Скорость распространения пульсовой волны прямо пропорциональна. Скорость пульсовой волны зависит от. Измерение артериальной ригидности

Методы контроля кровенаполнения тканей

и измерения скорости пульсовой волны

Скорость распространения пульсовой волны в аорте может составлять 4-6 м/сек, в артериях мышечного типа 8/12 м в сек. Линейная скорость кровотока по артериям обычно не превышает 0,5 м/сек.

Плетизмография (от греч. plethysmos - наполнение, увеличение + graphō - писать, изображать) - метод исследования сосудистого тонуса и кровотока в сосудах мелкого калибра, основанный на графической регистрации пульсовых и более медленных колебаний объема какой-либо части тела, связанных с динамикой кровенаполнения сосудов.

Метод фотоплетизмографии основан на регистрации оптической плотности исследуемой ткани (органа).

Физические основы кровотока (гемодинамики ).

Объёмной скоростью кровотока (Q) называют объём жидкости (V), протекающий в единицу времени через поперечное сечение сосуда:

Q = V / t (1)

Линейная скорость кровотока определяется отношением пути, проходимого частицами крови, ко времени:

υ = l / t (2)

Объёмная и линейная скорости связаны соотношением:

Q = υ · S , (3)

где S – площадь поперечного сечения потока жидкости.

Для сплошного течения несжимаемой жидкости выполняется уравнение неразрывности: через любое сечение струи в единицу времени протекают одинаковые объёмы жидкости.

Q = υ · S = const (4)

В любом сечении сердечно - сосудистой системы объёмная скорость кровотока одинакова .

Площадь суммарного просвета капилляров в 700-800 раз больше поперечного сечения аорты. С учётом уравнения неразрывности (4) это значит, что линейная скорость кровотока в капиллярной сети в 700-800 раз меньше, чем в аорте, и составляет примерно 1 мм / с . В покое средняя скорость кровотока в аорте лежит в интервале от 0.5 м / с до 1 м / с , а при большой физической нагрузке может достигать 20 м / с .



Рис. 2. Соотношение между суммарным поперечным сечением сосудистой системы (S) на разных уровнях (сплошная линия) и линейной скоростью кровотока (V) в соответствующих сосудах (штриховая линия):

Сила вязкого трения по формуле Ньютона:

F тр = - η · S ·(d υ / dy ), (5)

где η- коэффициент вязкости (динамическая вязкость), S – площадь соприкосновения контактирующих слоёв. У цельной крови коэффициент вязкости, измеренный на вискозиметре, составляет около 5 мПа·с, что в 5 раз больше вязкости воды . При патологических состояниях вязкость крови колеблется от 1.7 мПа·с до 22.9 мПа·с.

Кровь вместе с другими жидкостями, вязкость которых зависит от градиента скорости, относится к неньютоновским жидкостям. Вязкость крови неодинакова в широких и узких сосудах, причём влияние диаметра кровеносного сосуда на вязкость начинает сказываться при просвете менее 1 мм.

Ламинарное и турбулентное (вихревое ) течение . Переход от одного вида течения к другому определяется безразмерной величиной, называемой числом Рейнольдса:

Re = ρ < υ > d / η = < υ > d / ν , (6)

где ρ – плотность жидкости, <υ> - средняя по сечению сосуда скорость жидкости, d – диаметр сосуда, ν=η/ρ – кинематическая вязкость.

Критическое значение числа Рейнольдса Re кр

Для однородных жидкостей Reкр = 2300, для крови Reкр = 970±80, но уже при Re >400 возникают локальные завихрения в разветвлениях артерий и в области их крутых изгибов.

Формула Пуазейля, для объёмной скорости кровотока:

Q = π r 4 Δ p /8 η l , (7)

где Q – объёмная скорость кровотока, r – радиус сосуда, Δp – разность давлений на концах сосуда, η – вязкость крови.

Видно, что при заданных внешних условиях (Δp) через сосуд протекает тем больше крови, чем меньше её вязкость и чем больше радиус сосуда.

Формуле Пуазейля можно придать и такой вид:

Q = Δ p / R г ., (8)

В этом случае формула Пуазейля обнаруживает сходство с законом Ома.

Rг = 8ηl/πr4 отображает сопротивление сосудистого русла кровотоку, включая все факторы, от которых оно зависит. Поэтому Rг называют гемодинамическим сопротивлением (или общим периферическим сопротивлением сосудов).

Гемодинамическое сопротивление 3-х сосудов, соединённых последовательно и параллельно, вычисляется по формулам:

R г = R г 1 + R г 2 + R г 3 , (10)

R г = (1/ R г 1 + 1/ R г 2 + 1/ R г 3 ) -1 (11)

Из анализа модели разветвлённой сосудистой трубки следует, что вклад крупных артерий в R г незначителен , хотя общая длина всех артерий большого диаметра сравнительно велика .


Возникновение и распространение пульсовой волны

по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.


Пульсовая волна распространяется от места своего возникновения до капилляров, где затухает. Скорость её распространения можно рассчитать по формуле:

υ п = (E b /2 ρ r ) 1/2 , (12)

где Е – модуль Юнга сосудистой стенки, b – её толщина, r – радиус сосуда, ρ – плотность тканей сосудистой стенки.

Скорость пульсовой волны можно принять в качестве количественного показателя упругих свойств артерий эластического типа – тех свойств, благодаря которым они выполняют свою основную функцию.

Скорость пульсовой волны в аорте составляет 4 - 6 м / с , а в лучевой артерии 8 – 12 м / с . При склеротических имениях артерий повышается их жёсткость, что проявляется в нарастании скорости пульсовой волны.

Сфигмография

(греч. sphygmos пульс, пульсация + graphō писать, изображать) - метод исследования гемодинамики и диагностики некоторых форм патологии сердечно-сосудистой системы, основанный на графической регистрации пульсовых колебаний стенки кровеносного сосуда.

Сфигмографию осуществляют с помощью специальных приставок к электрокардиографу или другому регистратору, позволяющих преобразовывать воспринимаемые приемником пульса механические колебания стенки сосуда (или сопутствующие им изменения электрической емкости либо оптических свойств исследуемого участка тела) в электрические сигналы, которые после предварительного усиления подаются на регистрирующее устройство. Записываемую кривую называют сфигмограммой (СГ). Существуют как контактные (накладываемые на кожу над пульсирующей артерией), так и бесконтактные, или дистанционные, приемники пульса. Последние обычно используют для регистрации венного пульса - флебосфигмографии. Запись пульсовых колебаний сегмента конечности с помощью накладываемых по ее периметру пневматической манжеты или тензометрического датчика называют объемной сфигмографией.

Сфигмография применяется как самостоятельный метод исследования или входит в состав других методик, например механокардиографии, поликардиографии. Как самостоятельный метод С. используют для оценки состояния артериальных стенок (по скорости распространения пульсовой волны, амплитуде и форме СГ), диагностики некоторых заболеваний, в частности клапанных пороков сердца, неинвазивного определения ударного объема сердца по методу Вецлера - Бегера. По диагностическому значению С. уступает более совершенным методам, например рентгенологическим или ультразвуковым методам исследования сердца и сосудов, но в ряде случаев дает ценную дополнительную информацию и в связи с простотой исполнения доступна для применения в условиях поликлиники.


Рис. 1. Сфигмограмма сонной артерии в норме: а - предсердная волна; b - анакрота; d - поздняя систолическая волна; е-f -g - инцизура; g - дикротическая волна, i - преданакротический зубец; be - период изгнания; ef - протодиастолический интервал.

Артериальная сфигмограмма отражает колебания стенки артерии, связанные с изменениями давления в сосуде на протяжении каждого сердечного цикла. Выделяют центральный пульс, отражающий колебания давления в аорте (СГ сонных и подключичных артерий), и периферический пульс (СГ бедренной, плечевой, лучевой и других артерий).

На нормальной СГ сонной артерии (рис. 1 ) после низкоамплитудных волн а (отражает систолу предсердий) и зубца i (возникает в связи с изометрическим напряжением сердца) наблюдается крутой подъем основной волны b - анакрота, обусловленная открытием аортального клапана и переходом крови из левого желудочка в аорту. Этот подъем сменяется в точке с нисходящей частью волны - катакротой, формирующейся в результате преобладания в данный период в сосуде оттока крови над притоком. В начале катакроты определяется поздняя систолическая волна d , за которой следует инцизура efg . За время ef (протодиастолический интервал) происходит захлопывание аортального клапана, что сопровождается повышением давления в аорте, формирующим дикротическую волну g . Интервал времени, представленный отрезком b -e , соответствует периоду изгнания крови из левого желудочка.

СГ периферических артерий отличаются от кривых центрального пульса более округлыми очертаниями вершины основной волны, отсутствием волн а и i , иногда и инцизуры, более выраженной дикротической волной, часто появлением второй диастолической волны. Интервал между вершинами основной и дикротической волн бедренного пульса соответствует, по мнению Вецлера и Бегера (К. Wezler, A. Böger, 1939), времени основного колебания артериального пульса и используется для расчета ударного объема сердца.

При оценке формы артериальной СГ придают значение крутизне нарастания анакроты, характеру перехода ее в катакроту, наличию и расположению дополнительных зубцов, выраженности дикротической волны. Форма кривых центрального пульса в значительной мере зависит от периферического сопротивления. При низком периферическом сопротивлении СГ центральных артерий имеют круто поднимающуюся анакроту, острые вершины и глубокие инцизуры; при высоком периферическом сопротивлении изменения противоположны.

Абсолютные значения амплитуд отдельных компонентов СГ обычно не оцениваются, т. к. метод С. не имеет калибровки. Для диагностических целей соотносят амплитуды компонентов СГ с амплитудой основной волны. Аналогично вместо оценки абсолютных значений временных интервалов СГ используют их соотношение в процентах с общей продолжительностью систолической волны; это позволяет проводить временной анализ СГ независимо от частоты сердечных сокращений.

Синхронно записанные СГ центрального и периферического пульса используют для определения скорости распространения пульсовой волны по артериям; она вычисляется как частное от деления длины пути пробега волны на длительность интервала между началами анакрот пульса исследуемых артерий. Скорость распространения пульсовой волны в аорте (сосуде эластического типа) рассчитывают по СГ сонной и бедренной артерий, в периферических артериях (сосудах мышечного типа), - по объемным СГ, зарегистрированным на плече и нижней трети предплечья или на бедре и нижней трети голени. Отношение скорости распространения пульсовой волны по сосудам мышечного типа к скорости распространения пульсовой волны по сосудам эластического типа у здоровых людей находится в пределах 1,1-1,3. Скорость распространения пульсовой волны зависит от модуля упругости артериальной стенки; она увеличивается при повышении напряжения артериальных стенок или их уплотнения и изменяется с возрастом (от 4 м/с у детей до 10 м/с и более у лиц старше 65 лет).

Флебосфигмограмма регистрируется обычно с яремной вены. Основные элементы СГ яремной вены в норме представлены положительными волнами а , с , d и отрицательными - х- , у -коллапсами (рис. 2 ). Волна а отражает систолу правого предсердия, волна с обусловлена воздействием на яремную вену пульсации сонной артерии. Перед волной с иногда выявляется зубец b , совпадающий по времени с изометрическим напряжением желудочков сердца. Формирование х -коллапса на отрезке а- b обусловлено диастолой предсердий, на отрезке b - быстрым опорожнением полых вен в правое предсердие в результате оттягивания вниз атриовентрикулярной перегородки во время систолы правого желудочка, а также понижения внутригрудного давления вследствие изгнания крови в брюшную аорту. Следующая положительная волна d обусловлена заполнением полых вен и правого предсердия кровью при закрытом трикуспидальном клапане. После открытия клапана кровь из правого предсердия устремляется в правый желудочек, что способствует опорожнению полых вен, - наступает диастолический у -коллапс. По мере заполнения правого желудочка кровью скорость опорожнения предсердия уменьшается, давление в нем повышается, кровенаполнение вен примерно с середины диастолы желудочка вновь увеличивается, что отражается появлением на флебосфигмограмме второй диастолической волны d (застойная волна).


Рис. 2. Флебосфигмограмма яремной вены в норме: а - предсердная волна; b - зубец, отражающий изометрическое напряжение желудочков; с - передаточная волна пульса сонной артерии; d, d" - диастолические волны; х - систолический коллапс ; y - диастолический коллапс.

Диагностическое значение . Патологические изменения артериальных СГ при некоторых заболеваниях имеют определенную специфичность. При стенозе устья аорты на анакроте центральных СГ появляются зазубрины (анакротический пульс), время подъема анакроты удлиняется, иногда кривые приобретают вид петушиного гребня (рис. 3, а ). При гипертрофическом субаортальном стенозе (см. Кардиомиопатии) время подъема анакроты укорачивается, соотношение длительности анакроты и изгнания уменьшается. Недостаточность клапанов аорты проявляется резким возрастанием амплитуды всех волн, сглаживанием или исчезновением инцизуры на СГ центральных артерий (рис. 3, б ), появлением высокочастотных осцилляций на анакроте бедренного пульса (рис. 3, в ) и на всех объемных СГ нижних конечностей. При коарктации аорты амплитуда центральных СГ и объемных СГ верхних конечностей увеличена, длительность накроты СГ сонной артерии укорочена, вершина пульсовой волны расщеплена; СГ бедренной артерии и объемные СГ нижних конечностей представляют собой низкоамплитудные куполообразные волны, лишенные дикроты (треугольный пульс, рис. 3, г ). Облитерирующие и окклюзионные поражения периферических артерий проявляются на объемных СГ, зарегистрированных ниже места окклюзии, снижением амплитуды пульсовых волн (в тяжелых случаях регистрируется прямая линия) и отсутствием дикроты (монокротический пульс). При поражении сосуда одной конечности или неравномерной облитерации артерий в случаях их системного поражения имеет место разница амплитуд и формы кривых пульса на симметричных артериях. Преобладание коллатерального зависит от частоты сердцебиений; при тахикардии волна d уменьшена, волна d " отсутствует.

Техническая реализация метода фотоплетизмографии ,

параметры регистрируемого сигнала .

Пальцевая фотоплетизмография.

Исследуемым органом является концевая фаланга кисти или стопы.

(в дистальных фалангах пальцев кисти и стопы наиболее интенсивные значения артериального и венозного кровообращения.)


Анакрота – восходящий участок пульсовой волны

Нисходящий участок пульсовой волны называется катакротой .

На нисходящем участке есть волна, называемая дикротической , обусловленная захлопыванием полулунных клапанов между левым желудочком сердца и аортой.

(А 2 ) образуется за счёт отражения объёма крови от аорты и крупных

магистральных сосудов и частично соответствует диастолическому периоду сердечного цикла.

Дикротическая фаза несет информацию о тонусе сосудов.

Вершина пульсовой волны соответствует наибольшему объёму крови, а её противолежащая часть – наименьшему объёму крови в исследуемом участке ткани.

Частота и продолжительность пульсовой волны зависят от особенностей работы сердца , а величина и форма её пиков от состояния сосудистой стенки .


Волны первого порядка (I), или объемный пульс

Волны второго порядка (II) имеют период дыхательных волн

Волнами третьего порядка (III) называют все регистрируемые колебания с периодом, большим, чем период дыхательных волн

Использование метода фотоплетизмографии в медицинской практике .

Базовый вариант.

После наложения на дистальную фалангу пальца руки или ноги датчика-прищепки и активации регистрации фотоплетизмограммы в интерфейсной части устройства выполняется последовательное измерение значений объемного пульса в различные фазы исследования воздействия на организм человека изучаемого фактора. Исследование объемного пульса при перемене положения конечности.

Механизм: Изменение сосудистых артериальных рефлексов при различных положениях конечности - превалирование сосудорасширяющего рефлекса при поднятии конечности вверх, при опускании конечности вниз превалирует сосудосуживающий рефлекс.

При развитии сосудосуживающего эффекта амплитуда пульсовых волн нарастает, при развитии сосудорасширяющего эффекта амплитуда пульсовых волн уменьшается.

Возможно выявить подвижность механизмов, регулирующих распределение крови, что имеет существенное значение при выявлении локальных капиллярных нарушений и сосудистых заболеваний на уровне всего организма.

Техника окклюзионной фотоплетизмографии

заключается в следующем: на уровне верхней трети плеча накладывается тонометрическая манжета и в нее нагнетается воздух до давления, на 30 мм рт. ст превышающее артериальное давление. Давление в манжете сохраняется в течение 5 минут, затем воздух быстро стравливается. В течении первых 30 секунд в норме возникает пиковое объемной и линейной скорости кровотока, постепенно снижающееся к 3-й минуте.

Методика определения артериального давления в плечевой артерии с помощью фотоплктизмографии.

Декомпрессионный вариант:

В резиновую манжету, соединенную с манометром, нагнетается воздух до исчезновения периферического пульса. Затем с постоянной скоростью выпускается воздух. Когда давление в манжете соответствует артериальному, объем крови в пальце увеличивается, что проявляется появлением пульсации; когда давление соответствует венозному давлению, объем крови снова уменьшается. По экспериментальным данным такая методика регистрации артериального давления является наиболее точной и может использоваться при его уменьшении.

Изучаемые параметры фотоплетизмограммы:

По вертикальной оси изучаются амплитудные характеристики пульсовой волны, соответствующие анакротическому и дикротическому периоду. Несмотря на то, что эти параметры являются относительными, их изучение в динамике предоставляет ценную информацию о силе сосудистой реакции. В этой группе признаков изучаются:

1. амплитуда анакротической и дикротической волны,

Последний показатель имеет абсолютное значение и имеет собственные нормативные показатели.

По горизонтальной оси изучаются временные характеристики пульсовой волны, предоставляющие информацию о длительности сердечного цикла, соотношении и длительности систолы и диастолы. Эти параметры имеют абсолютные значения и могут сравниваться с существующими нормативными показателями.


Амплитуда пульсовой волны или анакротической фазы (АПВ), определяется по вертикальной оси как: АПВ = В2-В1.

lНормативных значений не имеет, оценивается в динамике.

Амплитуда дикротической волны (АДВ), определяется по вертикальной оси как: АДВ = В4-В5.

lВ норме составляет 1/2 от величины амплитуды пульсовой волны.

Индекс дикротической волны (ИДВ), определяется в процентах как: ИДВ = ((В3-В5)/(В2 – В1))·100

lНормативное значение составляет%.

Длительность анакротической фазы пульсовой волны (ДАФ), определяется в секундах по горизонтальной оси как: ДАФ = В3-В1

Длительность дикротической фазы пульсовой волны (ДДФ), определяется в секундах по горизонтальной оси как: ДДФ = В5-В3 .

lНормативное значение не установлено.

Длительность пульсовой волны (ДПВ ) , определяется в секундах по горизонтальной оси как: ДПВ = В5-В1.

lНормативные значения по возрастным группам:

Возраст, лет

Длительность пульсовой волны, сек

Длительность систолической фазы сердечного цикла (ДС), определяется в секундах по горизонтальной оси как: ДС = В4-В1.

lНормативный параметр вычисляемый, равен произведению длительности ДПВ и 0.324.

Длительность диастолической фазы сердечного цикла (ДД), определяется в секундах по горизонтальной оси как: ДД = В5-В4.

lВ норме равна остатку вычитания длительности систолы от общей продолжительности пульсовой волны.

Частота сердечных сокращений (ЧСС), определяется в ударах в минуту как: ЧСС = 60/ДПВ.

lНормативные значения частоты сердечных сокращений по Кассирскому:

Возраст, лет

ЧСС в мин

Методики клинической фотоплетизмографии (часть 3).

Качественные критерии оценки фотоплетизмограмм.

Перечисленные количественные показатели не предоставляют исчерпывающую информацию о характере пульсовой волны. Немаловажное значение имеет качественная оценка формы пульсовых волн нередко имеющее решающее значение. При анализе формы пульсовых волн привлекаются термины, заимствованные из клинической практики, такие, как pulsus tardus, pulsus celer.

При повышенном периферическом сопротивлении, например, при сочетании атеросклероза и гипертонической болезни, а особенно у больных аортальным стенозом форма пульсовых волн соответствует pulsus tardus: подъем пульсовой волны пологий, неравномерный, вершина смещается к концу систолы («позднее систолическое выпячивание»).

https://pandia.ru/text/78/415/images/image011_47.gif" height="1 src=">

Рис 4 Пульсовые волны типа pulsus tardus при повышенном периферической сопротивлении.

При низком периферическом сопротивлении и большом систолическом выбросе, характерном больным с аортальной недостаточностью, пульсовые волны имеют вид pulsus celer:подъем пульсовой волны имеет крутой подъем, быстрое снижение и малозаметную инцизуру. Между локализацией инцизуры, величиной периферического сопротивления и упругим состоянием артерий отмечается определенная зависимость: при пониженной эластичности сосудов инцизура приближается к вершине, а при вазодилятации не выходит за пределы нижней половины пульсовой кривой.

https://pandia.ru/text/78/415/images/image013_12.jpg" width="397" height="132">

Рис 6. Симптом «петушиного гребня». Симптомы получены в момент избыточного воздействия дозы инфракрасного терапевтического лазера.

https://pandia.ru/text/78/415/images/image015_14.jpg" width="225" height="110">

Рис 8. Ступенька на вершине пульсовой волны.

https://pandia.ru/text/78/415/images/image017_14.jpg" width="339" height="254 src=">

Рис 10. Отсутствие дикротической волны на пульсограмме у больной сахарным диабетом.

Кроме того, зарегистрированы следующие патологические отклонения при различных заболеваниях:

r отсутствие дикротического зубца указывает на наличие атеросклероза, гипертонической болезни
(рис 10) ;

r различие объемного пульса на руках и ногах может указывать на коарктацию аорты;

r слишком большой объемный пульс – возможно, у больного незаращенный боталлов проток;

r при облитерирующем эндартериите амплитуда пульсовых волн снижена на всех пальцах пораженной конечности;

r при проведении функциональной пробы с переменой положения конечности у больных в начальной фазе облитерирующего эндартериита резко снижен сосудорасширяющий эффект при подъеме ноги (невысокая амплитуда пульсовых волн) и значительно выражен сосудосуживающий эффект при опускании ноги;

r при проведении функциональной пробы с переменой положения конечности у больных с облитерирующим атеросклерозом в стадии субкомпенсации при опускании конечности амплитуда пульсовых волн значительно уменьшается.

Половые и возрастные особенности фотоплетизмограмм:

1. В период с 8 до 18 лет амплитуда пульсовой волны имеет тенденцию к увеличению, с 19 до 30 лет стабилизируется, после 50-ти амплитуда пульсовой волны вновь нарастает.

2. По наблюдениям (1967) пульсовые волны у детей отличаются крутым подъемом. Вершина кривой имеет округлые очертания. Инцизура у 72% здоровых детей располагается в верхней или средней трети пульсовой волны, у 28% - в нижней трети пульсовой волны. У абсолютного большинства детей инцизура и начальная диастолическая волна отчетливо выражены.

3. Половые различия – у девочек до 16 лет по сравнению с мальчиками, амплитуда пульсовой волны выше.

Другие особенности фотоплетизмограмм:

1. Величина объемного пульса не зависит от времени года, но сосудистые реакции легче вызываются в июле и августе (Hetzman 1948).

2. При магнитных бурях, прохождении атмосферных фронтов и других колебаниях погоды возникают большие колебания периферического капиллярного кровообращения, особенно у больных ревматизмом – возрастает количество реакций, указывающих на расширение сосудов. При контрольном измерении во время физиотерапевтических процедур отмечается явное уменьшение неповреждающей дозы физического фактора.

Когда сердце во время систолы перекачивает кровь в аорту, в первый момент растягивается только начальная часть аорты, т.к. инерция крови, находящейся в аорте, предупреждает немедленный отток крови на периферию. Однако возросшее давление в начальной части аорты преодолевает инерцию, и фронт волны, растягивающей стенку сосуда, распространяется дальше вдоль аорты. Это явление называют распространением пульсовой волны в артериях.

Скорость распространения пульсовой волны в аорте в норме составляет от 3 до 5 м/сек, в крупных артериальных ветвях - от 7 до 10 м/сек, а в мелких артериях - от 15 до 35 м/сек. В целом, чем больше емкость того или иного участка сосудистой системы, тем меньше скорость распространения пульсовой волны, поэтому скорость распространения пульсовой волны в аорте гораздо ниже, чем в дистальных отделах артериальной системы, где мелкие артерии отличаются меньшей податливостью сосудистой стенки и меньшей резервной емкостью. В аорте скорость распространения пульсовой волны в 15 раз меньше, чем скорость кровотока, т.к. распространение пульсовой волны представляет собой особый процесс, лишь незначительно влияющий на продвижение всей массы крови вдоль сосуда.

Сглаживание пульсовых колебаний давления в мелких артериях, артериолах и капиллярах. На рисунке показаны типичные изменения рисунка пульсового колебания по мере того, как пульсовая волна проходит по периферическим сосудам. Особое внимание следует обратить на три нижние кривые, где интенсивность пульсаций становится все меньше в мелких артериях, артериолах и, наконец, в капиллярах. В действительности, пульсовые колебания стенки капилляров наблюдаются, если резко увеличены пульсации в аорте или предельно расслаблены артериолы.

Снижение амплитуды пульсаций в периферических сосудах называют сглаживанием (или демпфированием) пульсовых колебаний. К этому приводят две основные причины: (1) сосудистое сопротивление кровотоку; (2) податливость сосудистой стенки. Сосудистое сопротивление способствует сглаживанию пульсовых колебаний стенки сосудов, потому что все меньший объем крови продвигается вслед за фронтом пульсовой волны. Чем больше сосудистое сопротивление, тем больше препятствий для объемного кровотока (и меньше его величина). Податливость сосудистой стенки также способствует сглаживанию пульсовых колебаний: чем больше резервная емкость сосуда, тем больший объем крови необходим, чтобы вызвать пульсацию во время прохождения фронта пульсовой волны. Таким образом, можно сказать, что степень сглаживания пульсовых колебаний прямо пропорциональна произведению сопротивления сосуда на его резервную емкость (или податливость сосудистой стенки).

Аускультативный метод измерения давления

Совсем не обязательно вводить иглу в артерию пациента для измерения артериального давления при обычном клиническом обследовании, хотя в ряде случаев применяют прямые методы измерения давления. Вместо этого используют непрямые методы, чаще всего аускультативный метод определения величины систолического и диастолического давления.

Аускультативный метод . На рисунке представлен аускультативный метод определения величины систолического и диастолического давления. Стетоскоп располагается в области локтевого сгиба над лучевой артерией. На плечо накладывается резиновая манжетка для нагнетания воздуха. Все время, пока давление в манжетке остается ниже, чем в плечевой артерии, стетоскоп не улавливает никаких звуков. Однако когда давление в манжетке увеличивается до уровня, достаточного для перекрытия кровотока в плечевой артерии, но только во время диастолического снижения давления в ней, можно услышать звуки, сопровождающие каждую пульсацию. Эти звуки известны как тоны Короткова.

Истинную причину тонов Короткова все еще обсуждают, однако главной причиной их появления, бесспорно, является то, что отдельным порциям крови приходится прорываться через частично перекрытый сосуд. При этом в сосуде, расположенном ниже места наложения манжетки, ток крови становится турбулентным и вызывает вибрацию, что является причиной появления звуков, слышимых при помощи стетоскопа.

Для измерения артериального давления аускультативным методом давление в манжетке сначала поднимают выше уровня систолического давления. Плечевая артерия при этом пережата таким образом, что кровоток в ней полностью отсутствует и тоны Короткова не слышны. Затем давление в манжетке постепенно понижают. Как только давление в манжетке становится ниже систолического уровня, кровь начинает прорываться через сдавленный участок артерии во время систолического подъема давления. В это время в стетоскопе слышны звуки, похожие на стук, возникающие синхронно с сердцебиениями. Давление в манжетке во время появления первого звука принято считать равным систолическому давлению в артерии.

По мере того, как давление в манжетке продолжает снижаться, характер тонов Короткова меняется: они становятся более грубыми и громкими. Наконец, когда давление в манжетке падает до уровня диастолического, артерия под манжеткой во время диастолы остается непережатой. Условия, необходимые для формирования звуков (прорыв отдельных порций крови через суженную артерию), исчезают. В связи с этим звуки внезапно становятся приглушенными, и после снижения давления в манжетке еще на 5-10 мм рт. ст. полностью прекращаются. Давление в манжетке во время изменения характера звука принято считать равным диастоличе-скому давлению в артерии. Аускультативный метод измерения систолического и диастолического давления не является абсолютно точным. Ошибка может составить 10% по сравнению с прямым измерением давления в артерии с помощью катетера.

Нормальный уровень артериального давления , измеренный аускультативным методом. На рисунке показаны нормальные уровни систолического и диастолического артериального давления в зависимости от возраста. Постепенное увеличение давления с возрастом объясняют возрастными изменениями регуляторных механизмов, контролирующих кровяное давление. В первую очередь почки ответственны за долговременную регуляцию артериального давления. Как известно, функция почек заметно меняется с возрастом, особенно у людей старше 50 лет.

Введение

Одна из основных задач современной кардиологии - снижение сердечно-сосудистой заболеваемости и смертности. Среди стратегий ее решения - выявление групп высокого риска для проведения профилактических медикаментозных и немедикаментозных вмешательств. В качестве инструмента для оценки риска развития сердечно-сосудистых заболеваний (ССЗ) широко используют различные шкалы (SCORE, Фрамингемская шкала и др.). Однако практически все они предназначены для общей популяции и не могут быть использованы для пациентов с уже манифестировавшими ССЗ.

Возможность предсказания развития повторных сердечно-сосудистых осложнений (ССО) у пациентов с ишемической болезнью сердца (ИБС) может способствовать формированию эффективной стратегии ведения этой когорты больных. Поиск надежных способов оценки прогноза продолжается. Роттердамское исследование показало высокую связь повышенной скорости пульсовой волны (СПВ) - как маркера жесткости артерий - с наличием атеросклероза. Это стало предпосылкой к изучению данного параметра как предиктора прогноза для пациентов с ИБС.

Анализ проблемы

Определение скорости распространения пульсовой волны

В момент систолы некоторый объем крови поступает в аорту, давление в начальной части ее повышается, стенки растягиваются. Затем волна давления и сопутствующее ее растяжение сосудистой стенки распространяются дальше к периферии и определяются как пульсовая волна. Таким образом, при ритмическом выбрасывании крови сердцем в артериальных сосудах возникают последовательно распространяющиеся пульсовые волны. Пульсовые волны распространяются в сосудах с определенной скоростью, которая, однако, отнюдь не отражает линейной скорости движения крови. Эти процессы в принципе различны. Сали (Н. Sahli) характеризует пульс периферических артерий как «волнообразное движение, которое происходит вследствие распространения образующейся в аорте первичной волны по направлению к периферии».

Определение скорости распространения пульсовой волны, по мнению многих авторов, является наиболее достоверным методом изучения упруговязкого состояния сосудов.

Сфигмограммы периферического пульса используются для определения скорости распространения пульсовой волны. Для этого синхронно регистрируют сфигмограммы сонной, бедренной и лучевой артерий и определяют время запаздывания периферического пульса по отношению к центральному (Dt) (рис. 1).

Рис. 1. Определение скорости распространения пульсовой волны на отрезках: «сонная -- бедренная артерии» и «сонная -- лучевая артерии». Дельта-t1 и дельта-t2 -- запаздывание пульсовой волны соответственно на уровне бедренной и лучевой артерий

Для определения скорости распространения пульсовой волны производится одновременная запись сфигмограмм с сонной, бедренной и лучевой артерий (рис. 2). Приемники (датчики) пульса устанавливаются: на сонной артерии-- на уровне верхнего края щитовидного хряща, на бедренной артерии-- в месте выхода ее из-под пупартовой связки, на лучевой артерии-- в месте пальпации пульса. Правильность наложения датчиков пульса контролируется положением и отклонениями «зайчиков» на визуальном экране прибора.

Если одновременная запись всех трех пульсовых кривых по техническим причинам невозможна, то одномоментно записывают сначала пульс сонной и бедренной артерий, а затем сонной и лучевой артерий. Для расчета скорости распространения пульсовой волны нужно знать длину отрезка артерии между приемниками пульса. Измерения длины участка, по которому распространяется пульсовая волна в эластических сосудах (Lэ) (аорта-- подвздошная артерия), производятся в следующем порядке (рис. 2):


Рис. 5.

Обозначения в тексте:

а-- расстояние от верхнего края щитовидного хряща (местоположение приемника пульса на сонной артерии) до яремной вырезки, где проецируется верхний край дуги аорты;

b-- расстояние от яремной вырезки до середины линии, соединяющей обе spina iliaca anterior (проекция деления аорты на подвздошные артерии, которая при нормальных размерах и правильной форме живота точно совпадает с пупком);

с-- расстояние от пупка до местоположения приемника пульса на бедренной артерии.

Полученные размеры b и с складываются и из их суммы вычитается расстояние а:

Вычитание расстояния а необходимо в связи с тем, что пульсовая волна в сонной артерии распространяется в противоположном к аорте направлении. Ошибка в определении длины отрезка эластических сосудов не превышает 2,5--5,5 см и считается несущественной. Для определения длины пути при распространении пульсовой волны по сосудам мышечного типа (LМ) необходимо измерить следующие расстояния:

От середины яремной вырезки до передней поверхности головки плечевой кости (61);

От головки плечевой кости до места наложения приемника пульса на лучевой артерии (а. radialis)-- с1.

Более точно измерение этого расстояния производится при отведенной под прямым углом руке -- от середины яремной вырезки до местоналожения датчика пульса на лучевой артерии- d(b1+c1).

Как и в первом случае, из этого расстояния необходимо вычесть отрезок а. Отсюда:

b1 + с1 -- а -- Lи, но b + с1 = d


Рис.3.

Обозначения:

а-- кривая бедренной артерии;

б-- кривая сонной артерии;

в-- кривая лучевой артерии;

tэ-- время запаздывания по эластическим артериям;

tм-- время запаздывания по мышечным артериям;

i-- инцизура

Второй величиной, которую необходимо знать для определения скорости распространения пульсовой волны, является время запаздывания пульса на дистальном отрезке артерии по отношению к центральному пульсу (рис. 3). Время запаздывания (г) определяется обычно по расстоянию между началами подъема кривых центрального и периферического пульса или по расстоянию между местами изгиба на восходящей части сфигмограмм.

Время запаздывания от начала подъема кривой центрального пульса (сонной артерии-- а. саrоtis) до начала подъема сфигмографической кривой бедренной артерии (а. femoralis)-- время запаздывания распространения пульсовой волны по эластическим артериям (tэ)- Время запаздывания от начала подъема кривой а. саrоtis до начала подъема сфигмограммы с лучевой артерии (а.radialis)-- время запаздывания по сосудам мышечного типа (tМ). Регистрация сфигмограммы для определения времени запаздывания должна производиться при скорости движения фотобумаги-- 100 мм/с.

Для большей точности в подсчете времени запаздывания пульсовой волны регистрируется 3--5 пульсовых колебаний и берется среднее значение из полученных при измерении величин (t) Для вычисления скорости распространения пульсовой волны (С) теперь необходимо путь (L), пройденный пульсовой волной (расстояние между приемниками пульса), разделить на время запаздывания пульса (t)

Так, для артерий эластического типа:

для артерий мышечного типа:

Например, расстояние между датчиками пульса равно 40 см, а время запаздывания-- 0,05 с, тогда скорость распространения пульсовой волны:

C=40/0,05=800 cм/с

В норме у здоровых лиц скорость распространения пульсовой волны по эластическим сосудам колеблется в пределах 500--700 см/с, по сосудам мышечного типа-- 500--800 см/с.

Упругое сопротивление и, следовательно, скорость распространения пульсовой волны зависят прежде всего от индивидуальных особенностей, морфологической структуры артерий и от возраста обследуемых.

Многие авторы отмечают, что скорость распространения пульсовой волны с возрастом увеличивается, при этом несколько в большей степени по сосудам эластического типа, чем мышечного. Такое направление возрастных изменений, возможно, зависит от понижения растяжимости стенок сосудов мышечного типа, что в какой-то мере может компенсироваться изменением функционального состояния ее мышечных элементов. Так, Н.Н. Савицкий приводит по данным Людвига (Ludwig, 1936) следующие нормы скорости распространения пульсовой волны в зависимости от возраста.

Возрастные нормы скорости распространения пульсовой волны по сосудам эластического (Сэ) и мышечного (См) типов:

При сопоставлении средних значений Сэ и См, полученных В.П. Никитиным (1959) и К.А. Морозовым (1960), с данными Людвига (Ludwig, 1936) следует отметить, что они довольно близко совпадают.

Особенно повышается скорость распространения пульсовой волны по эластическим сосудам с развитием атеросклероза, о чем с очевидностью свидетельствует ряд анатомически прослеженных случаев (Ludwig, 1936).

Е.Б. Бабским и В.Л. Карпманом предложены формулы для определения индивидуально должных величин скорости распространения пульсовой волны в зависимости или с учетом возраста:

Сэ =0,1*B2 + 4B + 380;

См = 8*B + 425.

В этих уравнениях имеется одно переменное В-- возраст, коэффициенты представляют собой эмпирические постоянные.

Скорость распространения пульсовой волны по эластическим сосудам зависит также от уровня среднего динамического давления. При повышении среднего давления скорость распространения пульсовой волны увеличивается, характеризуя усиление «напряженности» сосуда за счет пассивного растяжения его изнутри высоким артериальным давлением. При изучении упругого состояния крупных сосудов постоянно возникает необходимость определять не только скорости распространения пульсовой волны, но и уровень среднего давления.

Несоответствие между изменениями среднего давления и скоростью распространения пульсовой волны в известной степени связано с изменениями тонического сокращения гладкой мускулатуры артерий. Это несоответствие наблюдается при изучении функционального состояния артерий преимущественно мышечного типа. Тоническое напряжение мышечных элементов в этих сосудах меняется довольно быстро.

Для выявления «активного фактора» тонуса мускулатуры сосудистой стенки В.П. Никитин предложил определение соотношения между скоростью распространения пульсовой волны по сосудам мышечного (См) и скорости по сосудам эластического (Сэ) типов. В норме это соотношение (СМ/С9) составляет от 1,11 до 1,32. При усилении тонуса гладкой мускулатуры оно возрастает до 1,40--2,4; при понижении-- уменьшается до 0,9--0,5. Уменьшение СМ/СЭ наблюдается при атеросклерозе, за счет увеличения скорости распространения пульсовой волны по эластическим артериям. При гипертонической болезни эти величины, в зависимости от стадии, различны.

Таким образом, при увеличении упругого сопротивления скорость передачи пульсовых колебаний нарастает и иногда достигает больших величин. Большая скорость распространения пульсовой волны является безусловным признаком увеличения упругого сопротивления артериальных стенок и уменьшения их растяжимости.

В норме скорость распространения пульсовой волны, рассчитанная таким способом, составляет 450-800 см. с- 1 . Следует помнить, что она в несколько раз выше скорости кровотока, т. е. скорости перемещения порции крови по артериальной системе.

По скорости распространения пульсовой волны можно судить об эластичности артерий и величине их мышечного тонуса. Скорость распространения пульсовой волны увеличивается при атеросклерозе аорты, гипертонической болезни и симптоматических гипертензиях и уменьшается при аортальной недостаточности, открытом артериальном (боталловом) протоке, при снижении мышечного тонуса сосудов, а также при облитерации периферических артерий, их стенозах и уменьшении ударного объема и АД.

Скорость распространения пульсовой волны нарастает при органическом поражении артерий (увеличение Сэ при атеросклерозе, сифилитическом мезоаортите) или при усилении упругого сопротивления артерий за счет повышения тонуса их гладкой мускулатуры, растяжении стенок сосуда высоким артериальным давлением (увеличение См при гипертонической болезни, нейроциркуляторной дистонии гипертензивного типа). При нейроциркуляторной дистонии гипотонического типа уменьшение скорости распространения пульсовой волны по эластическим артериям связано в основном с низким уровнем среднего динамического давления.

На полученной полисфигмограмме по кривой центрального пульса (а. саrotis) определяется также время изгнания (5) -- расстояние от начала подъема пульсовой кривой сонной артерии до начала падения ее главной систолической части.

Н.Н. Савицкий для более правильного определения времени изгнания рекомендует пользоваться следующим приемом (рис. 4). Проводим касательную прямую через пятку инцизуры а. саrotis вверх по катакроте, из точки отрыва ее от катакроты кривой опускаем перпендикуляр. Расстояние от начала подъема пульсовой кривой до этого перпендикуляра и будет временем изгнания.

Рис.4.

Проводим линию АВ, совпадающую с нисходящим коленом катакроты У места отхождененя ее от катакроты проводим линию СД, параллельную нулевой. Из точки пересечения опускаем перпендикуляр на нулевую линию. Время изгнания определяется расстоянием от начала подъема пульсовой кривой до места пересечения перпендикуляра с нулевой линией. Пунктиром показано определение времени изгнания по месту расположения инцизуры.

Рис.6.

Время полной инволюции сердца (длительность сердечного цикла) Т определяется по расстоянию от начала подъема кривой центрального пульса (а. carotis) одного сердечного цикла до начала подъема кривой следующего цикла, т.е. расстояние между восходящими коленами двух пульсовых волн (рис. 6).

Для регистрации пульсовых колебаний применяют оптические сфигмографы , механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов.

Большое распространение получили электросфигмографы , при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Скорость распространения пульсовой волны (СРПВ) . Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение ригидности сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание.

Проводят одновременную запись сфигмограмм , располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле: v=S/T,
где S - длина исследуемого сосуда (в см),
Т - время запаздывания (в мс).

Другой более удобный и распространенный метод исследования заключается в одновременной записи на двух каналах осциллографа ЭКГ и сфигмограммы. По интервалу времени между зубцом R ЭКГ и началом пульсовой волны определяют «3».

При этом измеряют расстояние на участке аорта - пульсирующая точка на периферическом сосуде и ведут расчет СРПВ или же ограничиваются определением «3» в долях секунды, исходя из того, что точное определение длины извилистых сосудов практически невозможно.

Для суждения о гемодинамике большого мозга Э. Б. Голланд (1973) и другие авторы записывают ЭКГ и сфигмограмму, располагая датчики пульса на поверхностной височной, лобной, глазничной артериях. По величине «3» сфигмограммы поверхностной височной артерии определяют состояние сосудов наружной сонной артерии, при сфигмографии глазничной или лобной артерии - сосудов внутренней сонной артерии.

Для выяснения суммарной пульсации позвоночных артерий датчики располагают над остистыми отростками С4, С5, С6, С7 позвонков. На кривых, приводимых в работе Э. Б. Голланд (1973), рисунок волн позвоночной артерии не имеет четких опознавательных точек, и поэтому суждение о величине «3» является в какой-то степени произвольным.

Здесь было бы необходимо записать дифференциальную кривую , которая дает более информативные данные для анализа графических показателей.
Среднее значение величины «3» у здоровых людей , по Э. Б. Голланд (1973), на участке аорта - поверхностная височная артерия равно 105 мс, аорта - лобная ветвь - 118 мс, аорта - позвоночная артерия (С6) - 97 мс.

Коэффициент асимметрии при двусторонней регистрации в норме колеблется от 18 до 21%, показывая как регионарные особенности вазомоторных механизмов, так и наличие морфологических изменений сосудов.

При церебральном атеросклерозе величина 3 уменьшается, индивидуальная вариабельность становится большей, увеличивается асимметрия на различных участках сосудов. Сходные изменения отмечаются в склеротической стадии гипертонической болезни.

При инсульте увеличение показателя «3» более выражено на стороне очага поражения, где снижается тонус сосудов. Следует отметить, что закономерной зависимости величины «3» от уровня артериального давления не отмечается.

Метод определения скорости распространения пульсовой волны позволяет дать объективную и точную характеристику свойств стенок артериальных сосудов. Для этого производится запись сфигмограммы с двух или нескольких участков сосудистой системы с определением времени запаздывания пульса на дистальном отрезке артерий эластического и мышечною типов по отношению к центральному пульсу, для чего надо знать расстояние между двумя исследуемыми точками.

Чаще всего сфигмограммы записывают одновременно с сонной артерии на уровне верхнего края щитовидного хряща, с бедренной артерии на месте выхода ее из-под пупартовой связки и с лучевой артерии.

Отрезок «сонная артерия-бедренная артерия» отражает скорость распространения пульсовой волны но сосудам преимущественно эластического типа (аорта). Отрезок «сонная артерия-лучевая артерия» отражает распространение волны по сосудам мышечного типа. Время запаздывания периферического пульса по отношению к центральному надо высчитывать по расстоянию между началом подъема регистрируемых сфигмограмм. Длина пути «сонная артерия-бедренная артерия» и «сонная артерия-лучевая артерия» измеряется сантиметровой лентой с последующим расчетом истинной длины сосуда по специальной методике.

Для определения скорости распространения пульсовой волны (С) надо путь, пройденный пульсовой волной в см (L), разделить на время запаздывания пульса в секундах (Т):

У здоровых людей скорость распространения пульсовой волны по эластическим сосудам раина 5-7 м/с, по сосудам мышечного типа - 5-8 м/с.

Скорость распространения пульсовой волны зависит от возраста, индивидуальных особенностей сосудистой стенки, от степени ее напряжения и тонуса, от величины артериального давления.

При атеросклерозе в большей степени увеличивается скорость пульсовой волны по эластическим сосудам, чем по сосудам мышечного типа. Гипертоническая болезнь обусловливает увеличение скорости пульсовой волны по обоим типам сосудов, что объясняется повышенным артериальным давлением и повышенным сосудистым тонусом.

Флебография

Флебографня - метод исследования, позволяющий зарегистрировать пульсацию вен в виде кривой, называемой флебограммой. Флебограмму чаще всего записывают с яремных вен, колебания которых отражают работу правого предсердия и правого желудочка.

Флебограмма - сложная кривая, начинающаяся с отлогого подъема, соответствующего концу диастолы желудочков. Ее вершиной является зубец «а», обусловленный систолой правого предсердия, во время которой значительно увеличивается давление в полости правого предсердия, а ток крови из яремных вен замедляется, вены набухают.


При сокращении желудочков на флебограмме появляется резко отрицательная волна - волна падения, которая начинается после зубца «а» и заканчивается зубцом «с», после чего возникает резкая волна падения - систолический коллапс («х»). Он обусловлен расширением полости правого предсердия (вслед за его систолой) и понижением внутригрудного давления вследствие систолы левого желудочка. Понижение давления в грудной полости способствует усиленному оттоку крови из яремных вен в правое предсердие.

Зубец «с», находящийся между зубцами «а» и «v», связывают с записью пульса сонной и подключичной артерий (передача пульсации с данных сосудов), а также с некоторым выпячиванием трехстворчатого клапана в полость правого предсердия в фазу замкнутых клапанов сердца. В связи с этим в правом предсердии происходит кратковременный подъем давления и замедляется кровоток в яремных венах.

За систолическим коллапсом «х» следует зубец «v» - диастолическая волна. Он соответствует наполнению яремных вен и правого предсердия в период его диастолы при закрытом трехстворчатом клапане. Таким образом, зубец «v» отображает вторую половину систолы правого желудочка сердца. Открытие трехстворчатого клапана и отток крови из правого предсердия в правый желудочек сопровождаются повторным снижением кривой «у» - диастолическим коллапсом (спадением).

При недостаточности трехстворчатого клапана, когда правый желудочек во время систолы выбрасывает кровь не только в легочную артерию, но и обратно в правое предсердие, появляется положительный венный пульс из-за повышения давления в правом предсердии, что препятствует оттоку крови из яремных вен. На флебограмме значительно уменьшается высота зубца «а». По мере увеличения застоя и ослабления систолы правого предсердия зубец «а» сглаживается.

Зубец «а» также становится ниже и исчезает при всех застойных явлениях в правом предсердии (гипертония малого круга кровообращения, стеноз легочной артерии). В этих случаях, как и при недостаточности трехстворчатого клапана, колебания венного пульса зависят только от фаз работы правого желудочка, поэтому регистрируется высокий зубец «v».

При большом застое крови в правом предсердии на флебограмме исчезает коллапс «х» (спадение).

Застой крови в правом желудочке и его недостаточность сопровождаются сглаживанием зубца «v» и коллапса «у».

Недостаточность аортальных клапанов, гипертония, недостаточность трехстворчатого клапана, анемия сопровождаются увеличением зубца «с». Недостаточность левого желудочка сердца, наоборот, дает снижение зубца «с» в результате малого систолического объема крови, выбрасываемого в аорту.

Измерение скорости кровотока

Принцип метода заключается в определении периода, в течение которого биологически активное вещество, введенное в один из участков системы кровообращения, регистрируется в другом.

Проба с сульфатом магния. После введения в локтевую вену 10 мл 10% сульфата магния регистрируется момент появления ощущения тепла. У здоровых людей ощущение тепла во рту возникает через 7-18 секунд, и цальцал рук - через 20-24 секунды, в подошвах стоп - через 3U-40 секунд.

Проба с хлоридом кальция. В локтевую вену вводится 4-5 мл 10% раствора хлорида кальцин, после чего отмечается момент появления тепла в ней, во рту, в голове. У здоровых людей ощущение тепла в лице возникает через 9-16 секунд, в руках - через 14-27 секунд, в ногах - через 17 - 36 секунд.

При сердечной недостаточности время кровотока увеличивается пропорционально Степени недостаточности. При анемии, тиреотоксикозе, лихорадке кровоток ускоряется. При тяжелых формах инфаркта миокарда происходит замедление тока крови в связи с ослаблением сократительной функции миокарда. Значигельное уменьшение скорости кровотока наблюдается у больных с врожденными пороками сердца (часть введенного вещества не попадает в легкие, а посгупает из отделов правого предсердия или neiочной артерии через шунт непосредственно в отделы левого сердца или в аорту).