквы или картинки первой строки. Остроту зрения
следует при этом рассчитывать по формуле Снеллена : V = d/D где V - острота зрения; d - расстояние, с которого обследуемый видит буквы данной строки. D - расстояние, с которого штрихи букв различаются под углом 1 (т. е. при остроте зрения, равной 1,0).

Если острота зрения выражается сотыми долями единицы, то расчеты по формуле становятся нецелесообразными. В таких случаях необходимо прибегнуть к показу больному пальцев (на темном фоне), ширина которых приблизительно соответствует штрихам букв первой строчки, и отмечать,с какого расстояния он их считает (рис. 16).

Рис. 16. Определение остроты зрения ниже 0,1 по пальцам.

При некоторых поражениях органа зрения у ребенка возможна потеря предметного зрения, тогда он не видит даже пальцев, поднесенных к лицу. В этих случаях очень важно определить, сохранилось ли у него хотя бы ощущение света или имеется абсолютная слепота. Проверить это можно, следя за прямой реакцией зрачка на свет. Ребенок более старшего возраста сам может отметить наличие или отсутствие у него светоощущения, если глаз его освещать офтальмоскопом.

Однако установить наличие светоощущения у обследуемого еще недостаточно. Следует узнать, функционируют ли в достаточной мере все отделы сетчатки. Это выясняют, исследуя правильность светопроекции. Наиболее удобно ее проверить у ребенка, поставив позади него лампу и отбрасывая на роговицу глаза из разных точек пространства световой пучок с помощью офтальмоскопа. Это исследование возможно и у детей младшего возраста, которым предлагается пальцем показать на перемещающийся источник света. Правильная светопроекция свидетельствует о нормальной функции периферической части сетчатки.

Данные о светопроекции приобретают особенно большое значение при помутнении оптических сред глаз а, когда невозможна офтальмоскопия, например у ребенка с врожденной катарактой при решении вопроса о целесообразности оптической операции. Правильная светопроекция указывает на сохранность зрительно-нервного аппарата глаза.

Наличие неправильной (неуверенной) светопроекции чаще всего свидетельствует о грубых изменениях в сетчатке, проводящих путях или центральном отделе зрительного анализатора.

Значительные трудности встречаются при исследовании зрения у детей первых лет жизни. Естественно, что количественные характеристики у них почти не могут быть уточнены. На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Учитывая узость зрачка в этом возрасте и недостаточную подвижность радужки, исследования следует проводить в затемненной комнате и лучше пользоваться для освещения зрачка ярким источником света (зеркальный офтальмоскоп). Освещение глаз ярким светом нередко заставляет ребенка смыкать веки (рефлекс Пейпера), откидывать головку.

На 2-3-й неделе жизни ребенка можно судить о состоянии его зрения по обнаружению кратковременной фиксации взглядом источника света или яркого предмета. Освещая глаза ребенка светом перемещающегося офтальмоскопа или показывая яркие игрушки, можно видеть, что ребенок кратковременно следит за ними. У детей в возрасте 4-5 недель с хорошим зрением определяется устойчивая центральная фиксация взора: ребенок способен долго удерживать взгляд на источнике света или ярких предметах.

В связи с тем, что количественно определить остроту зрения у детей даже на 3-4-м месяце жизни доступными для врача способами не представляется возможным, следует прибегнуть к описательной характеристике . Например, ребенок 3-4 месяцев следит за показываемыми на различном расстоянии яркими игрушками, в 4-6 месяцев он начинает издалека узнавать мать, о чем свидетельствуют его поведение, мимика; измеряя эти расстояния и соотнося их с величиной букв первой строки таблицы, можно приблизительно характеризовать остроту зрения.

В первые годы жизни судить об остроте зрения ребенка следует также по тому, с какого расстояния он узнает окружающих людей, игрушки, по ориентировке в незнакомом помещении. Острота зрения у детей возрастает постепенно, и темпы этого роста различны. Так, к 3 годам острота зрения не менее чем у 10% детей равняется 1,0, у 30%-0,5-0,8, у остальных - ниже 0,5. К 7 годам у большинства детей острота зрения бывает равна 0,8-1,0. В тех случаях, когда острота зрения равна 1,0, следует помнить, что это не предел, и продолжать исследование, так как она может быть (примерно у 15% детей) и значительно выше (1,5 и 2,0 и даже более).

Периферическое зрение характеризуется полем зрения (совокупностью всех точек пространства, которые одновременно воспринимаются неподвижным глазом).

Исследование поля зрения необходимо при диагностике ряда глазных и общих заболеваний, особенно неврологических, связанных с поражением зрительных путей. Исследование периферического зрения преследует две цели: определение границ поля зрения и выявление в нем ограниченных участков выпадений (скотом).

О поле зрения у детей в возрасте до 2-3 лет следует прежде всего судить по их ориентации в окружающей обстановке.

У детей младшего возраста, а в некоторых случаях и у детей старшего возраста, ориентировочно периферическое зрение следует предварительно определить наиболее простым способом (контрольным). Обследуемого усаживают против врача так, чтобы глаза их находились на одном уровне. Определяют отдельно поле зрения каждого глаза . Для этого обследуемый закрывает, например, левый, а исследователь - правый глаз, затем наоборот. Объектом служит какой-либо предмет (кусок ваты, карандаш), перемещаемый с периферии по средней линии между врачом и больным (рис. 17).

Рис. 17. Контрольный способ исследования поля зрения.

Обследуемый отмечает момент появления в поле зрения движущегося предмета. О поле зрения исследователь судит, ориентируясь на состояние собственного поля зрения (заведомо известного).

Определение границ полей зрения в градусах осуществляется на периметрах . Наиболее распространены из них настольный периметр (рис.18)

Рис. 18. Настольный периметр.

и проекционно-регистрационные.

Исследование поля зрения производят с помощью специальных меток-объектов (черная палочка с белым объектом на конце) на настольном периметре - в освещенном помещении, на проекционном - в затемненном. Чаще пользуются белым объектом диаметром 5 мм. Границы поля зрения обычно исследуют в 8 меридианах. Дуга периметра легко вращается. Голову обследуемого помещают на подставке периметра. Один глаз фиксирует метку в центральной части дуги. Объект медленно (2 см/сек) перемещают от периферии к центру.Обследуемый отмечает появление в поле зрения движущегося объекта и моменты исчезновения его из поля зрения.

Проекционно-регистрационные периметры обладают рядом преимуществ. Благодаря имеющемуся приспособлению можно менять величину и интенсивность освещения объектов, а также их цвет, одновременно отмечая полученные данные на схеме. Важно также и то, что повторные исследования можно проводить при тех же условиях освещенности. Наиболее совершенным является проекционный сферопериметр (рис. 19).

Рис. 19. Исследование поля зрения на сферопериметре.

Для получения более точных данных о состоянии периферического зрения проводят исследования с помощью объектов меньшей величины (3-1 мм) и различной освещенности (на проекционных периметрах). С помощью этих исследований можно выявить даже незначительные изменения со стороны зрительного анализатора.

Если при исследовании периферического зрения обнаруживают концентрическое сужение , это может говорить о наличии у ребенка воспалительного заболевания зрительного нерва, атрофии его, глаукомы. Концентрическое сужение поля зрения наблюдается и при пигментном перерождении сетчатки. Значительное сужение поля зрения в каком-либо секторе часто отмечают при отслойке сетчатки, обширных участках сотрясения ее в результате травмы.

Выпадение центрального участка поля зрения , сочетающееся, как правило, с понижением центрального зрения, возможно при ретробульбарных невритах, дистрофических изменениях в макулярной области, воспалительных очагах в ней и т. д. Двусторонние изменения полей зрения чаще всего наблюдаются при поражении зрительных путей в полости черепа. Так, битемпоральные и биназальные гемианопсии возникают при поражениях хиазмы, право- и левосторонние гомонимные гемианопсии - при поражении зрительных путей выше хиазмы.

В некоторых случаях при недостаточной четкости выявленных изменений следует прибегнуть к более тонкому исследованию с помощью цветных объектов (красный, зеленый синий). Все полученные данные записывают в существующие схемы полей зрения (рис. 20).

Рис. 20. Бланк-схема поля зрения и границы поля зрения на белый цвет у детей разного возраста и у взрослых.Сплошная линия - взрослый; пунктир с точками - дети 9-11 лет; пунктир - дети 5-7 лет; точки - дети до 3 лет.

Ширина границ поля зрения у детей находится в прямой зависимости от возраста. Так у детей 3 лет границы на белый цвет уже, чем у взрослых, по всем радиусам в среднем на 15° (носовая - 45°, височная - 75°, верхняя - 40°, нижняя - 55°. Затем наблюдается постепенное расширение границ, и у 12-14-летних детей они почти не отличаются от границ у взрослых (носовая - 60°, височная - 90°, верхняя - 55°, нижняя - 70°).

При исследовании на периметре могут довольно четко выявляться крупные скотомы . Однако форму и величину скотом, располагающихся в пределах 30-40° от центральной ямки, лучше определять на кампиметре . Этот способ используют и для определения величины и формы слепого пятна. При этом диск зрительного нерва проецируется на черной матовой доске, расположенной на расстоянии 1 м от обследуемого, голова которого помещается на подставке. Против исследуемого глаза на доске имеется белая фиксационная точка, которую он должен фиксировать. По доске в месте, соответствующем проекции диска зрительного нерва, передвигают белый объект диаметром 3-5 мм. Границы слепого пятна выявляют по моменту появления или исчезновения объекта из поля зрения. Размер слепого пятна на появление объекта в норме у детей старших возрастных групп составляет 12 X 14 см. При воспалительных, застойных явлениях в зрительном нерве, глаукоме слепое пятно может увеличиваться в размере. Особенно ценны динамические исследования скотом, позволяющие судить об изменениях в течении процесса.

В ряде случаев для суждения о состоянии зрительного анализатора необходимо определить функцию светоощущения (способность воспринимать минимальное световое раздражение).

Наиболее часто проверяют светоощущение при глаукоме, пигментном перерождении сетчатки, хориоидитах и других заболеваниях. Исследование заключается в определении у больного ребенка порога светового раздражения отдельно для каждого глаза, т. е. минимального светового раздражения, улавливаемого глазом, и наблюдении за изменением этого порога во время пребывания больного в темноте. Порог изменяется в зависимости от степени освещения. Во время пребывания в темноте порог светового раздражения понижается. Этот процесс называется темновой адаптацией.

Адаптометрия обычно производится на адаптометре Белостоцкого-Гофмана (рис. 21).

Рис. 21. Исследование световой чувствительности на адаптометре.

Исследование проводят в темноте после 10-минутного засвета глаз ярким источником света. Порог светового раздражения, как правило, определяют через каждые 5 минут на протяжении 45 минут. При наличии изменений палочкового аппарата сетчатки уровень кривой темновой адаптации может оказаться ниже, чем у здорового ребенка того же возраста, порог раздражения может оставаться долгое время высоким. Для контроля эффективности лечения проводят повторные адаптометрические исследования.

Чувствительность темноадаптированного глаза у детей с возрастом увеличивается. Наиболее высокий уровень
кривой темновой адаптации наблюдается у детей 12- 14 лет, он значительно превышает уровень кривой взрослого человека.

Об устойчивости функционирования сетчатки можно судить по фото (свето) стрессу. Методика исследования состоит в следующем. После предварительного определения остроты зрения на исследуемый глаз воздействуют ярким источником света (лампа-вспышка или засвет глаза ручным электроофтальмоскопом в течение 30 секунд). Затем определяют время, в течение которого зрение достигает исходной величины. Восстановление зрения в течение 30-40 секунд свидетельствует о нормальном функционировании центральной ямки сетчатки.

Важной зрительной функцией является цветоощущение . По состоянию цветового зрения можно судить о заболеваниях сетчатки и зрительных путей.

Существуют немые и гласные методы исследования цветоощущения . Для исследования гласным методом используют полихроматические таблицы Рабкина, на цветовом поле которых изображены цифры, составленные из разноцветных кружков (рис. 22).

Рис. 22. Полихроматическая таблица для исследования цветоощущения.

В связи с тем, что цветоаномалы судят о цветовых тонах по их яркости, фон таблиц и цифры на них имеют одинаковую яркость, но различные цветовые оттенки. Поэтому больные с нарушенным цветоощущением не могут правильно назвать нарисованные на таблице знаки. На основании анализа результатов исследования можно дифференцировать один вид нарушения цветоощущения от другого, судить о том, восприятие какого цвета больше страдает у больного - красного (протанопия) или зеленого (дейтеранопия). С помощью специальных таблиц можно разграничить приобретенные нарушения цветового зрения от врожденных.?

Исследование цветового чувства с помощью полихроматических таблиц Рабкина проводят следующим образом:(рис. 23)

Рис. 23. Исследование цветоощущения.

исследуемый садится перед окном, а врач - спиной к окну на расстоянии 1 м от пациента и держит таблицы. Показ каждой из них продолжается в течение 5-6 секунд. Немой метод исследования цветового зрения состоит в том, что обследуемому показывают мотки ниток, очень близких по тону, и предлагают разложить их на отдельные группы соответствующего цвета.

Для правильного формирования цветового зрения необходимо, чтобы ребенок с первых дней жизни находился в хорошо освещенном помещении. С трехмесячного возраста, с момента появления прочной бинокулярной фиксации, следует использовать яркие игрушки, учитывая, что наиболее эффективными раздражителями, оказывающими стимулирующее влияние на функции органа зрения, являются средневолновые излучения - желтые, желто-зеленые, красные, оранжевые и зеленые цвета.

Следует помнить, что цветоаномалия встречается примерно у 5% мужчин, а у женщин в 100 раз реже.

Чрезвычайно важное значение для некоторых видов профессиональной деятельности имеет состояние бинокулярного зрения (способность пространственного восприятия изображения при участии в акте зрения обоих глаз).

Бинокулярное зрение и высшая форма его - стереоскопическое зрение - дают восприятие глубины, позволяют оценить расстояние предметов от исследователя и друг от друга. Оно возможно при достаточно высокой (0,3 и выше) остроте зрения каждого глаза, нормальной работе сенсорного и моторного аппаратов.

Монокулярное зрение чаще встречается у больных с косоглазием, при значительной (свыше 3,0 D) анизометропии (разная рефракция глаз) и анизейконии (разные размеры изображений на сетчатке и в зрительных центрах), некорригированной высокой степени дальнозоркости и астигматизме. Нефункционирующий глаз в таких случаях включается в работу только тогда, когда закрывается функционирующий. При монокулярном зрении ребенок лишен возможности правильно оценить глубину расположения предметов. Однако жизненный опыт, приобретенные навыки помогают даже человеку с одним глазом в какой-то мере восполнять имеющийся недостаток и правильно ориентироваться в окружающей обстановке.

Более совершенной формой по сравнению с монокулярным является одновременное зрение . В этом случае функционируют оба глаза, но с раздельными полями зрения. Поэтому участие обоих глаз в зрении возможно до тех пор, пока не фиксируется внимание на каком-либо предмете. При фиксации внимания на одной из точек пространства изображение, принадлежащее одному из глаз, исключается из восприятия.

Развитие бинокулярного зрения начинается с бинокулярной фиксации у ребенка на 3-м месяце жизни, а формирование его заканчивается к 6-12 годам.

Аппаратура для исследования бинокулярного зрения разнообразна. В основе устройства всех приборов лежит принцип разделения полей зрения правого и левого глаза . Наиболее прост и удобен в обращении прибор, в котором это разделение осуществляется с помощью дополнительных цветов; эти цвета при наложении друг на друга не пропускают света - четырехточечный цветовой аппарат (рис. 24).

Рис. 24. Четырехточечный цветовой аппарат.
а - расположение цветовых тестов в прибо¬ре; б - при рассматривании в цветных очках (красное стекло перед правым глазом, зеленое - перед левым) при наличии бинокулярного зрения, когда ведущий глаз правый; в - то же, когда ведущий глаз левый; г - при монокулярном зрении левого глаза; д - при монокулярном зрении правого глаза, е - при одновременном зрении.

Используются красный и зеленый цвета. На передней поверхности прибора имеется несколько отверстий?с красными и зелеными светофильтрами, а одно отверстие прикрывают матовым стеклом; изнутри прибор освещается лампой. Обследуемый надевает очки с красно-зелеными фильтрами. При этом глаз, перед которым стоит красное стекло, видит только красные объекты, другой - зеленые. Бесцветный объект можно видеть как правым, так и левым глазом. Поэтому при монокулярном зрении (предположим, участвует в зрении глаз, перед которым стоит красное стекло) обследуемый увидит красные объекты и окрашенный в красный цвет бесцветный объект. При нормальном бинокулярном зрении видны все красные и зеленые объекты, а бесцветный кажется окрашенным в красно-зеленый цвет, так как воспринимается и правым и левым глазом. Если имеется выраженный ведущий глаз, то бесцветный кружок окрасится в цвет стекла, поставленного перед ведущим глазом. При одновременном зрении обследуемый видит 5 объектов.

Элементарно о наличии бинокулярного зрения можно судить по появлению двоения при смещении одного из глаз, когда на него надавливают пальцем через веко. Бинокулярное зрение определяется также по установочному движению глаз. Если при фиксации обследуемым какого - либо предмета прикрыть один его глаз ладонью, то при наличии скрытого косоглазия глаз под ладонью отклонится в сторону. При отнятии руки в случае наличия у больного бинокулярного зрения глаз совершит установочное движение для получения бинокулярного восприятия.

Практические навыки :
1. Проверить остроту зрения ориентировочно и по таблицам.
2. Исследовать поле зрения контрольным способом и на периметре.
3. Исследовать цветоощущение с помощью полихроматических таблиц Рабкина и немым способом.
4. Определить характер зрения на четырехточечном цветовом аппарате и ориентировочным методом.

Статья из книги: .

Глазное яблоко у новорожденного относительно большое, его переднезадний размер равен 17,5 мм, масса -2,3 г, Зрительная ось глазного яблока проходит латеральнее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребенка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам - в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кривизны примерно равны. Особенно быстро растет хрусталик в течение первого года жизни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка толщина радужки увеличивается, количество пигмента в ней возрастает к двум годам, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляются довольно быстро. Способность к аккомодации устанавливается к 10 годам. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движения глаза возможны сразу после рождения, однако координация этих движений наступает со второго месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. На первом месяце жизни ребенок плачет без слез. Функция слезоотделения появляется на втором месяце жизни ребенка. Жировое тело глазницы развито слабо. У людей пожилого и старческого возраста жировое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.

Объясните строение и функции слухового анализатора.

Слуховой анализатор – это второй по значению анализатор в обеспечении адаптивных реакций и познавательной деятельности человека. Его особая роль у человека связана с членораздельной речью. Слуховое восприятие – основа членораздельной речи. Ребенок, потерявший слух в раннем детстве, утрачивает и речевую способность, хотя весь артикуляционный аппарат у него остается ненарушенным.

Адекватным раздражителем слухового анализатора являются звуки.

Рецепторный (перефирический) отдел слухового анализатора, превращающий энергию звуковых волн в энергию нервного возбуждения, представлен рецепторными волосковыми клетками кортиева органа (орган Корти), находящимися в улитке.

Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками. У человека приблизительно 3500 внутренних и 20000 наружных волосковых клеток, которые расположены на основной мемране внутри среднего канала внутреннего уха.

Проводящие пути от рецептора до коры больших полушарий, составляют проводниковый отдел слухового анализатора.

Проводниковый отдел слухового анализатора представлен перефирическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового или (кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга(второй нейрон). Затем после частичного перекрестка волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый) нейрон. В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

Корковый, или центральный, отдел слухового анализатора находится в верхней части височной доли большого мозга (верхняя височная) извилина, поля 41 и 42 по Бродмону). Важное значение для функции слухового анализатора имеют поперечные височные обеспечивающими регуляцию деятельности всех уровней извилины (извилины) Гешля. Наблюдения показали, что при двустороннем разрушении указанных
полей наступает полная глухота. Однако в тех случаях, когда поражение
ограничивается одним полушарием, может наступить небольшое и нередко
лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба
внутренних коленчатых тела связаны между собой промежуточными
нейронами, через которые импульсы могут переходить с правой стороны на
левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов

Слуховая сенсорная система дополняется механизмами обратной связи, обеспечивающими регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей. Такие пути начинаются от клеток слуховой коры, переключаясь последовательно в медиальных коленчатых телах метаталамуса, задних (нижних) буграх четверохолмия, в ядрах кохлеарного комплекса. Входя в состав слухового нерва, центробежные волокна достигают волосковых клеток кортиева органа и настраивают их на восприятие опрелеленных звуковых сигналов.

В развитии зрительного анализаторапосле рождения выделяют 5 периодов:

1) формирование области жёлтого пятна и центральной ямки сетчатки в течение первого

полугодия жизни – из 10 слоёв сетчатки остаются 4 (зрительные клетки, их ядра и пограничные

мембраны);,

2) увеличение функциональной мобильности зрительных путей и их формирование в течение

первого полугодия жизни;

3) совершенствование зрительных клеточных элементов коры и корковых зрительных центров в

течение первых 2-ух лет жизни;

4) формирование и укрепление связей зрительного анализатора с другими органами в

течение первых лет жизни;

5) морфологическое и функциональное развитие черепных нервов в первые 2-4 мес. жизни.

Зрениеноворожденного характеризуется диффузным светоощущением. В результате недоразвития коры большого мозга оно является подкорковым (гипоталамическим), примитивным (протопатическим). Поэтому наличие зрения у новорожденного исследуется проверкой вызывания в каждом глазу реакции зрачков (прямой и содружественной) на освещение светом и общей двигательной реакции (рефлекса Пейпера – «с глаза на шею» т.е. откидывание головки ребёнка кзади, нередко до степени опистотонуса).

По мере совершенствования корковых процессов и черепной иннервации развитие зрительного восприятия проявляется у новорожденного вреакции слежения вначале в течение секунд (взор «дрейфует» в направления предмета или против, когда он останавливается даже).

Со 2-ой недели появляется кратковременная фиксация (средняя острота зрения - в пределах 0,002-0,02).

Ко 2-ому мес. появляется синхронная(бинокулярная) фиксация (острота зрения = 0,01-0,04 - появляетсяформенное предметное зрение и ребёнок живо реагирует на мать).

К 6-8 мес. дети различают простые геометрические фигуры (острота зрения = 0,1-0,3).

С 1 года – дети различают рисунки (острота зрения = 0,3-0,6) .

С 3 лет – острота зрения = 0,6-0,9 (у 5-10% детей = 1,0).

В 5 лет – острота зрения = 0,8-1,0.

В 7 -15 лет – острота зрения = 0,9-1,5.

Параллельноостроте зрения развивается цветовое зрение, но судить о его наличии удаётся значительно позже. Первая более или менее отчётливая реакция на яркие красные, жёлтые и зелёные цвета появляется у ребёнка к первому полугодию жизни. Для правильного развития цветового зрения необходимо создание детям условий хорошей освещённости и привлечения внимания к ярким игрушкам на расстоянии 50 см и больше, меняя их цвета. Детские гирлянды для новорожденного должны иметь в центре жёлтые, оранжевые, красные и зелёные шары (поскольку центральная ямка более всего чувствительна к жёлто-зелёной и оранжевой части спектра), а шары синего, белого цвета и тёмные – помещать по краям.

Бинокулярное зрениие является высшей формой зрительного восприятия. Характер зрения у новорожденного вначале монокулярный т.к. он не фиксирует взглядом предметы, а движения его глаз не координированные. Затем он становится монокулярнным альтернирующим. При возникновении к 2-ум мес. рефлекса фиксации предмета развивается одновременное зрение. На 4-ом мес.- дети устойчиво фиксируют осязаемые ими предметы т.е. возникает т.н.плоскостное бинокулярное зрение . Кроме того, возникает сужение зрачка, фиксация близких предметов т.е. аккомодация, а к 6 мес. - появляются содружественные движения глаз, конвергенция. Когда дети начинают ползать, они сопоставляя перемещение своего тела с пространственным расположением и отстоянием окружающих предметов от их глаз, изменением их величины, постепенно развивают пространственное, глубинное бинокулярное зрение. Необходимыми условиями его развития являются достаточно высокая острота зрения в обоих глазах (при visusе в одном глазу = 1,0, на другом – не меньше 0,3-0,4); нормальная иннервация глазодвигательных мышц,отсутствие патологии проводящих путей и высших зрительных центров. Стереоскопическое бинокулярное зрение развивается у ребёнка уже в 6-летнем возрасте, но полноценное глубинное бинокулярное зрение (наивысшая степень развития бинокулярного зрения) устанавливается к 9-15 годам.

Поле зрения у новорожденного, по мнению большинства авторов, развивается от центра к периферии, постепенно , в течение первых 6 мес. жизни. Область жёлтого пятна (вне центральной ямки) достаточно хорошо развита морфологически и функционально уже в раннем возрасте. Это подтверждается тем, чтозащитный рефлекс смыкания век ребёнка при быстром приближении предмета к глазу в направлении зрительной линии т.е. к центру сетчатки развивается раньше всего - на 8-ой неделе. Тот же рефлекс при движении объекта сбоку, с периферии выявляется значительно позже - лишь на 5-ом мес. жизни. В раннем возрасте поле зрения имеет узкий трубкообразный характер.

Некоторое представление о поле зрения у детей первых лет жизни можно получить лишь на основании их ориентации при движениях и ходьбе, по поворотам головы и глаз в сторону передвигающихся на различных расстояниях и различной величины и цвета предметов, игрушек.

У детей дошкольного возраста границы поля зрения примерно на 10% уже, чем у взрослых .

Тема: ФИЗИОЛОГИЧЕСКАЯ ОПТИКА, РЕФРАКЦИЯ, АККОМОДАЦИЯ И ИХ ВОЗРАСТНЫЕ ОСОБЕННОСТИ. СПОСОБЫ КОРРЕКЦИИ АНОМАЛИЙ РЕФРАКЦИИ

Учебная цель : дать понятие об оптической системе глаза, рефракции, аккомодации и их патологических состояниях; а также об их возрастных особенностях.

Учебное время : 45 мин.

Метод и место проведения занятия : групповое теоретическое занятие в аудитории.

Наглядные пособия :

1.Таблицы:Разрез глазного яблока, рисунки и схемы, 3 типа

клинической рефракции, их коррекция; изменения глаза

при прогрессирующей осложненной близорукости. Кривая

2) Цветные слайды по теме - Офтальмология, часть 1-11.

3) Учебные видеоматериалы по теме.

План лекции

Содержание лекции Время (в мин.)
1. Введение, значение данных проблем в практике врачей любой специальности. .Возрастная характеристика удельного веса различных видов рефракции
2. Физическая и клиническая рефракция (статическая) - понятие.
3. Клиническая характеристика эмметропии, миопии, гиперметропии. Методы и принципы коррекции аметропий. Корригирующие линзы (сферические, цилиндрические, собирательные, рассеивающие). Методы определения клинической рефракции.
4. Методы определения прогрессирования близорукости
5. Динамическая рефракция (аккомодация) – понятие, механизм, изменения в глазу при аккомодации; конвергенция и её роль в аккомодации; возрастные изменения аккомодации; принципы коррекции пресбиопии. Нарушения аккомодации – спазм (ложная миопия), паралич - этиопатогенез, диагностика, клиника, лечение,профилактика.
6. Карты прямой и обратной связи и ответы на вопросы