Арахидоновая кислота образуется из. Метаболиты арахидоновой кислоты в патогенезе воспаления легких и бронхов. Биологическая роль арахидоновой кислоты

Арахидоновая кислота является , относится к классу омега-6-ненасыщенных жирных кислот. Любопытно, что существуют разногласия касательно того, стоит ли считать арахидоновую кислоту незаменимой, ведь она в небольшом количестве вырабатывается в человеческом организме.

Формально, для причисления жирной кислоты к незаменимым, организм должен получать ее из внешней среды, будучи не в состоянии ее синтезировать. Однако, поскольку наше тело не может полностью покрыть потребность в арахидоновой кислоте за счет эндогенного синтеза, большая часть медицинских сайтов и сайтов, посвященных пищевым добавкам, относит арахидоновую кислоту скорее к незаменимым, нежели и заменимым жирным кислотам.

В связи с этим в рамках данного материала мы также будем называть арахидоновую кислоту незаменимой. В статье будут перечислены источники арахидоновой кислоты, ее функции, а также спорные вопросы, касающиеся данного компонента питания.

Возможные побочные эффекты арахидоновой кислоты

  • Бессонница
  • Утомление
  • Нарушение мозгового кровообращения
  • Заболевания сердца
  • Ломкость волос
  • Шелушение кожи
  • Повышение уровня холестерина
  • Стимуляция родовой деятельности

Области применения арахидоновой кислоты

  • Болезнь Альцгеймера
  • Артериальная гипертензия
  • Повышение умственных способностей
  • Свертываемость крови
  • Воспаление
  • Память
  • Мышечная сила
  • Язвенная болезнь
  • Стимуляция родов

Откуда получить арахидоновую кислоту?

Арахидоновая кислота содержится в жирных продуктах и является компонентом жиров постных блюд. Вы можете получить арахидоновую кислоту из красного мяса, свинины, домашней или дикой птицы, яиц и многих других яств. Поскольку арахидоновая кислота составляет определенную долю жиров в повседневных продуктах, важно корректировать рацион питания, поскольку избыток жиров может негативно сказываться на состоянии здоровья.

Так как арахидоновая кислота является полиненасыщенной, многие ошибочно считают ее «полезным жиром». Истина заключается в том, что эта жирная кислота поступает в составе животных жиров, и, как и все жиры, при чрезмерном потреблении приносит организму больше вреда, нежели пользы.

Препараты арахидоновой кислоты

Еще один источник арахидоновой кислоты – пищевые добавки. Вы можете принимать арахидоновую кислоту в виде таблеток, капсул или порошка. Наиболее распространенной является порошковая форма, так как она лучше всего усваивается организмом. Заметим, что добавка горька на вкус, и многие разводят порошок в цитрусовом соке, для того чтобы хоть как-то скрыть эту горечь.

Также вы обнаружите, что арахидоновая кислота продается как в чистом виде, так и в составе комплексных препаратов. Цена на эти продукты изменяется в широком диапазоне, от 10 до 100 долларов, в зависимости от того, какой объем вы покупаете, и что входит в состав комплекса, помимо арахидоновой кислоты.

Биологическая роль арахидоновой кислоты

Многие функции арахидоновой кислоты уже доказаны, а некоторые до сих пор находятся на стадии изучения. Поскольку арахидоновая кислота является незаменимой жирной кислотой, в настоящее время проводится несколько независимых клинических исследований, посвященных изучению роли и эффективности этой кислоты в различных отраслях медицины.

Одной из таких областей является влияние арахидоновой кислоты на прогрессирование болезни Альцгеймера при использовании на ранних стадиях заболевания. Предварительные данные показывают, что арахидоновая кислота может назначаться как для предупреждения болезни Альцгеймера, так и для замедления темпов прогрессирования недуга при лечении пациентов с уже диагностированной патологией.

Арахидоновая кислота участвует в синтезе простагландинов, которые поддерживают работу мышц. Конкретно простагландины обеспечивают правильное сокращение и расслабление мышечных волокон во время нагрузки. Данная функция имеет значение для всех и каждого, но особенно она важна для спортсменов и бодибилдеров.

Простагландины помогают регулировать просвет сосудистого русла и способствуют образованию новых кровеносных сосудов, контролируют артериальное давление и моделируют воспаление в мышцах. Одна из форм простагландинов повышает свертываемость крови, в то время как иная форма, напротив, предотвращает повышенное тромбообразование там, где ему не место. Эта форма простагландина, известная как PGE2, также используется для стимуляции родовой деятельности у беременных женщин.

Арахидоновая кислота предупреждает чрезмерный синтез соляной кислоты в пищеварительном тракте, кроме того, она повышает выработку защитной слизи, которая помогает предотвратить развитие язвенной болезни и других проблем с желудком, в том числе и желудочных кровотечений.

Помимо этого арахидоновая кислота способствует росту и регенерации скелетной мускулатуры и мышечных волокон. Особенно велика ее роль в развитии костно-мышечной системы у детей; без арахидоновой кислоты адекватное физическое развитие ребенка фактически невозможно.

Арахидоновая кислота и воспаление

Эта жирная кислота является провоспалительной, что означает, что она способствует развитию воспалительных процессов в тканях и мышцах. Но это далеко не всегда плохо, за исключением тех случаев, когда вы страдаете воспалительными заболеваниями. А выраженность воспалительной реакции может быть уменьшена приемом аспирина, других добавок или продуктов, обладающих противовоспалительным действием.

В случае с арахидоновой кислотой мы имеем дело с воспалением, которое бодибилдеры и тяжелоатлеты должны взять на вооружение. Существует предположение, что стимулирующее действие арахидоновой кислоты в процессе тренировочных сессий связано с тем, что мышцы получают дополнительный воспалительный сигнал, который повышает эффективность тренировок.

Правда, данное предположение не было подтверждено клиническими исследованиями. Напротив, в ряде испытаний никакого дополнительного воспаления после тренировочных сессий обнаружено не было. Однако данные исследования в Университете Бейлор показали, что ежедневный прием 1 200 мг арахидоновой кислоты действительно приводит к увеличению пиковой мышечной силы и мышечной выносливости (30 человек принимали препарат на протяжении 50 дней).

Заметим, что это исследование не было достаточно продолжительным, для того чтобы достоверно доказать эффективность арахидоновой кислоты, и результаты этой работы считаются предварительными. В настоящее время Университет Бейлор не оценивает отдаленные результаты, так как первоначально они ставили перед собой иную цель — доказать, что прием арахидоновой кислоты НЕ дает никаких преимуществ тяжелоатлетам.

Арахидоновая кислота и повышение умственных способностей

В исследованиях, проведенных Американским Национальным институтом Здоровья Ребенка и Развития Человека, изучалось влияние арахидоновой кислоты на развитие мозга малышей в возрасте от 18 месяцев. Это 17-недельное исследование показало отсутствие значительного повышения уровня интеллекта у детей данной группы. Целью дальнейших исследований является изучение наличия прочих положительных эффектов.

А вот исследования, проведенные в прошлом, уже подтвердили благотворное влияние арахидоновой кислоты на способности к запоминанию у взрослых. Именно эти работы инициировали проведение исследований по влиянию арахидоновой кислоты на развитие умственных способностей у детей.

Резюме. Арахидоновая кислота:

  • Усиливает свертываемость крови при травмах
  • Улучшает память у взрослых
  • Способствует правильной работе мышц
  • Активно изучалась в недавнем прошлом
  • Способствует физическому и умственному развитию ребенка
  • В настоящее время исследуются новые сферы ее применения
  • Незаменимая жирная кислота
  • Используется для стимулирования родовой деятельности
  • Может помогать тяжелоатлетам в достижении новых целей
  • Может оказывать положительный эффект при болезни Альцгеймера

Побочные эффекты и проблемы, связанные с арахидоновой кислотой

Как уже было сказано, источником арахидоновой кислоты являются жиры. Уже доказано, что высокие дозы арахидоновой кислоты могут привести к патологии сердечнососудистой системы, инфаркту миокарда и нарушению мозгового кровообращения. Более того, в слишком высокой концентрации арахидоновая кислота становится токсичной и может стать причиной смерти. По этой причине не стоит принимать арахидоновую кислоту без наблюдения врача.

Передозировка арахидоновой кислоты может проявляться следующими субъективными симптомами и клиническими признаками: усталость, бессонница, ломкость волос, шелушение кожи, высыпания на коже, запор, сердечные приступы и повышение уровня холестерина.

Поскольку арахидоновая кислота может стимулировать родовую деятельность, ее ни в коем случае нельзя принимать беременным, а также женщинам, которые пытаются зачать ребенка. В этих случаях прием препарата может привести к выкидышу. Кроме того, арахидоновая кислота противопоказана при следующих заболеваниях:

  • Онкологическая патология
  • Астма
  • Повышение уровня холестерина
  • Заболевания сердечнососудистой системы
  • Увеличение предстательной железы
  • Воспалительные заболевания
  • Синдром раздраженного кишечника

В любом случае, вы не должны начинать прием арахидоновой кислоты без ведома и разрешения вашего доктора. Это особенно актуально, если вы страдаете каким-либо заболеванием или принимаете лекарственные препараты.

Широко распространено заблуждение, что, принимая натуральные препараты, мы находимся в безопасности. Не забывайте, ядовитый плющ тоже натурален, но не станем, же мы его есть только из-за того, что он растет на природе.

Участие метаболитов арахидоновой кислоты в патогенезе воспалительных заболеваний легких и бронхов в последние годы привлекает все большее внимание исследователей.

Арахидоновая кислота (АК) находится в фосфолипидах клеточных мембран и составляет около 1 % свободных жирных кислот плазмы, циркулируя в виде комплекса с альбумином. При активации клетки стимулом, изменяющим типы и геометрическую ориентацию фосфолипидов и активирующим фосфолипазу А2, происходит освобождение арахидоновой кислоты с последующим метаболизмом по циклооксигеназному или липоксигеназному пути. В нормально функционирующих клетках таким стимулом могут служить продукты свободнорадикального окисления липидов.

Образование простагландинов (ПГ) и тромбоксанов (Тх) по циклооксигеназному пути проходит через нестабильные, биологически неактивные ПГа2 и ПГН2 (табл. 1). В дальнейшем синтез циклооксигеназных метаболитов происходит в различных клетках по-разному, в соответствии с тем ферментом, который преобладает в этих клетках. Циклооксигеназный фермент ПГН-синтетаза - имеет две изоформы, названные циклооксигеназа 1 (ЦО-1) и циклооксигеназа 2 (ЦО-2), обладающие на 61% однотипной последовательностью аминокислот. ЦО-1 и ЦО-2 опосредуют физиологические и воспалительные процессы, соответственно, и реагируют на различные стимулы образованием простаноидов. ЦО-1 присутствует в тромбоцитах, эндотелиальных клетках, слизистой желудка, почках и т.д. ЦО-2 синтезируется de novo, главным образом, в макрофагах, но также в легких, сердце, сосудах, селезенке и ответственна за массивное, неконтролируемое образование простаноидов при стимуляции клеток бактериальными эндотоксинами или цитокинами.

Липоксигеназный путь метаболизма АК ведет к образованию различных лейкотриенов (ЛТ), моногидроксиэйкозатетраеновых кислот (ГЭТЕ) и липоксинов (LX), синтез которых, как и в случае циклооксигеназных продуктов, зависит от преобладающего в клетках фермента. Липоксины (А и В) - это тригидрокси-кислоты, полученные из арахидоновой кислоты в результате последовательного действия двух липоксигеназ (ЛО)-15-ЛО и 5-ЛО. Фермент 5-липоксигеназа найден только в клетках миелоидного ростка. Клетки, обладающие полным ферментативным составом (эозинофилы, тучные клетки и базофилы), способны генерировать значительные количества сульфидопептидных лейкотриенов (ЛТС4, ЛТД4, ЛТЕ4).

Тромбоциты обладают ферментом ЛТС4-синтетаза, но не имеют 5-ЛО. В связи с этим тромбоциты способны генерировать ЛТС4 только из ЛТА4, образованного нейтрофилами, благодаря механизму трансклеточного метаболизма. Подобный механизм существует между нейтрофилами и сосудистыми эндотелиальными клетками. Для биосинтеза ЛТ необходим также трансмембранный протеин, известный как 5-ЛО-активирующий протеин, который играет роль в связывании 5-ЛО с фосфолипидами клеточных мембран для инициирования катализа.

В нормально функционирующих клетках гидролиз мембранных липидов с высвобождением АК происходит на довольно низком уровне, что обеспечивает небольшой уровень синтеза эйкозаноидов.

В физиологических условиях существуют системы, ингибирующие синтез эйкозаноидов . Тормозящее действие оказывает, в частности, липокортин - высокополярный протеин, представленный в различных клетках, включая моноциты и нейтрофилы. Образование липоксщтина регулируется уровнем циркулирующих в организме кортикостероидов, которые индуцируют его образование. Действие липокортина связано с ингибированием активности фосфолипазы А, в связи с чем тормозится высвобождение АК из фосфолипидов и, таким образом, блокируется образование простагландинов, лейкотриенов и фактора активации тромбоцитов (ФАТ). Активность циклооксигеназы и липоксигеназы регулируется гидроперекисями жирных кислот, которые даже в небольших количествах активируют эти ферменты. При этом патологический сигнал нарастает по механизму "порочного круга". Механизм возвращения функционирования системы к физиологическому уровню, по-видимому, связан с аутокатализом и аутоингибированием ферментов, для воспроизводства которых требуется определенное время.

Р. Поль Роберт сон (R. Paul Robertson)

Образование эйкосаноидов. Простагландины - первые из выделенных мета­болитов арахидоновой кислоты - названы так потому, что впервые они были выявлены в сперме. Считалось, что они секретируются предстательной железой. По мере того как выявлялись другие активные метаболиты, становилось оче­видным наличие двух основных путей их превращения - циклооксигеназного и липооксигеназного. Эти пути синтеза схематически представлены на рис. 68-1, а строение типичных метаболитов - на рис. 68-2. Все продукты как циклооксиге­назного, так и липооксигеназного происхождения называют эйкосаноидами. Про­дукты циклооксигеназного пути - Простагландины и тромбоксан - простаноидами.

Начальный этап синтеза в обоих метаболических путях включает в себя отщепление арахндоновой кислоты от фосфолипида в плазматической мембране клеток. Затем свободная арахидоновая кислота может быть окислена циклооксигеназным или липооксигеназным путем. Первым продуктом циклооксигеназного пути является циклический эндопероксид простагландин G 2 (ПГG 2), который пре­вращается в простагландин Н 2 (ПГН2). ПГG 2 и ПГН 2 служат ключевыми посред­никами в процессе образования физиологически активных простагландинов (ПГD 2 , ПГЕ 2 , ПГF 2 и и ПГI 2) и тромбоксана А2 (ТКА2). Первым продуктом 5-липооксигеназного пути является 5-гидропероксиэйкосатетраеноевая кислота (5-ГПЭТЕ), которая играет роль посредника при образовании 5-гидроксиэйкосатетраеноивой кислоты (5-ГЭТЕ) и лейкотриенов (ЛТА4, ЛТВ 4 , ЛТС 4 , ЛТD 4 и ЛТE 4). Две жирные кислоты, отличающиеся от арахидоновой кислоты, 3,11,14-эйкосатриеноивая кислота (дигомо--линоленовая кислота) и 5,8,11,14,17-эйкосапентаеновая кислота, могут превращаться в метаболиты. близкие по строению к этим эйкосаноидам. Простаноидные продукты первого субстрата обозначаются индексом 1; лейкотриеновые продукты этого субстрата-индек­сом 3. Простаноидные продукты второго субстрата имеют обозначение 3, в то время как лейкотриеновые продукты этого субстрата обозначаются индексом 5.

Рис. 68-1. Схема метаболизма арахидоновой кислоты. Различные лекарственные средства действуют на разные ферментные этапы, угнетая реакцию. Основными путями метаболизма являются циклооксигеназный и липооксигеназный. Фосфолипазу А 2 угнетают кортикостероиды и мепакрин; циклооксигеназу - определенные салицилаты, индометацин и ибупрофен; липооксигеназу - беноксапрофен и нордигидрогуайаретиковая кислота (НДГК). Имидазол предотвращает синтез ТКА 2 .

Арахидоновая кислота образует простагландины, обозначаемые индексом 2, и лейкотриены, обозначаемые индексом 4. Индексы означают число двойных связей между атомами углерода в боковых цепях.

Фактически все клетки обладают необходимыми субстратами и ферментами для образования некоторых метаболитов арахидоновой кислоты, но различия ферментного состава тканей обусловливают различия в образуемых ими продук­тах. Эйкосаноиды синтезируются по мере их непосредственной необходимости и не хранятся- в значительных количествах для последующего высвобождения.

Циклооксигеназные продукты. Простагландины D 2 , Е 2 , F 2 и I 2 образуются из циклических эндопероксидов ПГG 2 и ПГH 2 . Из числа этих простагландинов ПГЕ 2 и ПГI 2 обладают наиболее широким спектром физиологи­ческого действия. ПГЕ 2 оказывает заметное влияние внутри тканей и синтезируется многими из них. ПГI 2 (называемый также простациклином) является основным продуктом арахидоновой кислоты в эндотелиальных и гладкомышечных клетках стенок сосудов и в некоторых несосудистых тканях. ПГI 2 служит вазодилататором и угнетает агрегацию тромбоцитов. Считают, что ПГD 2 также играет роль в агрегации тромбоцитов и функции головного мозга, а пгf 2 - в функции матки и яичников.

Рис. 68-2. Строение ти­пичных биологически ак­тивных эйкосаноидов.

Тромбоксансинтетаза катализирует включение атома кислорода в кольцо эндоперекиси ПГН 2 для образования тромбоксанов. TKA 2 синтезируется тромбо­цитами и усиливает агрегацию тромбоцитов.

Липооксигеназные продукты. Лейкотриены и ГЭТЕ являются конечными продуктами липооксигеназного пути. Лейкотриены обладают гистаминоподобным действием, включая индуцирование повышенной проницаемости сосудов и бронхоспазма, и, по-видимому, оказывают влияние на активность лейкоцитов. ЛТС 4 , ЛТD 4 и ЛТE 4 были идентифицированы как медленнореагирующие вещества анафилаксии (МРВ-А). (Патофизиология лейкотриенов де­тально обсуждается в гл. 202.)

Действие лекарственных средств на синтез эйкосаноидов. Многие лекарствен­ные средства блокируют синтез эйкосаноидов путем угнетения одного или не­скольких ферментов на путях их биосинтеза. Глюкокортикоиды и противомаля­рийные средства, такие как акрихин, препятствуют отщеплению арахидоновой кислоты от фосфолипидов (см. рис. 68-1). Циклооксигеназа непосредственно угнетается нестероидными противовоспалительными средствами, включая сали­цилаты, индометацин и ибупрофен. Беноксапрофен (Benoxaprofen)-еще одно нестероидное противовоспалительное средство - угнетает опосредуемое липооксигеназой превращение арахидоновой кислоты в ГПЭТЕ. Антидепрессант транса­мин угнетает превращение циклических эндоперекисей в ПГI 2 , а имидазол - синтез тромбоксана. Тот факт, что какое-то лекарственное средство подавляет синтез определенного эйкосаноида, не означает, что действие данного лекарст­венного средства непосредственно приводит к дефициту этого продукта. Боль­шинство этих лекарственных средств такого рода угнетают ранние этапы путей синтеза и поэтому блокируют образование не одного, а нескольких продуктов. Кроме того, некоторые из этих лекарственных средств оказывают и другие влияния. Например, индометацин не только угнетает образование циклических эндоперекисей, осуществляемое при помощи циклооксигеназы, но может также и нарушать транспорт кальция через мембраны, угнетать зависимые от цикличе­ского аденозинмонофосфата (циклического АМФ) протеинкиназу и фосфодиэстеразу, а также угнетать один из ферментов, ответственных за расщепление ПГЕ 2 . Не существует ни одного истинно специфичного ингибитора синтеза и ни одного специфичного антагониста рецепторов для отдельных метаболитов арахидоновой кислоты, которые можно было бы использовать в терапевтических целях. Отсутствие таких лекарственных средств является важным барьером, мешающим устано­вить роль этих метаболитов в физиологических и патофизиологических процессах.

Метаболизм и количественный анализ эйкосаноидов. Метаболиты арахидо­новой кислоты быстро диссеминируют in vivo. Простагландины серий Е и F, несмотря на то что они являются химически стабильными веществами, почти полностью расщепляются во время прохождения через печень или легкие. Таким образом, по существу все количество неметаболизированного ПГЕ 2 , определяемое в моче, образуется в результате секреции из почек и семенных пузырьков, в то время как содержащиеся в моче метаболиты ПГЕ 2 характеризуют его синтез (ПГЕз) во всем организме. Как ПГI 2 , так и ТКА 2 химически нестабильны и также подвергаются быстрой диссимиляции. Поскольку продолжительность жизни ПГЕ 2 , ПГI 2 и ТКА 2 in vivo невелика, измерение количества их неактивных метаболитов обычно используют в качестве показателя скорости их образования. ПГЕ 2 пре­вращается в 15-кето-13,14-дигидро-ПГЕ 2 ; ПГI 2 - в 6-кето-ПГF 1 , а ТКА 2 - в ТКВ 2 . Существует пять методов измерения содержания метаболитов арахидо­новой кислоты в физиологических жидкостях: количественное определение биоло­гической активности, радиоиммунный метод, хроматографический метод, опреде­ление числа рецепторов и масс-спектрометрия. При использовании любого из этих методов необходимо соблюдать определенные предосторожности при обра­щении с образцами биологических жидкостей, поскольку синтез простагландинов может быть повышенным во время сбора этих образцов. Например, если кровь свернулась или тромбоциты не были тщательно отделены от плазмы, то образо­вание больших количеств ПГЕ 2 и ТКА 2 во время исследования может привести к получению ошибочных результатов. Добавление ингибитора синтеза простагландина в пробирку для сбора крови сведет эту проблему к минимуму.

Физиология. Простагландины и лейкотриены имеют специфические рецепторы на плазматических мембранах клеток печени, желтого тела, надпочечников, липоцитов, тимоцитов, матки, панкреатических островков, тромбоцитов и эритро­цитов. Большинство этих рецепторов обладает специфичностью к эйкосаноидам определенного типа. Например, рецептор ПГЕ на плазматической мембране клеток печени связывает обладающие высоким сродством пге 1 и ПГЕ 2 , но не связывает Простагландины классов A, F и I. Пострецепторные механизмы, с помощью которых связывание простагландинов изменяет функцию клетки, недо­статочно ясны. Нормальное физиологическое функционирование эйкосаноидов не опосредуется через плазму крови. Вместо этого они действуют как местные, меж­клеточные и/или внутриклеточные модуляторы биохимической активности в тка­нях, в которых они образуются (например, пара.кринная функция). Эйкосаноиды являются аутокоидами, а не гормонами. Большинство из них обладает очень непродолжительным периодом жизни в циркулирующей крови вследствие их химической-нестабильности и/или быстрого расщепления.

Липолиз. ПГЕ 2 , синтезируемый липоцитами, имеет специфические ре­цепторы в липоцитах и является сильным эндогенным ингибитором липолиза. Поскольку для стимуляции липолиза гормонами необходимо образование цикли­ческого АМФ, было довольно подробно исследовано взаимодействие между ПГЕ и аденилатциклазой. ПГЕ угнетает липолиз путем снижения образования цикли­ческого АМФ в ответ на действие адреналина, адренокортикотропного гормона (АКТГ), глюкагона и тиреотропного гормона (ТТГ). Таким образом, ПГЕ может действовать как эндогенное антилиполитическое вещество, препятствуя стимуля­ции гормонами образования циклического АМФ.

Инсулин и ПГЕ могут действовать независимо друг от друга при их антилиполитическом воздействии на липоциты. Например, инсулин, но не ПГЕ, угнетает стимуляцию липолиза экзогенным циклическим АМФ в изолированных липоци­тах, но оба эти вещества подавляют стимулированное гормоном образование циклического АМФ. Это позволяет предположить, что место действия инсулина находится дистальнее места стимуляции аденилатциклазы. В организме некото­рых животных ПГЕ угнетает глюкагон-индуцированный липолиз, в то время как инсулин не оказывает влияния на этот процесс.

Баланс натрия и воды. Ренин-ангиотензин-альдостероновая систе­ма служит основным регулятором гомеостаза натрия, а контроль за водным балансом осуществляется главным образом вазопрессином. Метаболиты арахидоновой кислоты влияют на обе эти системы. ПГЕ 2 и ПГI 2 стимулируют секрецию ренина, а ингибиторы синтеза простагландинов оказывают противоположное действие. ПГЕ 2 и ПГI 2 уменьшают сопротивление почечных сосудов и увеличи­вают почечный кровоток; это приводит к перераспределению кровотока от наружного слоя коры почек к юкстамедуллярной области почек. Ингибиторы синтеза простагландина, такие как индометацин и меклофенамат (meclofenamate), напротив, уменьшают общий почечный кровоток и шунтируют оставшуюся его часть к наружному слою коры почек, что может привести к острому спазму сосудов почек и острой почечной недостаточности, особенно при уменьшении объема циркулирующей крови и отечных состояниях. ПГЕг является натрийуретиком, тогда как ингибиторы циклооксигеназы вызывают задержку натрия и воды в организме.

Индометацин также увеличивает чувствительность к экзогенному вазопрессину, например, у собак. И наоборот, ПГЕ 2 уменьшает стимулированный вазопресеином транспорт воды. Поскольку такое действие ПГЕ 2 нарушается введе­нием дибутирилциклического АМФ, то наиболее вероятно, что ПГЕ 2 будет препят­ствовать стимуляции аденилатциклазы вазопрессином.

Агрегация тромбоцитов. Тромбоциты обладают способностью синтезировать ПГЕ 2 , ПГD 2 и ТКА 2 . Физиологическое значение ПГЕ 2 и ПГD 2 в функции тромбоцитов не установлено, ТКА 2 является сильным стимулятором агрегации тромбоцитов; в противоположность этому ПГI 2 , образуемый в эндотелиоцитах стенок кровеносных сосудов, напротив, играет роль сильного антагони­ста агрегации тромбоцитов. ТКА 2 и ПГI 2 могут оказывать свои разнонаправленные воздействия, соответственно уменьшая и увеличивая образование циклическо­го АМФ в тромбоцитах.

Противодействуют агрегации тромбоцитов ингибиторы синтеза эндогенных простагландинов. Например, единичная доза ацетилсалициловой кислоты может подавить нормальную агрегацию тромбоцитов на 48 ч и более, предположительно путем угнетения опосредуемого циклооксигеназой синтеза ТКА 2 . Длительность фазы угнетения циклооксигеназы единичной дозой этого препарата в тромбоци­тах продолжительнее, чем в других тканях, поскольку тромбоцит в отличие от ядросодержащих клеток, способных синтезировать новые белки, не обладает соответствующими структурами для образования нового фермента. Следователь­но, действие ацетилсалициловой кислоты продолжается до тех пор, пока не будут выделены в кровь вновь образованные тромбоциты. С другой стороны, эндотелиоциты быстро восстанавливают активность циклооксигеназы после прекращения лечения и, таким образом, восстанавливается продукция ПГI 2 . В этом заключает­ся одна из причин того, что организм больных, принимающих ацетилсалициловую кислоту, не предрасположен к чрезмерному тромбообразованию. Кроме того, тромбоцит более чувствителен к препарату, чем эндотелиоцит.

Повреждение эндотелия может привести к агрегации тромбоцитов вдоль стенки кровеносного сосуда, вызывая местное уменьшение синтеза ПГI 2 и тем самым открывая возможность избыточной агрегации тромбоцитов в месте по­вреждения сосудистой стенки.

Действие на сосуды. Вазоактивные свойства метаболитов арахидоновой кислоты относятся к числу самых замечательных эффектов этих веществ. ПГЕ 2 и ПГI 2 являются вазодилататорами, а ПГF 2 , ТКА 2 и ЛТС 4 , ЛТD 4 , ЛТE 4 - вазоконстрикторами в большинстве участков сосудистого русла. Эти свойства, по-видимому, представляют собой результат их прямого действия на гладкую мускулатуру сосудистой стенки. Если системное артериальное давление поддерживается в пределах физиологической нормы, то действие расширяющих сосуды метаболитов арахидоновой кислоты приводит к увеличению кровотока. Однако в случае понижения артериального давления кровоток будет уменьшать­ся, поскольку при системной гипотензии индуцированное катехоламинами суже­ние сосудов скомпенсирует сосудорасширяющее действие простагландинов. Та­ким образом, при оценке влияния метаболитов арахидоновой кислоты на крово­ток в сосудистом русле того или иного органа необходимо исключить существен­ные изменения системного артериального давления.

Влияние на пищеварительный тракт. Простагландины се­рии Е оказывают влияние также на пищеварение. Введение любого из проста­гландинов ППг или ПГЕг в желудочную артерию собак вызывет увеличение кровотока и угнетение выделения кислоты, а при пероральном приеме некоторые аналоги ПГЕ одновременно угнетают выделение кислоты и оказывают прямое защитное действие на слизистую оболочку пищеварительного тракта. В экспери­ментах in vitro Простагландины стимулируют гладкую мускулатуру пищевари­тельного тракта и тем самым повышают его двигательную активность, но не совсем ясно, имеют ли эти эффекты физиологическое значение.

Нейропередача. ПГЕ угнетает выход норадреналина из симпатиче­ских нервных окончаний. Действие ПГЕ на секрецию этого нейромедиатора, по-видимому, осуществляется на пресинаптическом уровне, т. е. в участке нерв­ного окончания, расположенном проксимальнее синаптической щели; оно может быть обратимо при увеличении концентрации кальция в перфузионной среде. Поэтому ПГЕг способен подавлять высвобождение норадреналина путем блокиро­вания поступления кальция внутрь клетки. Ингибиторы синтеза ПГЕг усиливают высвобождение норадреналина в ответ на стимуляцию адренергических нервов.

Катехоламины обладают способностью высвобождать ПГЕг из различных тканей, и происходит это, вероятно, посредством адренергически-опосредованного механизма. Например, в иннервированных тканях, таких как ткани селезенки, нервная стимуляция или инъекция норадреналина вызывает высвобождение ПГЕг. Это высвобождение блокируется после денервации или введения а-адрено-блокирующих средств. Таким образом, активирующий нерв стимул вызывает освобождение норадреналина, который в свою очередь стимулирует синтез и высвобождение ПГЕг; затем ПГЕг посредством обратной связи действует на пресинаптическом уровне на нервное окончание, уменьшая количество высвобож­даемого норадреналина.

Эндокринная функция поджелудочной железы. ПГЕг оказывает как стимулирующее, так и угнетающее влияние на секрецию инсулина клетками поджелудочной железы in vitro. In vivo ПГЕ 2 подавляет реакцию инсулина на внутривенное введение глюкозы. Это подавление, по-видимому, является специфичным по отношению к глюкозе, потому что реакция инсулина на другие средства, усиливающие секрецию, под действием ПГЕ 2 не изменяется. Предположение о том, что эндогенный ПГЕ 2 in vivo угнетает секрецию инсулина, подтверждается исследованиями ингибиторов синтеза простагландина. Обычно такие лекарственные средства усиливают секрецию инсулина и увеличивают толерантность к углеводам. Исключением является индометацин, который подав­ляет вызываемую глюкозой секрецию инсулина и может вызвать развитие гипер­гликемии. Такие противоречивые результаты исследований индометацина, вероят­но, обусловлены каким-то иным действием, помимо угнетения циклооксигеназы. Липооксигеназный путь, по-видимому, играет роль в усилении секреции инсулина, участвуя в процессе стимул-секреции. В этом случае вероятным активным про­дуктом арахидоновой кислоты может быть 12-ГПЭТЕ.

Лютеолиз. Экстирпация матки во время лютеальной фазы яичникового цикла у овец приводит к сохранению желтого тела. Это позволяет предположить, что маткой в норме вырабатывается лютеолитическое вещество. Можно предпо­ложить, что этим веществом является ПГЕ 2 , поскольку он может вызывать регрессию желтого тела.

Патофизиология метаболитов арахидоновой кислоты. В большинстве случаев развитие какого-либо заболевания сопровождается чрезмерно высоким уровнем продуцирования метаболитов арахидоновой кислоты, но некоторые нарушения могут быть связаны и со сниженным их продуцированном. Последнее может произойти в результате: недостатка употребления арахидоновой кислоты (неза­менимой жирной кислоты с пищей); повреждения ткани, необходимой для син­теза простагландинов, или вследствие лечения лекарственными средствами, угнетающими ферменты в цепи синтеза.

Резорбция костей: гиперкальциемия, обусловленная злокачественным заболеванием (см. также гл. 303 и 336). Ги­перкальциемия развивается при различных злокачественных заболеваниях паращитовидных желез. В ряду случаев причиной может служить избыток гормона паращитовидных желез в результате или автономного продуцирования его тканью паращитовидных желез, или эктопического образования самой опухолью. Однако у большинства больных, страдающих гиперкальциемией, обусловленной злокачественным заболеванием, не отмечается повышенного уровня содержания гормона паращитовидных желез в плазме крови, так что этиология этой гиперкальциемии находится в сфере повышенного интереса.

Простагландин Е 2 является мощным пусковым механизмом резорбции костей и высвобождения из них кальция. У животных, страдающих гиперкальциемией, которым были трансплантированы опухоли, отмечается повышенное продуцирование ПГЕ 2 . Лечение этих животных ингибиторами синтеза ПГЕ 2 приводит к снижению концентрации этого простагландина и одновременному снижению уровня гиперкальциемии. Подобно этому, у некоторых больных, страдающих гиперкальциемией и злокачественными опухолями, определяется большое коли­чество метаболитов ПГЕ 2 в моче, в то время как у больных с нормальной концент­рацией кальция в крови и страдающих аналогичными злокачественными опухоля­ми, такого повышения уровня содержания метаболитов ПГЕ 2 в моче не отмечает­ся. Лекарственные средства, подавляющие синтез простагландинов. снижают концентрацию кальция в крови у некоторых больных, страдающих гиперкальцие­мией, обусловленной злокачественным заболеванием. Таким образом, прибли­зительно у 5-10% больных с гиперкальциемией и злокачественными опухолями отмечают повышенный уровень продуцирования ПГЕ, и им может быть показана терапия лекарственными средствами, угнетающими синтез простагландинов.

Источник избыточного количества ПГЕ 2 в крови у таких больных не выявлен. Следовало бы ожидать компенсации этого избытка путем повышенного уровня расщепления ПГЕ в печени и легких. Однако возможно, что опухолью высвобож­даются в циркулирующую кровь настолько большие количества ПГЕ 2 , что рас­щепление его в печени и легких оказывается недостаточным, чтобы скомпенсиро­вать такую нагрузку. При наличии метастазов в легких венозный отток от этих опухолей может вливаться в большой круг кровообращения, минуя легочную ткань. Другим возможным механизмом является метастатическое поражение костей. Опухолевые клетки в культуре синтезируют ПГЕ, метастатические опу­холевые клетки в кости также могут синтезировать этот простагландин, который будет действовать локально, вызывая резорбцию кости. Гиперкальциемия, обусловленная злокачественным заболеванием, может развиться и при отсутствии видимых костных метастазов, хотя следует отметить, что существующие в настоя­щее время клинические методы визуализации подобных метастазов, такие как радиоизотопное сканирование, могут оказаться недостаточно чувствительными для выявления многих очагов поражения с небольшими размерами.

Резорбция кости: ревматоидный артрит и зубная киста (см. гл. 263). Было установлено, что избыточное продуцирование ПГЕ 2 служит причиной юкстаартикулярного остеопороза и эрозий костей у неко­торых больных, страдающих ревматоидным артритом. Пораженные ревматизмом синовиальные оболочки синтезируют ПГЕ 2 в культуре тканей, культуральная среда которых способна вызывать резорбцию кости; добавление же индометацина в среду для культивирования таких клеток блокирует эту способность к резорб­ции. Поскольку индометацин не предотвращает резорбцию костей, обусловленную ранее образовавшимся ПГЕ 2 , предполагают, что за эту резорбционную актив­ность ответствен ПГЕ 2 , вырабатываемый в синовиальных оболочках.

Клетки доброкачественных зубных кист также вызывают резорбцию кости и синтезируют ПГЕ 2 в культуре тканей. И в этом случае резорбцию, вызванную средой из этих культур, можно уменьшить добавлением в нее индометацина перед инкубацией. Сходной проблемой является резорбция костной ткани зубных аль­веол у больных, страдающих пародонтозом, распространенным воспалительным, заболеванием десен. Уровни содержания ПГЕ 2 в десне при воспалении выше, чем в здоровых тканях. Таким образом, вероятно, что резорбция костных тканей зубных альвеол может быть обусловлена, по меньшей мере отчасти, локальным избыточным продуцированном этих метаболитов.

Синдром Бартера (см. гл. 228). Синдром Бартера характеризуется повышенными уровнями содержания ренина, альдостерона и брадикинина в плаз­ме крови; резистентностью к прессорному действию ангиотензина; гипокалиемическим алкалозом и опустошением запасов калия в почках при наличии нормаль­ного артериального давления. Основанием для постулированной роли простаглан­динов при этом заболевании является то, что ПГЕ 2 и ПГI 2 стимулируют высво­бождение ренина и прессорная реакция на введенный ангиотензин притупляется сосудорасширяющими эффектами этих простагландинов. Увеличение высвобож­дения ренина ведет к повышенной секреции альдостероца, которая в свою очередь может увеличить активность калликреина в моче.

В соответствие с этим в моче страдающих синдромом Бартера больных отме­чают повышенные уровни содержания ПГЕ 2 и б-кето-ПГF 1 . У таких больных была выявлена также и гиперплазия интерстициальных клеток мозгового вещест­ва почек (которые синтезируют ПГЕ в культуре). Выявление этих фактов при­вело к попыткам лечения этого заболевания ингибиторами синтеза простаглан­динов. Индометацин (и другие ингибиторы) устраняет фактически все наруше­ния, за исключением гипокалиемии. Таким образом, простагландин (вероятно, ПГЕ 2 и/или ПГI 2), возможно, опосредует некоторые проявления синдрома Бартера.

Сахарный диабет (см. гл. 327). Внутривенное введение больших количеств глюкозы здоровым людям вызывает резкое (первая фаза) увеличение секреции инсулина в плазму крови, за которым следует более медленная и более длительная реакция (вторая фаза секреции инсулина). У больных, страдающих сахарным диабетом типа II (инсулиннезависимый, развитие которого начинается в зрелом возрасте), отсутствует первая фаза высвобождения инсулина в ответ на введение глюкозы и отмечается непостоянная степень снижения секреции инсулина во второй фазе. Реакция инсулина на другие вещества, стимулирующие секрецию, такие как аргинин, изарин, глюкагон и секретин, сохраняется. Таким образом, у больных диабетом, по-видимому, имеется специфический дефект, препятствующий нормальному восприятию сигналов от глюкозы. Поскольку ПГЕ угнетает индуцированную глюкозой секрецию инсулина у здоровых людей, то больным сахарным диабетом типа II назначали ингибиторы синтеза эндогенного простагландина с целью определить, происходит ли при этом восстановление секреции инсулина. Как натрия салицилат, так и ацетилсалициловая кислота повышают базальные уровни содержания инсулина в плазме крови и частично восстанавливают первую фазу реакции инсулина на глюкозу; увеличивается секреция инсулина и во второй фазе, повышается толерантность к глюкозе.

Незаращение артериального протока (см. гл. 185). В экспе­риментах на животных установлено, что артериальный проток у овец чувствителен к сосудорасширяющим свойствам ПГЕ2, а в тканях стенки протока присутствуют ПГЕ-подобные вещества. Таким образом, сохранять артериальный проток неза­ращенным в пренатальном периоде может повышенная концентрация эндогенно­го ПГЕ 2 . Поскольку ингибиторы синтеза простагландина вызывают сужение артериального протока у плодов овец, были предприняты попытки введения индометацина недоношенным детям с изолированным незаращенным артериальным протоком. После нескольких суток такого лечения последовало закрытие просвета протока у большинства детей, хотя некоторым из них для этого потребовался второй курс лечения, а у небольшого числа детей сохранилась необходимость выполнить хирургическую перевязку артериального протока. Наиболее вероятно получение благоприятного результата лечения индометацином у детей, срок внутриутробного развития которых не превышает 35 недель.

Больным с врожденными пороками сердца определенных типов для выжи­вания необходимо наличие незаращенного артериального протока. Это является жизненно важным в таких случаях, когда артериальный проток является основ­ным каналом, по которому неоксигенированная кровь из дуги аорты достигает легких, например, при атрезии легочной артерии и атрезии.правого предсердно-желудочкового клапана. Поскольку ПГЕ расслабляет гладкую мускулатуру в артериальном протоке ягнят, были сделаны клинические попытки внутривенного введения ПГЕ с целью поддержания артериального протока у таких больных в незаращенном состоянии в качестве альтернативы немедленному хирургическо­му вмешательству. Подобное введение ПГЕ вызывает кратковременное увеличе­ние притока крови к легким и повышение насыщения артериальной крови кислородом, до тех пор пока не появится возможность выполнения необходимой корригирующей операции на сердце. Наличие значительного объема праволевого шунтирования при таких пороках сердца позволяет избежать расщепления внутривенно введенного ПГЕ 2 в легких, прежде чем он попадет в артериальный проток. В этом случае характер заболевания сам по себе облегчает доставку лекарственного средства к месту его действия.

Язвенная болезнь желудка (см. гл. 235). Повышенная секреция кислоты в желудке у людей, страдающих язвенной болезнью, вносит свой вклад в повреждение слизистой оболочки органа. Существуют различные аналоги ПГЕ 2 , которые угнетают секрецию соляной кислоты в желудке и являются по своей природе также и цитопротекторами. Эти вещества более эффективны, чем плацебо, для устранения болей и снижения секреции кислоты в желудке у страдаю­щих язвенной болезнью людей. Кроме того, сообщалось об ускорении заживления язв, оцениваемом эндоскопически, у больных, получавших аналоги ПГЕ, по срав­нению с больцыми, получавшими плацебо.

Дисменорея (см. гл. 331). Как правило, дисменорея связана с усиле­нием сократимости матки. Тот факт, что некоторые анальгетики, используемые для лечения этого заболевания, также угнетают синтез простагландина, позволя­ет предположить, что в патогенезе дисменореи определенную роль могут играть метаболиты арахидоновой кислоты. Простагландины серий Е и F присутствуют в эндометрии у женщин. Внутривенное введение любого из них вызывает сокра­щение матки, а уровни содержания ПГF и ПГЕ в менструальной крови снижают­ся после введения ингибиторов синтеза простагландина. Результаты контроли­руемых исследований по сравнению эффективности ингибиторов синтеза проста­гландина и плацебо у страдающих дисменореей женщин показывают более выраженное симптоматическое улучшение после лекарственной терапии.

Астма (см. гл. 202).

Воспалительная реакция и иммунный ответ (см. гл. 62 и 260). Такие лекарственные средства, как, например, ацетилсалициловая кисло­та, обладают жаропонижающим, противовоспалительным и аналгезирующим действием. Существует несколько доводов в пользу наличия связи между воспа­лением и метаболитами арахидоновой кислоты: 1 - воспалительные стимулы, такие как гистамин и брадикинин, одновременно с индуцированном воспаления вызывают и высвобождение эндогенных простагландинов; 2 - лейкотриены C 4 -D 4 -E 4 обладают более сильным, чем гистамин, бронхоспастическим действием; 3 - некоторые метаболиты арахидоновой кислоты вызывают расширение сосудов и гипералгезию; 4 - в очагах воспаления выявляют присутствие ПГЕ 2 и ЛТВ 4 ; полиморфно-ядерные клетки высвобождают эти вещества во время фагоцитоза, а они в свою очередь вызывают хемотаксис лейкоцитов; 5 - некоторые простагландины вызывают увеличение сосудистой проницаемости, являющейся харак­терной чертой воспалительной реакции, приводящей к местному отеку; 6 - инду­цированное ПГЕ расширение сосудов не устраняется атропином, анаприлином, метисергидом (Methysergide) или антигистаминными средствами, являющимися известными антагонистами других возможных медиаторов воспалительной реак­ции; таким образом, ПГЕ может оказывать прямое воспалительное действие, а некоторые медиаторы воспаления могут функционировать, оказывая влияние на высвобождение ПГЕ; 7 - некоторые метаболиты арахидоновой кислоты могут вызвать боль у экспериментальных животных и гипералгезию, или повышенную болевую чувствительность у человека; 8-ПГЕ может привести к развитию лихорадки после его введения в желудочки головного мозга или в гипоталамус экспериментальных животных; 9 - пирогенные вещества вызывают повышение концентрации простагландинов в цереброспинальной жидкости, в то время как ингибиторы синтеза простагландина уменьшают интенсивность лихорадки и сни­жают высвобождение простагландинов в цереброспинальную жидкость.

Метаболиты арахидоновой кислоты также играют определенную роль в им­мунном ответе. Небольшие количества ПГЕ 2 могут подавлять стимуляцию лим­фоцитов у человека, вызываемую такими митогенными веществами, как фитогемагглютинин, а воспалительная реакция бывает связана с локальным высвобож­дением метаболитов арахидоновой кислоты; таким образом, эти вещества могут действовать как негативные модуляторы функции лимфоцитов. Высвобождение ПГЕ митогенстимулированными лимфоцитами может представлять собой часть контрольного механизма обратной связи, посредством которого реализуется активность лимфоцитов. Чувствительность лимфоцитов к угнетающему действию ПГЕ 2 у человека повышается с возрастом, а индометацин увеличивает чувстви­тельность лимфоцитов к действию митогенов в большей степени у пожилых людей. Культура лимфоцитов, взятых у страдающих лимфогранулематозом больных, высвобождает больше ПГЕ 2 после добавления фитогемагглютинина, а чувстви­тельность лимфоцитов увеличивается под действием индометацина. Если удалить супрессорные Т-лимфоциты из соответствующих культур, то количество синтези­руемого ПГЕ 2 уменьшается, а чувствительность лимфоцитов, взятых у больных, лимфогранулематозом и у здоровых людей, становится одинаковой. Подавление клеточного иммунитета у страдающих лимфогранулематозом больных может быть результатом угнетения простагландином Е функции лимфоцитов.

К эйкозаноидам (είκοσι, греч .-двадцать) относят окисленные производные эйкозановых кислот: эйкозотриеновой (С20:3), арахидоновой (С20:4), тимнодоновой (С20:5) жирных кислот. Активность эйкозаноидов значительно разнится от числа двойных связей в молекуле, которое зависит от строения исходной жирной кислоты.

Выделяют три основные группы эйкозаноидов: простагландины , лейкотриены , тромбоксаны .

Простагландины (Pg) – синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой системы, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов, типа клетки и условий. Они также влияют на температуру тела.

Простациклины являются подвидом простагландинов (Pg I), вызывают дилатацию мелких сосудов, но еще обладают особой функцией – ингибируют агрегацию тромбоцитов. Их активность возрастает при увеличении числа двойных связей в исходных жирных кислотах. Синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка.

Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение сосудов. Их активность снижается при увеличении числа двойных связей в исходных жирных кислотах.

В организме суммарный эффект простациклинов и тромбоксанов на тромбообразование и артериальное давление складывается. При недостатке полиненасыщенных жирных кислот в пище возникает крен в сторону преобладающей активности тромбоксанов, что ведет к повышению вязкости крови, образованию тромбов и спазму мелких сосудов, в целом - к нарушению периферического кровообращения. Поступление в клетки ω3-жирных кислот противостоит этим патологическим сдвигам.

Лейкотриены (Lt) синтезируются в лейкоцитах, в клетках легких, селезенки, мозга, сердца. Выделяют 6 типов лейкотриенов A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления, в целом они активируют реакции воспаления, предотвращая его хронизацию. Также вызывают сокращение мускулатуры бронхов (в дозах в 100-1000 раз меньших, чем гистамин).

Депонироваться эйкозаноиды не могут, разрушаются в течение нескольких секунд, и поэтому клетка должна синтезировать их постоянно из поступающих жирных кислот ω6- и ω3-ряда.

Источником свободных эйкозановых кислот являются фосфолипиды клеточной мембраны .

Под влиянием гистамина , комплекса антиген-антитело, цитокинов, кининов активируются фосфолипаза А 2 или комбинация фосфолипазы С и ДАГ-липазы , которые отщепляют жирную кислоту из положения С 2 мембранных фосфолипидов.

Синтез эйкозаноидов на примере арахидоновой кислоты

Полиненасыщенная жирная кислота метаболизирует в основном двумя путями: циклооксигеназным и липоксигеназным , активность которых в разных клетках выражена в разной степени. Циклооксигеназный путь отвечает за синтез простагландинов и тромбоксанов, липоксигеназный – за синтез лейкотриенов.

Химизм реакций циклооксигеназы и липоксигеназы показан .

Лекарственная регуляция синтеза

Гормоны коры надпочечников глюкокортикоиды опосредованно, через синтез специфических белков, подавляют активность фосфолипазы А 2 и, следовательно, образование всех типов эйкозаноидов. На этом основано широкое использование препаратов кортизола (преднизолон, дексаметазон) для лечения воспалительных, аутоиммунных и аллергических состояний.

Нестероидные противовоспалительные средства (аспирин, индометацин, ибупрофен) ингибируют циклооксигеназу и снижают выработку простагландинов и тромбоксанов. Они нашли применение как жаропонижающее средство и в кардиологии.

Блокирование циклооксигеназы в почках, как побочный эффект салицилатов, вызывает уменьшение синтеза простагландинов в почечных сосудах и снижение кровообращения в почках.

В зависимости от исходной жирной кислоты все эйкозаноиды делят на три группы:

Первая группа – синтезируется из эйкозотриеновой кислоты (С20:3), которая образуется из линоленовой (С18:3). В соответствии с количеством двойных связей простагландинам и тромбоксанам присваивается индекс 1, лейкотриенам – индекс 3: например, Pg E1, Pg I1, Tx A1, Lt A3.
Интересно, что PgE1 ингибирует аденилатциклазу в жировой ткани и препятствует липолизу, также он участвует в патогенезе бронхоспазма.
Вторая группа синтезируется из арахидоновой кислоты (С20:4). По тому же правилу ей присваивается индекс 2 или 4, например, Pg E2, Pg I2, Tx A2, Lt A4.
Третья группа эйкозаноидов происходит из тимнодоновой кислоты (С20:5). По числу двойных связей присваиваются индексы 3 или 5: например, Pg E3, Pg I3, Tx A3, Lt A5.

Подразделение эйкозаноидов на группы имеет клиническое значение. Особенно ярко это проявляется на примере простациклинов и тромбоксанов :

Исходная жирная кислота Число двойных связей в молекуле Активность простациклинов Активность тромбоксанов
Линоленовая, С18:3 1
Арахидоновая, С20:4 2
Тимнодоновая, С20:5 3

Результирующим эффектом пищевого приема или фармакологического применения более полиненасыщенных жирных кислот является образование тромбоксанов и простациклинов с бо льшим числом двойных связей, что изменяет реологические свойства крови и снижает ее вязкость, понижает тромбообразование, расширяет мелкие сосуды и улучшает кровоснабжение тканей, снижает повышенное артериальное давление . Все эти эффекты ценны при нарушениях кровообращения, при атеросклерозе, у кардиологических больных.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

Курсовая работа

РЕГУЛЯЦИЯ ЛЕКАРСТВЕННЫМИ СРЕДСТВАМИ МЕТАБОЛИЗМА АРАХИДОНОВОЙ КИСЛОТЫ ПРИ ВОСПАЛЕНИЯХ

Выполнил

Яблонский М.С.

Руководитель:

Семенкова Г. Л.

ВВЕДЕНИЕ

1. МЕТАБОЛИЗМ АРАХИДОНОВОЙ КИСЛОТЫ

2. РЕГУЛЯЦИЯ МЕТАБОЛИЗМА АРАХИДОНОВОЙ КИСЛОТЫ ЛЕКАРСТВЕННЫМИ СРЕДСТВАМИ

2.1 Способы регуляции воспалительной реакции

2.2 Ингибирование циклооксигеназы как метод регуляции воспалительного процесса. Нестероидные противовоспалительные препараты

2.3 Лекарственные средства, влияющие преимущественно на липоксигеназный путь метаболизма арахидоновой кислоты

2.4 Глюкокортикостероиды

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Воспаление - реакция организма на повреждение или инфекцию, направленная на уничтожение инфекционного агента и восстановление повреждённых тканей. Острое воспаление развивается непосредственно вслед за действием повреждающего фактора и связано с высвобождением в тканях так называемых медиаторов воспаления - «местных» гормонов или аутакоидов (веществ, которые воздействуют на клетки ткани или органа в месте своего образования, не поступая в системный кровоток). Выделяют 3 основные группы аутакоидов: биологические амины (гистамин, серотонин), кинины (брадикинин) и эйкозаноиды (простагландины, лейкотриены и другие). К эйкозаноидам относят биологически активные вещества, окисленные производные полиненасыщенных жирных кислот, содержащие 20 углеродных атомов. Это высокоактивные регуляторы клеточных функций, быстрораспадающиеся гормоны «местного действия». Они участвуют во многих процессах: влияют на артериальное давление, состояние бронхов, кишечника, матки, регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов - простагландинов и лейкотриенов.

Главным субстратом для синтеза (предшественником) эйкозаноидов у человека является арахидоновая кислота (эйкозатетраеновая кислота - омега-6-ненасыщенная жирная кислота, содержащая 20 атомов углерода), так как её содержание в организме человека значительно больше остальных полиеновых кислот-предшественников эйкозаноидов. Поэтому регуляция метаболизма арахидоновой кислоты при воспалениях является важным вопросом фармацевтической химии.

1 . МЕТАБОЛИЗМ АРАХИДОНОВОЙ КИСЛОТЫ

Арахидоновая кислота может поступать в организм человека с пищей или образовываться из линолевой кислоты, также поступающей с пищей (рис.1).

Рис. 1. Схема образования арахидоновой кислоты из линолевой кислоты.

Арахидоновая кислота входит в состав глицерофосфолипидов мембран. Под действием ассоциированной с мембраной фосфолипазы А2 эйкозатетраеновая кислота отщепляется от глицерофосфолипида и используется для синтеза эйкозаноидов .

Так фосфолипаза А2 отщепляет одну ацильную группу, ею осуществляется гидролиз связи B (рис.2), что приводит к высвобождению арахидоновой кислоты (R" - соответствующий арахидоновой кислоте радикал).

Рис. 2. Молекула фосфотидилхолина.

Активация фосфолипаз, ассоциированных с мембранами, происходит под действием многих факторов: гормонов, гистамина, цитокинов, механического воздействия .

После отделения арахидоновой кислоты от фосфолипида она выходит в цитозоль и в различных типах клеток превращается в разные эйкозаноиды. В клетках имеются 3 основных пути превращения арахидоновой кислоты: циклооксигеназный, приводящий к синтезу простагландинов, простациклинов и тромбоксанов, липоксигеназный, заканчивающийся образованием лейкотриенов, липоксинов и цитохромный (монооксигеназный), приводящий к образованию эйкозатретраеновых кислот.

Циклооксигеназы катализируют реакцию превращения арахидоновой кислоты в простагландин Н2 (PG H2, предшественник остальных простагландинов, простациклина и тромбоксана А2). Фермент содержит два активных центра: циклооксигеназный сайт, превращаюший арахидоновую кислоту в простагландин G2 (реакция по сути представляет из себя циклизацию линейной арахидоновой кислоты с присоединением молекул кислорода) и гем, обладающий пероксидазной активностью, превращаюший простагландин G2 в простагландин Н2.

Простагландины обозначают символами, например PG А, где PG обозначает слово «простагландин», а буква А обозначает заместитель в пятичленном кольце в молекуле эйкозаноида.

PG I - простациклины. Имеют 2 кольца в своей структуре: одно пятичленное, как и другие простагландины, а другое - с участием атома кислорода. Их также подразделяют в зависимости от количества двойных связей в радикалах (PG I2, PG I3).

Каждая из указанных групп простагландинов состоит из 3 типов молекул, отличающихся по числу двойных связей в боковых цепях. Число двойных связей обозначают нижним цифровым индексом, например, PG Е2.

В организме имеются 3 типа циклооксигеназ: циклооксигеназа-1 (COX-1, ЦОГ-1), циклооксигеназа-2 (COX-2, ЦОГ-2) и циклооксигеназа-3 (COX-3, ЦОГ-3).

Рис. 3. Простогландинсинтаза как совокупность циклооксигеназ и пероксидазы

Первые два типа циклооксигеназ катализируют включение 4 атомов кислорода в арахидоновую кислоту и формирование пятичленного кольца. В результате образуется нестабильное гидропероксидпроизводное, называемое PG G2. Гидропероксид у 15-го атома углерода быстро восстанавливается до гидроксильной группы пероксидазой с образованием PG Н2. До образования PG Н2 путь синтеза разных типов простагландинов одинаков. Дальнейшие превращения PG Н2специфичны для каждого типа клеток.

Рис. 4. Циклооксигеназный путь превращения арахидоновой кислоты.

Синтез лейкотриенов идёт по пути, отличному от пути синтеза простагландинов, и начинается с образования гидроксипероксидов - гидропероксидэйкозатетраеноатов (ГПЭТЕ). Эти вещества или восстанавливаются с образованием гидроксиэйкозатетроеноатов (ГЭТЕ) или превращаются в лейкотриены или липоксины (Рис.4) .

Рис. 5. Липоксигеназный путь превращения арахидоновой кислоты.

Синтез липоксинов начинается с действия на арахидоновую кислоту 15-липоксигеназы, затем происходит ряд реакций, приводящих к образованию липоксина А4. В Р450-монооксигеназном пути арахидоновая кислота окисляется до 19-гидрокси или 20-гидрокси-эйкозатетраеновых кислот (19-НЕТЕ и 20-НЕТЕ), а также эпоксиэйкозатетраеновой кислоты (ОЕТЕ) .

Рис. 7 Общая схема метаболизма арахидоновой кислоты (упрощенная).

2. РЕГУЛЯЦИЯ МЕТАБОЛИЗМА АРАХИДОНОВОЙ КИСЛОТЫ ЛЕКАРСТВЕННЫМИ СРЕДСТВАМИ

2.1 Способы регуляции воспалительной реакции

Простагландины - основные медиаторы воспаления. Они вызывают следующие биологические эффекты: сенсибилизируют ноцирецепторы к медиаторам боли (гистамин, брадикин) и понижают порог болевой чувствительности, повышают чувствительность сосудистой стенки к другим медиаторам воспаления (гистамин, серотонин), вызывая локальное расширение сосудов (покраснение), увеличение сосудистой проницаемости (отек), повышают чувствительность гипоталамических центров терморегуляции к действию вторичных пирогенов, образующихся под влиянием микроорганизмов (бактерии, вирусы, грибки, простейшие) и их токсинов .

Лейкотриены участвуют в патогенезе бронхиальной астмы. Вместе с гистамином лейкотриены относятся к медиаторам ранней фазы аллергической реакции немедленного типа. В результате действия гистамина возникает мгновенный и кратковременный бронхоспазм, лейкотриены же вызывают отсроченный и более длительный бронхоспазм .

Исходя из представленного выше процесса образования эйкозаноидов, можно предложить следующие подходы к регуляции воспалительной реакции: подавление активности фосфолипазы А2, подавление активности ЦОГ, блокада простагландиновых рецепторов, подавление активности ЛОГ, блокада рецепторов к лейкотриенам

2.2 Ингибирование циклооксигеназы как метод регуляции воспалительного процесса . Нестероидные противовоспалительные препараты

ЦОГ-1 является конститутивной, то есть работает практически постоянно и выполняет физиологически важные функции. Ингибирование ЦОГ-1 неселективными НПВП порождает многие побочные эффекты: бронхоспазм, ульцерогенез (так как простагландины выполняют защитную роль в слизистой оболочке желудка), боль в ушах, задержка воды в организме, гепато-, нефротоксичность и др.

ЦОГ-2 является индуцибельной, то есть начинает функционировать при определённых ситуациях, например , при воспалении его экспрессия резко увеличивается . Подобно другим ферментам из группы ЦОГ, ЦОГ-3 тоже участвует в синтезе простагландинов и играет роль в развитии боли и лихорадки, но в отличие от ЦОГ-1 и ЦОГ-2, ЦОГ-3 не принимает участия в развитии воспаления .

В основе концепции механизма противовоспалетельного, анальгетического и антипиретического эффектов нестероидных противовоспалительных препаратов (НПВП) лежит угнетение синтеза воспалительных простагландинов путем ингибирования ЦОГ .

Примером неселективного ингибитора циклооксигеназы может служить ацетилсалициловая кислота. В отличие остальных неселективных НПВП аспирин необратимо ингибирует циклооксигеназу путём ацетилирования серина в активном центре (рис. 7) .

Рис. 7. Механизм ингибирования ЦОГ ацетилсалициловой кислотой.

Установлено, что в малых дозах (до 375 мг/сут) аспирин блокирует преимущественно ЦОГ-1, тогда как в более высоких дозах - ЦОГ-1 и ЦОГ-2 . ингибирование противовоспалительный лекарственный метаболизм

Существует также альтернативные (ЦОГ-независимые) механизмы противоспалительного действия. Аспирин подавляет активацию NF-B - фактора транскрипции генов, который необходим для синтеза ряда воспалительных цитокинов и молекул клеточной адгезии. В отсутствие синтеза этих цитокинов подавляется активность хронического воспалительного процесса. Противовоспалительный и анальгезирующий эффекты препараты связан с блокадой синтеза простагландинов, а механизм антипиретического эффекта связан с влиянием НПВС на центр терморегуляции гипоталамуса. В гипоталамусе имеется особая группа нейронов - термоустановочный центр. При воспалении и инфекционном процессе клетки иммунной системы макрофаги вырабатывают пирогены, которые резко повышают установочный сигнал, и нейроны термоустановочного центра воспринимают нормальную температуру крови как «пониженную». В термоустановочный центр начинается интенсивный синтез PgE2 и активность центра теплопродукции возрастает. Прием НПВС нарушает синтез простагландинов, и активация центра теплопродукции прекращается, усиливается работа центра теплоотдачи. В итоге, лишнее тепло удаляется из организма путем излучения (расширяются сосуды кожи) и испарения (включаются потовые железы). Антиагрегационный эффект связано с тем, что АСК необратимо блокирует ЦОГ в тромбоцитах и эндотелии и нарушает в них синтез тромбоксана А2 и простациклина соответственно .

«Аспириновая триада» или синдром Фернон-Видаля может наблюдаться при полной непереносимости аспирина в сочетании с бронхиальной астмой. Полагают, что этот феномен связан с нарушением метаболизма арахидоновой кислоты по ЦОГ-зависимому пути и компенсаторным усилением ЛОГ-зависимого пути в ходе которого образуются лейкотриены, способные вызвать бронхоспазм. Для оказания помощи при развитии этого осложнения у пациентов применяют селективные ингибиторы лейкотриеновых рецепторов .

Другие нестероидные противовоспалительные (неселективные) препараты действуют по конкурентному механизму, связываясь в активном центре фермента, и также снижают синтез простагландинов . Среди них наиболее известными представителями являются Дифлунизал, Диклофенак, Индометацин, Ибупрофен, Напроксен, Фенилбутазон.

Ингибирование ЦОГ-2 рассматривается как один из основных механизмов противовоспалительной активности НПВС, так как при селективном ингибировании данной циклооксигеназы можно минимизировать многие побочные симптомы, наблюдаемые при ингибировании циклооксигеназы 1 . Соотношение активности НПВП в плане блокирования ЦОГ-1/ЦОГ-2 позволяет судить об их потенциальной токсичности. Чем меньше эта величина, тем более селективен препарат в отношении ЦОГ-2 и менее токсичен . К основным представителям селективных ингибиторов ЦОГ-2 относят целекоксибы, Пирроксикам (из группы оксикамов), Нимесулид.

В различной литературе описаны случаи отрицательного воздествия целекоксибов на организм человека (прием целекоксиба у женщин приводит к развитию обратимого бесплодия, длительный приём целекоксиба может приводить к почечной недостаточности). Для целекоксиба, также как и для нимесулида, была доказана способность индуцировать развитие тромбозов .

2.3 Лекарственные средства, влияющие преимущественно на липоксигеназный путь метаболизма арахидоновой кислоты

К средствам, влияющим преимущественно на липоксигеназный путь метаболизма, относят ингибиторы 5-липоксигеназы: (зилеутон) и антагонисты лейкотриеновых cysLT1-рецепторов (зафирлукаст, монтелукаст, верлукаст, пранлукаст, циналукаст, иралукаст, побилукаст).

Зилеутон обратимо связывается с активным центром 5-ЛОГ и блокирует синтез всех лейкотриенов. Зафирлукаст, как и другие антагонисты лейкотриеновых cysLT1-рецепторов, связывается с цистеиниловым cysLT1-типом лейкотриеновых рецепторов и блокирует их. При этом лейкотриены С4, D4 и Е4 не способны активировать эти рецепторы и вызывать соответствующие эффекты со стороны гладких мышц бронхов. Применяются данные препараты при бронхиальной астме .

2.4 Глюкокортикостероиды

Стероидные препараты обладают гораздо более сильным противовоспалительным действием, чем препараты нестероидного ряда. Механизм их действия заключается в том, что после прохождения через мембрану клетки глюкокортикоиды в цитоплазме связываются со специфическим стероидным рецептором. В результате трансляции РНК на рибосомах синтезируются различные регуляторные белки. Одним из важнейших является липокортин, который ингибирует фермент фосфолипазу-А2 и подавляет синтез простагландинов и лейкотриенов (так как препятствуют освобождению субстрата для синтеза эйкозаноидов - арахидоновой кислоты), играющих ключевую роль в развитии воспалительной реакции.

Использование стероидных противовоспалительных препаратов особенно важно для больных, страдающих бронхиальной астмой. Развитие симптомов этого заболевания (бронхоспазм и экссудация слизи в просвет бронхов) обусловлено, в частности, избыточной продукцией лейкотриенов тучными клетками, лейкоцитами и клетками эпителия бронхов. Приём аспирина у больных, имеющих изоформу липоксигеназы с высокой активностью, может вызвать приступ бронхиальной астмы. Причина «аспириновой» бронхиальной астмы заключается в том, что аспирин и другие нестероидные противовоспалительные препараты ингибируют только циклооксигеназный путь превращений арахидоновой кислоты и, таким образом, увеличивают доступность субстрата для действия липоксигеназы и, соответственно, синтеза лейкотриенов. Стероидные препараты ингибируют использование арахидоновой кислоты и по липоксигеназному, и по циклооксигеназному пути, поэтому они не могут вызывать бронхоспазма .

Следует отметить, что глюкокортикостероиды обладают рядом побочных эффектов: остеопороз, повышение свертываемости крови, появление угрей, ожирение, замедление процессов регенерации тканей, задержка натрия и воды, психические расстройства и др.

К наиболее известным представителям глюкокортикоидов можно отнести преднизолон, флуметазон. Преднизолон представляет собой синтетический глюкокортикоидный лекарственный препарат средней силы, фармакологическое действие которого обуславливается в том числе и ингибированием фосфолипазы А2. Данное лекарственное средство оказывает противовоспалительное, противоаллергическое, проотивошоковое, иммунодепрессивное действие, однако имеет ряд побочных эффектов, характерных для этого вида препаратов .

ВЫВОДЫ

В данной курсовой работе были рассмотрены пути превращения арахидоновой кислоты в организме человека, некоторые варианты нарушения метаболизма арахидоновой кислоты с целью ослабления воспалительных процессов, а также кратко были представлены соответствующие лекарственные средства. Группы препаратов (в частности НПВП) с механизмом действия, связанным с воздействием на метаболизм арахидоновой кислоты, находят широкое применение в клинической практике.

СПИСОК ЛИТЕРАТУРЫ

1. Насонов Е.Л./ Специфические ингибиторы циклооксигеназы (ЦОГ)-2, решенные и нерешенные проблемы // Клин. фарм. тер. - 2000. - т. 9, № 1. - С. 57-64.

2. Основы биохимии: в 3-х томах, Т. 2 / А. Уайт, Ф. Хендлер, Э. Смит, Р. Хилл, И. Леман. -- Мир, 1981. -- С. 766.

3. Биохимия: Учебник для ВУЗов / Под ред. Е. С. Северина. -- ГЭОТАР-Медиа, 2003. -- С. 371,372,417,418.

4. Rang, Х. P. Pharmacology. -- 5th. -- Edinburgh: Churchill Livingstone, 2003. -- P. 232-235.

5. Integrated Pharmacology. 2nd ed. / C. Page, M. Curtis, M Sutter et al. - Mosby International Ltd., 2002. - 670 p.

6. Лоуренс Д. Р., Бенитт П. Н. Клиническая фармакология: в 2 т./ пер. с англ. М.: Медицина, 1991.

7. Фармакотерапия. Клиническая фармакология. Пер с нем. / Под ред. Г. Фюльграффа, Д. Пальма. - Мн.: Беларусь, 1996. - 689 с.

8. Zhang Y, Mills GL, Nair MG/ «Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa». J. Agric. Food Chem. 50 (26): 7581-5.

9. Кукес В.Г. Клиническая фармакология: Учебник. - М.: ГЭОТАР МЕДИЦИНА, 1999. - 513 с.

10. Zubay G. Biochemistry. - Wm. C. Brown Publishers, 1993. - 1024 p.

11. Яблучанский Н.И., Лысенко Н.В./ Нестероидные противовоспалительные препараты// 2003 г.

12. Антагонисты лейкотриенов и/или ингаляционные кортикостероиды при астме // Клин. фарм. тер. - 2002. - т. 11, № 5. - С. 4-12.

Размещено на Allbest.ru

...

Подобные документы

    Терапевтические возможности нестероидных противовоспалительных средств. Выраженность противовоспалительной активности и химической структуры. Угнетение синтеза простагландинов из арахидоновой кислоты путем ингибирования фермента циклооксигеназы.

    презентация , добавлен 26.10.2014

    Метаболизм арахидоновой кислоты. Разносторонняя биологическая активность противовоспалительных препаратов. Основные их эффекты, правила назначения и дозирования. Изоферменты циклооксигеназы. Симптомы острого отравления аспирином и парацетамолом у детей.

    презентация , добавлен 19.04.2014

    Исследование основных особенностей воспалительного процесса. Характеристика фармакологического действия лекарственных препаратов нестероидных противовоспалительных средств. Изучение показаний и способа применения, противопоказаний, побочных действий.

    курсовая работа , добавлен 10.03.2014

    Основные механизмы регуляции метаболических процессов. Контроль за биосинтезом фермента, гормональная регуляция метаболизма жирных кислот. Специфика расщепления гликогена. Взаимопревращение гликоген-фосфорилазы. Гормональная регуляция метаболизма белков.

    реферат , добавлен 13.02.2011

    Основные показания и фармакологические данные по использованию нестероидных противовоспалительных лекарственных средств. Случаи запрещения их использования. Характеристика основных представителей нестероидных противовоспалительных лекарственных средств.

    реферат , добавлен 23.03.2011

    Синтез ацетилсалициловой кислоты. Производные антраниловой кислоты. Нестероидные противовоспалительные средства (НПВС). Механизм действия, ингибирование циклооксигеназы. Фармакологические и побочные эффекты, показания, дозировка и противопоказания НПВС.

    презентация , добавлен 31.10.2014

    Особенности фармацевтического рынка России. Характеристика группы нестероидных противовоспалительных средств. Товароведческий анализ лекарственного препарата на основе лекарственного средства. Маркетинговые исследования продукта, стратегия продвижения.

    курсовая работа , добавлен 30.11.2010

    Продукты метаболизма пуриновых оснований. Нарушение метаболизма мочевой кислоты. Повышенный уровень содержания мочевой кислоты в крови. Потребление богатой пурином пищи как одна из основных причин гиперурикемии. Основные элементы возникновения подагры.

    реферат , добавлен 24.04.2016

    Типы молекулярных мишеней для действия лекарственных средств. Влияние оптической изомерии на биологическую активность нестероидных противовоспалительных препаратов. Геометрическая изомерия. Влияние геометрической изомерии на их фармакологическое действие.

    курсовая работа , добавлен 20.11.2013

    Особенности костного метаболизма. Типовые формы нарушения регуляции фосфорно-кальциевого обмена. Патофизиологическая сущность, причины возникновения и основные симптомы остеопороза, остеомаляции, остеосклероза. Механизмы деминерализации костной ткани.