Глава IX. Физиология эндокринной системы. Основные механизмы регуляции активности эндокринных желез - реферат Взаимодействие желез внутренней секреции

Основной принцип гомеостаза в эндокринной системе выражается в сохранении равновесия между напряжением секреторной активности данной железы внутренней секреции и концентрацией ее гормона (гормонов), находящегося в циркуляции . Так, при повышении потребности в определенном гормоне периферических тканей сразу же усиливается выделение его из клеток и соответственно активизируется его синтез.

Эндокринные органы принято делить на две группы: гипоталамо-гипофизарный комплекс, который считается центром эндокринной системы, и периферические железы, к которым относятся все остальные эндокринные железы. Подобное деление основывается на том, что в гипоталамусе и в передней доле гипофиза вырабатываются нейрогормоны и тропные (или кринотропные) гормоны, которые активируют секрецию ряда периферических эндокринных желез.

Удаление гипофиза приводит к резкому снижению функции этих желез и даже к атрофии их паренхимы. С другой стороны, гормоны периферических (зависимых) эндокринных желез оказывают угнетающее (ингибирующее) действие на продукцию и секрецию гонадотропных гормонов. Таким образом, взаимоотношения между гипоталамо-гипофизарной системой и периферическими эндокринными железами являются реципрокными и имеют характер обратных отрицательных связей или «плюс - минус взаимодействия» по М. М. Завадовскому.

Так, если периферическая эндокринная железа секретирует и выделяет чрезмерное количество гормона, то в передней доле гипофиза уменьшаются продукция и секреция соответствующего тропного гормона. Это приводит к снижению возбуждения периферической эндокринной железы и восстановлению эндокринного равновесия организма. Если, наоборот, происходит ослабление продукции и секреции гормона (гормонов) периферической эндокринной железы, то взаимоотношения проявляются в обратном направлении.

Важно подчеркнуть, что такие же взаимопротивоположные отношения выявляются между аденогипофизом и . Тропные гормоны аденогипофиза способны оказывать угнетающее влияние на секрецию рилизинг-гормонов. В течение ряда лет подобные взаимоотношения между эндокринными железами считали универсальными для всех желез. Однако дальнейшие исследования показали ошибочность подобного представления.

Во-первых, было установлено , что не все эндокринные железы следует относить к группе «зависимых» от передней доли гипофиза; к ним относятся лишь щитовидная железа, гонады и глюкокортикоидная функция надпочечников; другие эндокринные железы следует считать «независимыми» от передней доли гипофиза, в известной степени автономными. Однако последнее определение является условным, так как эти железы (как и другие), безусловно, зависимы от организма в целом и в первую очередь, от прямых нервных импульсов.

Во-вторых, принцип «плюс - минус взаимодействия » не является универсальным. Имеются убедительные данные о возможности прямого воздействия (положительная обратная связь) функции одной железы на другую. Так, эстрогены обладают способностью вызывать выделение ЛГ . Это воздействие может быть также результатом изменения эффектов, вызываемых в организме гормонами желез, независимых от гипофиза. Например, кора надпочечников может оказывать влияние на поджелудочную железу благодаря тому, что ее гормоны участвуют в контролировании углеводного обмена в организме.

Теория «плюс - минус взаимодействия » не является всеобщей еще и потому, что она искусственно изолирует эндокринные железы от целостного организма; между тем всякая реакция вызывает сдвиги и в других функциях и системах организма.

1. Физиологическая роль желез внутренней секреции. Характеристика действия гормонов.

Железы внутренней секреции — это специализированные органы, имеющие железистое строение и выделяющие свой секрет в кровь. У них отсутствуют выводные протоки. К таким железам относятся: гипофиз, щитовидная железа, околощитовидная железа, надпочечники, яичники, яички, зобная железа (тимус), поджелудочная железа, эпифиз, APUD - система(система захвата предшественников аминов и их декарбоксилирование), а также сердце - вырабатывает предсердный натрий-диуретический фактор, почки - вырабатывают эритропоэтин, ренин, кальцитриол, печень - вырабатывает соматомедин, кожа - вырабатывает кальциферол (витамин Д 3), ЖКТ - вырабатывает гастрин, секретин, холицистокинин, ВИП(вазоинтестинальный пептид), ЖИП(желудочноингибирующий пептид).

Гормоны выполняют следующие функции:

Участвуют в поддержание гомеостаза внутренней среды, контролируют уровень содержания глюкозы, объем внеклеточной жидкости, артериальное давление, баланс электролитов.

Обеспечивают физическое, половое, умственное развитие. А также отвечают за репродуктивный цикл (менструальный цикл, овуляция, сперматогенез, беременность, лактация).

Контролируют образование и использование питательных веществ и энергетически ресурсов в организме

Гормоны обеспечивают процессы адаптации физиологических систем к действию раздражителей внешней и внутренней среды и участвуют в поведенческих реакциях(потребность в воде, пище, половое поведение)

Являются посредниками в регуляции функций.

Железы внутренней секреции создают одну из двух систем регуляции функций. Гормоны отличаются от медиаторов, так как изменяют химические реакции в клетках на которые они действуют. Медиаторы вызывают электрическую реакцию.

Термин «гормон» происходит от греческого слова HORMAE - «возбуждаю, побуждаю».

Классификация гормонов.

По химическому строению :

1. Стероидные гормоны - производные холестерина (гормоны коры надпочечников, половых желез).

2. Полипептидные и белковые гормоны(передней доли гипофиза, инсулин).

3. Производные аминокислоты тирозина(адреналин, норадреналин, тироксин, трийодтиронин).

По функциональному значению:

1. Тропные гормоны (активируют деятельность других желез внутренней секреции; это гормоны передней доли гипофиза)

2. Эффекторные гормоны (действуют непосредственно на процессы обмена в клетках-мишенях)

3. Нейрогормоны (выделяются в гипоталамусе - либерины (активирующие) и статины (тормозящие)).

Свойства гормонов.

Дистантный характер действия (напр., гормоны гипофиза влияют на надпочечники),

Строгая специфичность гормонов(отсутствие гормонов приводит к выпадению определённой функции, и предупредить этот процесс можно только введением необходимого гормона),

Обладают высокой биологической активностью (образуются в малых концентрациях в ЖВС.),

Гормоны не обладают рядовой специфичностью,

Имеют короткий период полураспада (быстро разрушаются тканями, но имеют длительный гормональный эффект).

2. Механизмы гормональной регуляции физиологических функций. Ее особенности по сравнению с нервной регуляцией. Системы прямой и обратной (положительной и отрицательной) связей. Методы изучения эндокринной системы.

Внутренней секрецией (инкрецией) называется выделение специализированных биологически активных веществ - гормонов - во внутреннюю среду организма (кровь или лимфу). Термин "гормон" был впервые применен в отношении секретина (гормона 12-п.кишки) Старлингом и Бейлисом в 1902 году. Гормоны отличаются от других биологически активных веществ, например, метаболитов и медиаторов, тем, что они, во-первых, образуются высокоспециализированными инкреторными клетками, во-вторых, тем, что оказывают влияние через внутреннюю среду на отдаленные от железы ткани, т.е. обладают дистантным действием.

Наиболее древней формой регуляции является гуморально-метаболическая (диффузия активных веществ к соседним клеткам). Она в различной форме встречается у всех животных, особенно отчетливо проявляется в эмбриональном периоде. Нервная система по мере своего развития подчинила себе гуморально-метаболическую регуляцию.

Настоящие железы внутренней секреции появились поздно, но на ранних этапах эволюции есть нейросекреция . Нейросекреты - это не медиаторы. Медиаторы являются более простыми соединениями, работают локально в области синапса и быстро разрушаются, а нейросекреты - белковые вещества, расщепляются более медленно и работают на большом расстоянии.

С появлением кровеносной системы нейросекреты стали выделяться в ее полость. Затем возникли специальные образования для накопления и изменения этих секретов (у кольчатых), затем их вид усложнялся и эпителиальные клетки сами стали выделять свои секреты в кровь.

Эндокринные органы имеют самое разное происхождение. Часть из них возникли из органов чувств (эпифиз - из третьего глаза).Другие эндокринные железы образовалась из желез внешней секреции (щитовидная). Бранхиогенные железы образовались из остатков провизорных органов (тимус, паращитовидные железы). Стероидные железы произошли из мезодермы, из стенок целома. Половые гормоны выделяются стенками желез, содержащих половые клетки. таким образом, разные эндокринные органы имеют разное происхождение, но все они возникли как дополнительный способ регуляции. Есть единая нейрогуморальная регуляция, в которой ведущую роль играет нервная система.

Зачем образовалась такая добавка к нервной регуляции? Нервная связь - быстрая, точная, адресована локально. Гормоны - действуют шире, медленнее, дольше. Они обеспечивают длительную реакцию без участия нервной системы, без постоянной импульсации, что неэкономно. Гормоны имеют длительное последействие. Когда требуется быстрая реакция - работает нервная система. Когда требуется более медленная и стойкая реакция на медленные и длительные изменения среды - работают гормоны (весна, осень и т.п.), обеспечивая все адаптивные перестройки в организме, вплоть до полового поведения. У насекомых гормоны полностью обеспечивают весь метаморфоз.

Нервная система действует на железы по следующим путям:

1. Через нейросекреторные волокна вегетативной нервной системы;

2.Через нейросекреты - образование т.н. relising или inhibiting - факторов;

3. Нервная система может менять чувствительность тканей к гормонам.

Гормоны тоже влияют на нервную систему. Есть рецепторы реагирующие на АКТГ, на эстрогены (в матке), гормоны влияют на ВНД (половые), на активность ретикулярной формации и гипоталамуса и т.д. Гормоны оказывают влияние на поведение, мотивации и рефлексы, участвуют в стресс реакции.

Есть рефлексы, в которые в качестве звена включена гормональная часть. Например: холод -- рецептор -- ЦНС -- гипоталамус -- релизинг-фактор -- секреция тиреотропного гормона -- тироксин -- увеличение клеточного метаболизма -- повышение температуры тела.

Методы изучения желез внутренней секреции.

1.Удаление железы - экстирпация.

2. Трансплантация железы, введение вытяжки.

3. Химическая блокада функций железы.

4. Определение гормонов в жидких средах.

5. Метод радиоактивных изотопов.

3. Механизмы взаимодействия гормонов с клетками. Понятие о клетках-мишенях. Типы рецепции гормонов клетками мишенями. Понятие о мембранных и цитозольных рецепторах.

Пептидные (белковые) гормоны вырабатываются в форме прогормонов(их активация происходит при гидролитическом расщеплении), водорастворимые гормоны накапливаются в клетках в форме гранул, жирорастворимые (стероиды) - выделяются по мере образования.

Для гормонов в крови существуют белки-переносчики - это транспортные белки, способные связывать гормоны. При этом не происходит никаких химических реакций. Часть гормонов может переносится в растворенном виде. Гормоны доставляются ко всем тканям, но реагируют на действие гормонов только лишь клетки, обладающие рецепторами на действие гормона. Клетки, которые носят рецепторы называются клетки-мишени. Клетки-мишени подразделяются на: гормонзависимые и

гормончувствительные.

Различия между двумя этими группами состоит в том, что гормонзависимые клетки можут развиваться только в присутствии данного гормона. (Так, напр., половые клетки могут развиваться только при наличии половых гормонов), а гормончувствительные клетки могут развиваться без гормона, однако они способны воспринимать действие этих гормонов. (Так, напр., клетки нервной системы развиваются без воздействия половых гормонов, но воспринимают их действие).

Каждая клетка-мишень обладает наличием специфического рецептора к действию гормона, и часть рецепторов находится в мембране. Такой рецептор обладает стереоспецифичностью. У других клеток рецепторы расположены в цитоплазме - это цитозольные рецепторы, которые реагируют вместе с гормоном, проникающим внутрь клетки.

Следовательно, рецепторы делятся на мембранные и цитозольные. Для того, чтобы клетка отреагировала на действие гормона необходимо образование вторичных посредников к действию гормонов. Это характерно для гормонов с мембранным типом рецепции.

4. Системы вторичных посредников действия пептидных гормонов и катехоламинов.

Системами вторичных посредников действия гормонов являются:

1. Аденилатциклаза и циклический АМФ,

2. Гуанилатциклаза и циклический ГМФ,

3. Фосфолипаза С:

Диацилглицерол(ДАГ),

Инозитол-три-фсфат (ИФ3),

4. Ионизированный Ca - кальмодулин

Гетеротромный белок G-белок.

Этот белок образует в мембране петли и имеет 7 сегментов. Их сравнивают с серпантиновыми лентами. Имеет выступающую (наружную) и внутреннюю части. К наружной части присоединяется гормон,а на внутренней поверхности имеются 3 субъединицы - альфа, бета и гамма. В неактивном состоянии этот белок имеет гуанозиндифосфат. Но при активации гуанозиндифосфат меняется на гуанозинтрифосфат. Изменение активности G-белка приводит либо к изменению ионной проницаемости мембраны, либо в клетке активируется ферментная система (аденилатциклаза, гуанилатциклаза, фосфолипаза С). Это вызывает образование специфических белков, активируется протеинкиназа (необходима для процессов фосфолилирования).

G-белки могут быть активирующими (Gs) и ингибирующими, или по-другому, тормозящие(Gi).

Разрушение циклического АМФ происходит под действием фермента фосфодиэстеразы. Циклический ГМФ оказывает противоположное действие. При активации фосфолипазы C образуются вещества, которые способствуют накоплению внутри клетки ионизированного кальция. Кальций активирует протеинциназы, способствует мышечному сокращению. Диацилглицерол способствует превращению фосфолипидов мембраны в арахидоновую кислоту, которая является источником образования простагландинов и лейкотриенов.

Гормонрецепторный комплекс проникает в ядро и действует на ДНК, что меняет процессы транскрипции и образуется мРНК, которая выходит из ядра и идет к рибосомам.

Следовательно, гормоны могут оказывать:

1. Кинетическое или пусковое действие,

2. Метаболическое действие,

3.Морфогенетическое действие (дифференцировка тканей, рост, метаморфоз),

4. Корригирующие действие(исправляющие, приспосабливающее).

Механизмы действия гормонов в клетках:

Изменение проницаемости клеточных мембран,

Активация или угнетение ферментных систем,

Влияние на генетическую информацию.

Регуляция строится на тесном взаимодействии эндокринной и нервной системы. Процессы возбуждения в нервной системе могут активировать, либо тормозить деятельность эндокринных желез. (Рассмотрим, напр., процесс овуляции у кролика. Овуляция у кролика наступает только после акта спаривания, который стимулирует выделение гонадотропного гормона гипофиза. Последний вызывает процесс овуляции).

После перенесения психических травм может возникать тиреотоксикоз. Нервная система контролирует выделение гормонов гипофиза(нейрогормона), а гипофиз влияет на активность других желез.

Имеют место механизмы обратной связи. Накопление в организме гормона приводит к торможению выработки этого гормона соответствующей железой, а недостаток будет являться механизмом стимуляции образования гормона.

Существует механизм саморегуляции. (Напр., содержание глюкозы в крови определяет выработку инсулина и (или) глюкагона; если уровень сахара повышается вырабатывается инсулин, а если понижается — глюкагон. Недостаток Na стимулирует выработку альдостерона).

6. Аденогипофиз, связь его с гипоталамусом. Характер действия гормонов передней доли гипофиза. Гипо- и гиперсекреция гормонов аденогипофиза. Возрастные изменения образования гормонов передней доли.

Клетки аденогипофиза (их строение и состав смотрите в курсе гистологии) продуцируют следующие гормоны: соматотропин (гормон роста), пролактин, тиротропин (тиреотропный гормон), фолликулостимулирующий гормон, лютеинизирующий гормон, кортикотропин (АКТГ), меланотропин, бета-эндорфин, диабетогенный пептид, экзофтальмический фактор и гормон роста яичников. Рассмотрим более подробно эффекты некоторых из них.

Кортикотропин . (адренокортикотропный гормон - АКТГ) секретируется аденогипофизом непрерывно пульсирующими вспышками, имеющими четкую суточную ритмичность. Секреция кортикотропина регулируется прямыми и обратными связями. Прямая связь представлена пептидом гипоталамуса - кортиколиберином, усиливающим синтез и секрецию кортикотропина. Обратные связи запускаются содержанием в крови кортизола (гормон коры надпочечников) и за- мыкаются как на уровне гипоталамуса, так и аденогипофиза, причем прирост концентрации кортизола тормозит секрецию кортиколиберина и кортикотропина.

Кортикотропин обладает двумя типами действия - надпочечниковым и вненадпочечниковым. Надпочечниковое действие является основным и заключается в стимуляции секреции глюкокортикоидов, в существенно меньшей степени - минералокортикоидов и андрогенов. Гормон усиливает синтез гормонов в коре надпочечников - стероидогенез и синтез белка, приводя к гипертрофии и гиперплазии коры надпочечников. Вненадпочечниковое действие заключается в липолизе жировой ткани, повышении секреции инсулина, гипогликемии, повышенном отложении меланина с гиперпигментацией.

Избыток кортикотропина сопровождается развитием гиперкортицизма с преимущественным увеличением секреции кортизола и носит название "болезнь Иценко-Кушинга". Основные проявления типичны для избытка глюкокортикоидов: ожирение и другие метаболические сдвиги, падение эффективности механизмов иммунитета, развитие артериальной гипертензии и возможности возникновения диабета. Дефицит кортикотропина вызывает недостаточность глюкокортикоидной функции надпочечников с выраженными метаболическими сдвигами, а также падение устойчивости организма к неблагоприятным условиям среды.

Соматотропин . . Соматотропный гормон обладает широким спектром метаболических эффектов, обеспечивающих морфогенетическое действие. На белковый обмен гормон влияет, усиливая анаболические процессы. Он стимулирует поступление аминокислот в клетки, синтез белка за счет ускорения трансляции и активации синтеза РНК, увеличивает деление клеток и рост тканей, подавляет протеолитические ферменты. Стимулирует включение сульфата в хрящи, тимидина в ДНК, пролина в коллаген, уридина в РНК. Гормон вызывает положительный азотистый баланс. Стимулирует рост эпифизарных хрящей и их замену костной тканью, активируя щелочную фосфатазу.

Действие на углеводный обмен двояко. С одной стороны, соматотропин повышает продукцию инсулина как из-за прямого эффекта на бета клетки, так и из-за вызываемой гормоном гипергликемии, обусловленной распадом гликогена в печени и мышцах. Соматотропин активирует инсулиназу печени - фермент, разрушающий инсулин. С другой стороны, соматотропин оказывает контраинсулярное действие, угнетая утилизацию глюкозы в тканях. Указанное сочетание эффектов при наличии предрасположенности в условиях избыточной секреции может вызывать сахарный диабет, по происхождению называемый гипофизарным.

Действие на жировой обмен заключается в стимуляции липолиза жировой ткани и липолитического эффекта катехоламинов, повышении уровня свободных жирных кислот в крови; из-за избыточного поступления их в печень и окисления повышается образование кетоновых тел. Эти влияния соматотропина также относят к числу диабетогенных.

Если избыток гормона возникает в раннем возрасте, формируется гигантизм с пропорциональным развитием конечностей и туловища. Избыток гормона в юношеском и зрелом возрасте вызывает усиление роста эпифизарных участков костей скелета, зон с незавершенным окостенением, что получило название акромегалия. . Увеличиваются в размерах и внутренние органы - спланхомегалия.

При врожденном дефиците гормона формируется карликовость, получившая название "гипофизарный нанизм". Таких людей после выхода в свет романа Дж. Свифта о Гулливере называют в разговорной речи лилипутами. В других случаях приобретенный дефицит гормона вызывает не резко выраженное отставание в росте.

Пролактин . Секреция пролактина регулируется гипоталамическими пептидами - ингибитором пролактиностатином и стимулятором пролактолиберином. Продукция гипоталамических нейропептидов находится под дофаминэргическим контролем. На величину секреции пролактина влияет уровень в крови эстрогенов, глюкокортикоидов

и тиреоидных гормонов.

Пролактин специфически стимулирует развитие молочных желез и лактацию, но не его выделение, которое стимулируется окситоцином.

Помимо молочных желез, пролактин оказывает влияние на половые железы, способствуя поддержанию секреторной активности желтого тела и образованию прогестерона. Пролактин является регулятором водно-солевого обмена, уменьшая экскрецию воды и электролитов, потенцирует эффекты вазопрессина и альдостерона, стимулирует рост внутренних органов, эритропоэз, способствует проявлению инстинкта материнства. Помимо усиления синтеза белка, увеличивает образование жира из углеводов, способствуя послеродовому ожирению.

Меланотропин . . Образуется в клетках промежуточной доли гипофиза. Продукция меланотропина регулируется меланолиберином гипоталамуса. Основной эффект гормона заключается в действии на меланоциты кожи, где он вызывает депрессию пигмента в отростках, увеличение свободного пигмента в эпидермисе, окружающем меланоциты, повышение синтеза меланина. Увеличивает пигментацию кожи и волос.

7. Нейрогипофиз, связь его с гипоталамусом. Эффекты гормонов задней доли гипофиза (оксигоцина, АДГ). Роль АДГ в регуляции объема жидкости в организме. Несахарное мочеизнурение.

Вазопрессин . . Образуется в клетках супраоптического и паравентрикулярного ядер гипоталамуса и накапливается в нейрогипофизе. Основные стимулы, регулирующие синтез вазопрессина в гипоталамусе и его секрецию в кровь гипофизом в общем могут быть названы осмотическими. Они представлены: а) повышением осмотического давления плазмы крови и стимуляцией осморецепторов сосудов и нейронов-осморецепторов гипоталамуса; б) повышением в крови содержания натрия и стимуляцией гипоталамических нейронов, выполняющих роль рецепторов натрия; в) уменьшением центрального объема циркулирующей крови и артериального давления, воспринимаемыми волюморецепторами сердца и механорецепторами сосудов;

г) эмоционально-болевым стрессом и физической нагрузкой; д) активацией ренин- ангиотензиновой системы и стимулирующим нейросекреторные нейроны влиянием ангиотензина.

Эффекты вазопрессина реализуются за счет связывания гормона в тканях с двумя типами рецепторов. Связывание с рецепторами Y1-типа, преимущественно локализованными в стенке кровеносных сосудов, через вторичные посредники инозитолтрифосфат и кальций вызывает сосудистый спазм, что способствует названию гормона - "вазопрессин". Связывание с рецепторами Y2-типа в дистальных отделах нефрона через вторичный посредник ц-АМФ обеспечивает повышение проницаемости собирательных трубочек нефрона для воды, ее реабсорбцию и концентрацию мочи, что соответствует второму названию вазопрессина - "антидиуретический гормон, АДГ".

Кроме действия на почку и кровеносные сосуды, вазопрессин является одним из важных мозговых нейропептидов, участвующим в формировании жажды и питьевого поведения, механизмах памяти, регуляции секреции аденогипофизарных гормонов.

Недостаток или даже полное отсутствие секреции вазопрессина проявляется в виде резкого усиления диуреза с выделением большого количества гипотонической мочи. Этот синдром получил называние "несахарный диабет ", он бывает врожденным или приобретенным. Синдром избытка вазопрессина (синдром Пархона) проявляется

в чрезмерной задержке жидкости в организме.

Окситоцин . Синтез окситоцина в паравентрикулярных ядрах гипоталамуса и выделение его в кровь из нейрогипофиза стимулируется рефлекторным путем при раздражении рецепторов растяжения шейки матки и рецепторов молочных желез. Повышают секрецию окситоцина эстрогены.

Окситоцин вызывает следующие эффекты: а) стимулирует сокращение гладкой мускулатуры матки, способствуя родам; б) вызывает сокращение гладкомышечных клеток выводных протоков лактирующей молочной железы, обеспечивая выброс молока; в) оказывает при определенных условиях диуретическое и натриуретическое действие; г) участвует в организации питьевого и пищевого поведения; д) является дополнительным фактором регуляции секреции аденогипофизарных гормонов.

8. Кора надпочечников. Гормоны коры надпочечников и их функция. Регуляция секреции кортикостероидов. Гипо- и гиперфункция коры надпочечников.

Минералокортикоиды секретируются в клубочковой зоне коры надпочечников. Основным минералокортикоидом является альдостерон .. Этот гормон участвует в регуляции обмена солей и воды между внутренней и внешней средой, преимущественно воздействуя на канальцевый аппарат почек, а также потовые и слюнные железы, слизистую оболочку кишечника. Действуя на клеточные мембраны сосудистой сети и тканей, гормон обеспечивает также регуляцию обмена натрия, калия и воды между внеклеточной и внутриклеточной средой.

Основные эффекты альдостерона в почках - усиление реабсорбции натрия в дистальных отделах канальцев с его задержкой в организме и повышение экскреции калия с мочой с падением содержания катиона в организме. Под влиянием альдостерона происходит задержка в организме хлоридов, воды, усиленное выведение водородных ионов, аммония, кальция и магния. Увеличивается объем циркулирующей крови, формируется сдвиг кислотно-щелочного равновесия в сторону алкалоза. Альдостерон может оказывать глюкокортикоидное действие, однако оно в 3 раза слабее, чем у кортизола и в физиологических условиях не проявляется.

Минералокортикоиды являются жизненно важными гормонами, так как гибель организма после удаления надпочечников можно предотвратить, вводя гормоны извне. Минералокортикоиды усиливают воспаление, почему их называют иногда противовоспалительными гормонами.

Основным регулятором образования и секреции альдостерона является ангиотензин-II, что позволило считать альдостерон частью ренин-ангиотензин- альдостероновой системы (РААС), обеспечивающей регуляцию водно-солевого и гемодинамического гомеостаза. Звено обратной связи регуляции секреции альдостерона реализуется при изменении уровня калия и натрия в крови, а такжеобъема крови и внеклеточной жидкости, содержания натрия в моче дистальных канальцев.

Избыточная продукция альдостерона - альдостеронизм - может быть первичный и вторичный. При первичном альдостеронизме надпочечник из-за гиперплазии или опухоли клубочковой зоны (синдром Кона) продуцирует повышенные количества гормона, что ведет к задержке в организме натрия, воды, отекам и артериальной гипертензии, потере калия и водородных ионов через почки, алкалозу и сдвигам возбудимости миокарда и нервной системы. Вторичный альдостеронизм есть результат избыточного образования ангиотензина-II и повышенной стимуляции надпочечников.

Недостаток альдостерона при повреждении надпочечника патологическим процессом редко бывает изолированным, чаще сочетается с дефицитом и других гормонов коркового вещества. Ведущие нарушения отмечаются со стороны сердечно- сосудистой и нервной систем, что связано с угнетением возбудимости,

уменьшением ОЦК и сдвигами электролитного баланса.

Глюкокортикоиды (кортизол и кортикостерон ) оказывают влияние на все виды обмена.

На белковый обмен гормоны оказывают в основном катаболический и антианаболический эффекты, вызывают отрицательный азотистый баланс. распад белка происходит в мышечной, соединительной костной ткани, падет уровень альбумина в крови. Снижается проницаемость клеточных мембран для аминокислот.

Эффекты кортизола на жировой обмен обусловлены сочетанием прямых и опосредованных влияний. Синтез жира из углеводов самим кортизолом подавляется, но благодаря вызываемой глюкокортикоидами гипергликемии и повышению секреции инсулина происходит усиление образования жира. Жир откладывается в

верхней части туловища, на шее и на лице.

Эффекты на углеводный обмен в общем противоположны инсулину, почему глюкокортикоиды и называют контраинсулярными гормонами. Под влиянием кортизола возникает гипергликемия из-за: 1) усиленного образования углеводов из аминокислот путем глюконеогенеза; 2) подавления утилизации глюкозы тканями. Следствием гипергликемии являются глюкозурия и стимуляция секреции инсулина. Снижение чувствительности клеток к инсулину в совокупности с контраинсулярным и катаболическим эффектами может вести к развитию стероидного сахарного диабета.

Системные эффекты кортизола проявляются в виде снижения количества в крови лимфоцитов, эозинофилов и базофилов, увеличении нейтрофилов и эритроцитов, повышении сенсорной чувствительности и возбудимости нервной системы, увеличении чувствительности адренорецепторов к действию катехоламинов, поддержании оптимального функционального состояния и регуляции сердечно- сосудистой системы. Глюкокортикоиды повышают устойчивость организма к действию чрезмерных раздражителей и подавляют воспаление и аллергические реакции, почему из называют адаптивными и противовоспалительными гормонами.

Избыток глюкокортикоидов, не связанный с повышенной секрецией кортикотропина, получил название синдрома Иценко-Кушинга . Его основные проявления близки болезни Иценко-Кушинга, однако, благодаря обратной связи, секреция кортикотропина и его уровень в крови существенно снижены. Мышечная слабость, склонность к сахарному диабету, гипертензия и нарушения половой сферы, лимфопения, пептические язвы желудка, изменения психики - вот далеко не полный перечень симптомов гиперкортицизма.

Дефицит глюкокортикоидов вызывает гипогликемию, снижение сопротивляемости организма, нейтропению, эозинофилию и лимфоцитоз, нарушение адренореактив-ности и деятельности сердца, гипотензию.

9. Симпато-адреналовая система, ее функциональная организация. Катехоламины как медиаторы и гормоны. Участие в стрессе. Нервная регуляция хромаффинной ткани надпочечников.

Катехоламины - гормоны мозгового вещества надпочечников, представлены адреналином и норадреналином , которые секретируются в отношении 6:1.

Основными метаболическими эффектами. адреналина являются: усиление расщепления гликогена в печени и мышцах (гликогенолиз) за счет активации фосфорилазы, подавление синтеза гликогена, подавление потребления глюкозы тканями, гипергликемия, усиление потребления кислорода тканями и окислительных процессов в них, активация распада и мобилизация жира и его окисление.

Функциональные эффекты катехоламинов. зависят от преобладания в тканях одного из типов адренорецепторов (альфа или бета). Для адреналина основные функциональные эффекты проявляются в виде: учащения и усиления сердечных сокращений, улучшении проведения возбуждения в сердце, сужения сосудов кожи и органов брюшной полости; повышения теплообразования в тканях, ослабления сокращений желудка и кишечника, расслаблении бронхиальной мускулатуры, расширении зрачков, уменьшении клубочковой фильтрации и образования мочи, стимуляции секреции ренина почкой. Таким образом, адреналин вызывает улучшение взаимодействия организма с внешней средой, повышает работоспособность в чрезвычайных условиях. Адреналин является гормоном срочной (аварийной) адаптации.

Выделение катехоламинов регулируется нервной системой через симпатические волокна, проходящие в составе чревного нерва. Нервные центры, регулирующие секреторную функцию хромаффинной ткани, расположены в гипоталамусе.

10. Эндокринная функция поджелудочной железы. Механизмы действия ее гормонов на углеводный, жировой, белковый обмен. Регуляция содержания глюкозы в печени, мышечной ткани, нервных клетках. Сахарный диабет. Гиперинсулинемия.

Сахаро-регулирующими гормонами, т.е. влияющими на содержание сахара в крови и углеводный обмен, являются многие гормоны желез внутренней секреции. Но наиболее выраженные и мощные эффекты оказывают гормоны островков Лангерганса поджелудочной железы - инсулин и глюкагон . Первый из них может быть назван гипогликемическим, так как снижает уровень сахара в крови, а второй - гипергликемическим.

Инсулин оказывает мощное влияние на все виды обмена веществ. Действие его на углеводный обмен в основном проявляется следующими эффектами: он повышает проницаемость клеточных мембран в мышцах и жировой ткани для глюкозы, активирует и увеличивает содержание ферментов в клетках, усиливает утилизацию глюкозы клетками, активирует процессы фосфорилирования, подавляет распад и стимулирует синтеза гликогена, угнетает глюконеогенез, активирует гликолиз.

Основные эффекты инсулина на белковый обмен: повышение проницаемости мембран для аминокислот, усиление синтеза необходимых для образования белков

нуклеиновых кислот, прежде всего иРНК, активация в печени синтеза аминокислот, активация синтеза и подавление распада белков.

Основные эффекты инсулина на жировой обмен: стимуляция синтеза свободных жирных кислот из глюкозы, стимуляция синтеза триглицеридов, подавление распада жира, активация окисления кетоновых тел в печени.

Глюкагон вызывает следующие основные эффекты: активирует гликогенолиз в печени и мышцах, вызывает гипергликемию, активирует глюконеогенез, липолиз и подавление синтеза жира, повышает синтез кетоновых тел в печени, стимулирует катаболизм белков в печени, увеличивает синтез мочевины.

Основным регулятором секреции инсулина является D-глюкоза притекающей крови, активирующая в бета клетках специфический пул цАМФ и через этот посредник приводящая к стимуляции выброса инсулина из секреторных гранул. Усиливает ответ бета клеток на действие глюкозы гормон кишечника- желудочный ингибиторный пептид (ЖИП). Через неспецифический, независимый от глюкозы пул цАМФ стимулируют секрецию инсулина и ионы СА++. В регуляции секреции инсулина определенную роль играет и нервная система, в частности, блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и катехоламины через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют секрецию глюкагона.

Специфическим ингибитором продукции инсулина является гормон дельта- клеток островков Лангерганса - соматостатин . Этот гормон образуется также и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета клеток на глюкозный стимул.

Секреция глюкагона стимулируется при снижении уровня глюкозы в крови, под влиянием гормонов ЖКТ (ЖИП, гастрин, секретин, панкреозимин- холецистокинин) и при уменьшении содержания ионов СА++, а угнетается - инсулином, соматостатином, глюкозой и кальцием.

Абсолютный или относительный по отношению к глюкагону недостаток инсулина проявляется в виде сахарного диабета.. При этом заболевании происходят глубокие расстройства обмена веществ и, если инсулиновую активность не восстанавливать искусственно извне, может наступить гибель. Для сахарного диабета характерны гипогликемия, глюкозурия, полиурия, жажда, постоянное чувство голода, кетонемия, ацидоз, слабость иммунитета, недостаточность кровообращения и многие другие нарушения. Крайне тяжелым проявлением сахарного диабета является диабетическая кома.

11. Щитовидная железа, физиологическая роль ее гормонов. Гипо- и гиперфункция.

Гормонами щитовидной железы являются трийодтиронин и тетрайодтиронин (тироксин ). Основным регулятором их выделения является гормон аденогипофиза тиротропин. Кроме того, существует прямая нервная регуляция щитовидной железы через симпатические нервы. Обратная связь осуществляется уровнем гормонов в крови и замыкается как в гипоталамусе, так и в гипофизе. Интенсивность секреции тиреоидных гормонов влияет на объем их синтеза в самой железе (местная обратная связь).

Основными метаболическими эффектами. тиреоидных гормонов являются: повышение поглощения кислорода клетками и митохондриями, активация окислительных процессов и повышение основного обмена, стимуляция синтеза белка за счет повышения проницаемости мембран клетки для аминокислот и активации генетического аппарата клетки, липолитический эффект, активация синтеза и экскреции холестерина с желчью, активация распада гликогена, гипергликемия, повышение потребления глюкозы тканями, повышение всасывания глюкозы в кишечнике, активация инсулиназы печени и ускорение инактивации инсулина, стимуляция секреции инсулина за счет гипергликемии.

Основными функциональными эффектами гормонов щитовидной железы являются: обеспечение нормальных процессов роста, развития и дифференцировки тканей и органов, активация симпатических эффектов за счет уменьшения распада медиатора, образования катехоламиноподобных метаболитов и повышения чувствительности адренорецепторов (тахикардия, потливость, спазм сосудов и др.), повышение теплообразования и температуры тела, активация ВНД и повышение возбудимости ЦНС, повышение энергетической эффективности митохондрий и сократимости миокарда, протекторный эффект по отношению к развитию повреждений миокарда и язвообразованию в желудке при стрессе, увеличение почечного кровотока, клубочковой фильтрации и диуреза, стимуляция процессов регенерации и заживления, обеспечение нормальной репродуктивной деятельности.

Повышенная секреция тиреоидных гормонов является проявлением гиперфункции щитовидной железы - гипертиреоза. При этом отмечаются характерные изменения обмена веществ (повышение основного обмена, гипергликемия, похудание и др.), симптомы избыточности симпатических эффектов (тахикардия, повышенная потливость, повышенная возбудимость, повышение АД и др.). Может

развиваться диабет.

Врожденная недостаточность тиреоидных гормонов нарушает рост, развитие и дифференцировку скелета, тканей и органов, в том числе и нервной системы (возникает умственная отсталость). Эта врожденная патология получила название "кретинизм". Приобретенная недостаточность щитовидной железы или гипотиреоз проявляются в замедлении окислительных процессов, снижении основного обмена, гипогликемии, перерождении подкожно-жировой клетчатки и кожи с накоплением глюкозаминогликанов и воды. Снижается возбудимость ЦНС, ослабляются симпатические эффекты и теплопродукция. Комплекс таких нарушений носит название "микседема", т.е. слизистый отек.

Кальцитонин - образуется в парафолликулярных К-клетках щитовидной железы. Органы-мишени для кальцитонина - кости, почки и кишечник. Кальцитонин снижает уровень кальция в крови, благодаря облегчению минерализации и подавлению резорбции костной ткани. Уменьшает реабсорбцию кальция и фосфата в почках. Кальцитонин тормозит секрецию гастрина в желудке и снижает кислотность желудочного сока. Секреция кальцитонина стимулируется повышением уровня Са++ в крови и гастрином.

12. Паращитовидные железы, их физиологическая роль. Механизмы поддержания

концентрации кальция и фосфатов в крови. Значение витамина Д.

Регуляция обмена кальция осуществляется в основном за счет действия паратирина и кальцитонина.Паратгормон, или паратирин, паратиреоидный гормон, синтезируется в околощитовидных железах. Он обеспе-чивает увеличение уровня кальция в крови. Органами-мишенями для этого гормона являются кости и почки. В костной ткани пара-тирин усиливает функцию остеокластов, что способствует демине-рализации кости и повышению уровня кальция и фосфора в плазме крови. В канальцевом аппарате почек паратирин стимулирует ре-абсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Развитие фосфатурии может иметь определенное значение в реализации гиперкальциемического эффекта гормона. Это связано с тем, что кальций образует с фос-фатами нерастворимые соединения; следовательно, усиленное вы-ведение фосфатов с мочой способствует повышению уровня свобод-ного кальция в плазме крови. Паратирин усиливает синтез кальцитриола, который является активным метаболитом витамина D 3 . Последний вначале образуется в неактивном состоянии в коже под влиянием ультрафиолетового излучения, а затем под влиянием па-ратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке ки-шечника, что способствует обратному всасыванию кальция и раз-витию гиперкальциемии. Таким образом, увеличение реабсорбции кальция в кишечнике при гиперпродукции паратирина в основном обусловлено его стимулирующим действием на процессы активации витамина D 3 . Прямое влияние самого паратирина на кишечную стенку весьма незначительно.

При удалении околощитовидных желез животное погибает от тетанических судорог. Это связано с тем, что в случае низкого содержания кальция в крови резко усиливается нервно-мышечная возбудимость. При этом действие даже незначительных по силе внешних раздражителей приводит к сокращению мышц.

Гиперпродукция паратирина приводит к деминерализации и ре-зорбции костной ткани, развитию остеопороза. Резко увеличивается уровень кальция в плазме крови, в результате чего усиливается склонность к камнеобразованию в органах мочеполовой системы. Гиперкальциемия способствует развитию выраженных нарушений электрической стабильности сердца, а также образованию язв в пищеварительном тракте, возникновение которых обусловлено сти-мулирующим действием ионов Са 2+ на выработку гастрина и соляной кислоты в желудке.

Секреция паратирина и тиреокальцитонина (см. раздел 5.2.3) регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания кальция усиливается секреция паратирина и тормозится выработка тиреокальцитонина. В физиологических условиях это может наблю-даться при беременности, лактации, сниженном содержании кальция в принимаемой пище. Увеличение концентрации кальция в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки тиреокальцитонина. Последнее может иметь большое значение у детей и лиц молодого возраста, так как в этом возрасте осуществляется формирование костного скелета. Адекватное протекание этих процессов невозможно без тиреокальцитонина, оп-ределяющего абсорбцию кальция из плазмы крови и его включение в структуру костной ткани.

13. Половые железы. Функции женских половых гормонов. Менструально-овариальный цикл, его механизм. Оплодотворение, беременность, роды, лактация. Эндокринная регуляция этих процессов. Возрастные изменения выработки гормонов.

Мужские половые гормоны .

Мужские половые гормоны - андрогены - образуются в клетках Лейдига семенников из холестерола. Основным андрогеном человека является тестостерон . . Небольшие количества андрогенов образуются в коре надпочечников.

Тестостерон оказывает широкий спектр метаболических и физиологических эффектов: обеспечение процессов дифференцировки в эмбриогенезе и развития первичных и вторичных половых признаков, формирование структур ЦНС, обеспечивающих половое поведение и половые функции, генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуры, распределение подкожного жира, обеспечение сперматогенеза, задержку в организме азота, калия, фосфата, активацию синтеза РНК, стимуляцию эритропоэза.

Андрогены в небольших количествах образуются и в женском организме, являясь не только предшественниками синтеза эстрогенов, но и поддерживая половое влечение, а также стимулируя рост волос на лобке и в подмышечных впадинах.

Женские половые гормоны .

Секреция этих гормонов (эстрогенов ) тесно связана с женским половым циклом . Женский половой цикл обеспечивает четкую интеграцию во времени различных процессов, необходимых для осуществления репродуктивной функции - периодическую подготовку эндометрия к имплантации эмбриона, созревание яйцеклетки и овуляцию, изменение вторичных половых признаков и др. Координация этих процессов обеспечивается колебаниями секреции ряда гормонов, прежде всего гонадотропинов и половых стероидов. Секреция гонадотропинов осуществляется как "тонически", т.е. непрерывно, так и "циклически", с периодическим выбросом больших количеств фолликулина и лютеотропина в середине цикла.

Половой цикл длится 27-28 дней и делится на четыре периоды:

1) предовуляционный - период подготовки к беременности, матка в это время увеличивается в размерах, слизистая оболочка и ее железы разрастаются, усиливаются и учащается сокращение маточных труб и мышечного слоя матки, разрастается и слизистая оболочка влагалища;

2) овуляционный - начинается с разрыва пузырчатого яичникового фолликула, выхода из него яйцеклетки и продвижения ее по маточной трубе в полость матки. В этот период обычно наступает оплодотворение, половой цикл прерывается и наступает беременность;

3) послеовуляционный - у женщин в этот период появляется менструация, неоплодотворенная яйцеклетка, оставшаяся в матке несколько дней живой, погибает, нарастают тонические сокращения мускулатуры матки, приводящие к отторжению ее слизистой оболочки и выходу обрывков слизистой вместе с кровью.

4) период покоя - наступает после завершения послеовуляционного периода.

Гормональные сдвиги в течение полового цикла сопровождаются следующими перестройками. В предовуляционном периоде сначала происходит постепенно нарастание секреции фоллитропина аденогипофизом. Созревающий фолликул вырабатывает все большее количество эстрогенов, что по обратной связи начинает снижать продукцию фоллинотропина. Повышающийся уровень лютропина ведет к стимуляции синтеза ферментов, приводящих к истончению стенки фолликула, необходимой для овуляции.

В овуляционном периоде происходит резкий всплеск уровня в крови лютропина, фоллитропина и эстрогенов.

В начальной фазе постовуляционного периода происходит кратковременное падение и уровня гонадотропинов иэстрадиола , разорванный фолликул начинает заполняться лютеальными клетками, образуются новые кровеносные сосуды. Нарастает продукция прогестерона образующимся желтым телом, повышается секреция эстрадиола другими созревающими фолликулами. Создающийся уровень прогестерона и эстрогенов по обратной связи подавляет секрецию фоллотропина и лютеотропина. Начинается дегенерация желтого тела, падает в крови уровень прогестерона и эстрогенов. В секреторном эпителии без стероидной стимуляции возникают геморрагические и дегенеративные изменения, что приводит к кровотечению, отторжению слизистой, сокращению матки, т.е. к менструации.

14. Функции мужских половых гормонов. Регуляция их образования. Пре- и постнатальное влияние половых гормонов на организм. Возрастные изменения выработки гормонов.

Эндокринная функция семенников.

1) Клетки Сертолли - вырабатывают гормон-ингибин - тормозит образование фолллитропина в гипофизе, образование и секрецию эстрогенов.

2) Клетки Лейдига - вырабатывают гормон-тестостерон.

  1. Обеспечивает процессы дифференцировки в эмбриогенезе
  2. Развитие первичных и вторичных половых признаков
  3. Формирование структур ЦНС, обеспечивающих половое поведение и функции
  4. Анаболическое действие(рост скелета, мускулатуры, распределение подкожного жира)
  5. Регуляция сперматогенеза
  6. Задерживает в организме азот, калий, фосфат, кальций
  7. Активирует синтез РНК
  8. Стимулирует эритропоэз.

Эндокринная функция яичников.

В женском организме гормоны вырабатываются в яичниках и гормональной функцией обладают клетки гранулярного слоя фолликулов, которые вырабатывают эстрогены (эстрадиол, эстрон, эстриол) и клетки желтого тела (вырабатывают прогестерон).

Функции эстрогенов:

  1. Обеспечивают половую дифференцировку в эмбриогененезе.
  2. Половое созревание и развитие женских половых признаков
  3. Установление женского полового цикла, рост мышц матки, развитие молочных желез
  4. Определяют половое поведение, овогенез, оплодотворение и имплантацию в яйцеклетки
  5. Развитие и дифференцировку плода и течение родового акта
  6. Подавляют резорбцию кости, задерживают в организме азот, воду, соли

Функции Прогестерона:

1. Подавляет сокращение мускулатуры матки

2. Необходим для овуляции

3. Подавляет секрецию гонадотропина

4. Обладает антиальдостероновым действием, т. е. стимулирует натрийурез.

15. Зобная железа (тимус), ее физиологическая роль.

Вилочковую железу еще называют тимусом или зобной железой. Она, как и костный мозг, является центральным органом иммуногенеза (формирование иммунитета). Тимус распологается непосредственно за грудиной и состоит из двух долей (правой и левой), соединенных рыхлой клетчаткой. Тимус формируется раньше других органов иммунной системы, масса его у новорожденных 13 г., наибольшую массу - около 30 г - тимус имеет у детей 6-15 лет.

Затем он претерпевает обратное развитие (возрастная инволюция) и у взрослых почти полностью замещается жировой клетчаткой (у людей старше 50 лет жировая ткань составляет 90% от общей массы тимуса (в среднем 13-15 гр.)). С деятельностью тимуса связан период наиболее интенсивного роста организма. В тимусе находятся малые лимфоциты (тимоциты). Определяющая роль тимуса в формировании иммунной системы стала ясна из опытов, проведенных австралийским ученым Д. Миллером в 1961 г.

Он установил, что удаление тимуса у новорожденных мышей приводит к снижению выработки антител и увеличению продолжительности жизни пересаженной ткани. Эти факты указывали на то, что тимус принимает участие в двух формах иммунного ответа: в реакциях гуморального типа - выработке антител и в реакциях клеточного типа - отторжении (отмирании) пересаженной чужеродной ткани (трансплантата), которые происходят при участии разных классов лимфоцитов. За выработку антител ответственны так называемые В-лимфоциты, за реакции отторжения трансплантата - Т-лимфоциты. Т- и В-лимфоциты образуются путем различных превращений стволовых клеток костного мозга.

Проникая из него в тимус, стволовая клетка превращается под влиянием гормонов этого органа сначала в так называемый тимоцит, а затем, попадая в селезенку или лимфатические узлы, - в иммунологически активный Т-лимфоцит. Превращение стволовой клетки в В-лимфоцит происходит, по-видимому, в костном мозге. В вилочковой железе наряду с образованием из стволовых клеток костного мозга Т-лимфоцитов продуцируются гормональные факторы - тимозин и тимопоэтин.

Гормоны, обеспечивающие дифференцировку (различность) Т-лимфоцитов и играющие определенную роль в клеточных иммунных реакциях. Имеются также сведения, что гормоны обеспечивают синтез (построение) некоторых клеточных рецепторов.

Гомеостаз. Регуляция гомеостаза эндокринной
системой. Взаимодействие эндокринной
системы с иммунной и нервной системами.
Подготовила: Мергенева Б.
572-ОМ
Астана 2019

План

Введение
Эндокринная система
Сравнение нервной и эндокринной систем
Сравнение эндокринной и иммунной
систем
Заключение
Список использованной литературы

Введение
Гомеостаз (др.-греч. ὁμοιοστάσις от ὅμοιος «одинаковый, подобный» + στάσις
«стояние; неподвижность») - саморегуляция, способность открытой системы
сохранять постоянство своего внутреннего состояния посредством
скоординированных реакций, направленных на поддержание динамического
равновесия.

Эндокринные механизмы гомеостаза по Б. М. Завадскому - механизм
плюс-минус взаимодействия, т.е. уравновешивание функциональной
активности железы с концентрацией гормона. При высокой
концентрации гормона (выше нормы) деятельность железы
ослабляется и наоборот. Такое влияние осуществляется путем
действия гормона на продуцирующую его железу. У ряда желез
регуляция устанавливается через гипоталамус и переднюю долю
гипофиза, особенно при стресс-реакции.

Гомеостатические механизмы активные в состояние стресса, способны
противостоять неблагоприятным условиям до определенного предела.
В развитии стресс-реакции различают три стадии:
1) Мобилизация защитных механизмов или тревоги.
2) Повышение сопротивляемости организма.
3) Истощение защитных механизмов.
Первые две - соответствуют сохранению гомеостаза, третья наступает
при чрезмерных воздействиях и приводит к срыву механизмов
гомеостаза.

Обратная связь как основной принцип регуляции эндокринной системы
Механизм обратной связи является обязательным звеном гомеостаза, а так
как эндокринная система - одна из систем регуляции гомеостаза, то и в ее
функционировании определяющую роль играет обратная связь.
Сущность регуляции по типу обратной связи - регулируемый параметр
оказывает обратное влияние на активность железы. Виды обратной связи:
отрицательная и положительная.
Существуют 2 параметра регуляции эндокринной системы:
Концентрация гормона в крови:
– длинная петля обратной связи. Механизм саморегуляции по типу отрицательной
(-) обратной связи заключается в том, что повышенная концентрация гормонов в
крови приводит к снижению активности гипоталамуса и снижению выделения
соответствующего либерина. Это тормозит выделение тройного гормона и,
следовательно, ведет к снижению образования гормона железой. В случае (+)
обратной связи повышается образование гормона, все выглядит наоборот. Это
примеры "длинной петли обратной связи";
– другой вариант обратной связи - ее "короткая петля". Осуществляется с помощью
тройных гормонов гипофиза. Условие функционирования регуляции по этому
параметру - наличие нормальных рецепторов к гормону в гипоталамусе. По этому
типу саморегуляции осуществляется секреция гонад, коры надпочечников,
щитовидной железы.
Концентрация метаболита регулируемой реакции. Например, повышенная
концентрация глюкозы включает усиленное выделение инсулина, а
снижение содержания Са2+ - паратгормона и наоборот, повышение
содержания Са2+ - включает усиленную экскрецию кальцитонина. По этому
типу саморегулируется деятельность поджелудочной, паращитовидной и
щитовидной желез.

Основные механизмы влияния гормонов

1) метаболическое (действие на обмен
веществ),
2) морфогенетическое (стимуляция
формообразования, дифференцировки, роста),
3) кинетическое (включение определенной
деятельности),
4) корригирующее (изменяющее интенсивность
функций органов и тканей).

Регуляция гормональной активности

1) Нейрогенная регуляция осуществляется по двум
направлениям:
А. Прямое воздействие нервов через гипоталамус на синтез и
секрецию гормона {нейрогипофиз – АДГ (почка), окситоцин
(матка, мол. железа) ; или ВНС на мозговой слой надпочечника
- симпатическими нервами стимулируется выделение
адреналина}.
Б. Нервная система регулирует гормональную активность
косвенно - изменяя интенсивность кровоснабжения железы.
2) Гуморальная регуляция - непосредственное влияние на
клетки железы концентрации субстрата, уровень которого
регулирует гормон (обратная связь – отрицательная и
положительная).

АКТГ и кора надпочечника

Регуляция образования (б)

3) Нейрогуморальная регуляция осуществляется с
помощью гипоталамо-гипофизарной системы (рис.).
Функция щитовидной, половых желез, коры
надпочечников регулируется гормонами передней
доли гипофиза, аденогипофизом. Общее название
этих гормонов - тропные гормоны:
адренокортикотропный, тиреотропный,
фолликулостимулирующий и лютеонизирующий
гормоны.
С некоторой условностью к тропным гормонам
относится и соматотропный гормон (гормон роста)
гипофиза, который оказывает свое влияние на рост не
только прямо, но и опосредованно через гормон
соматомедин, образующийся в печени.

Гипоталамо-гипофизарный комплекс

Схема гипоталамо-гипофизарных механизмов регуляции активности эндокринных желез

Уровень гормона крови через
обратную связь, влияя на
выработку в гипоталамусе
релизинг-гормонов влияет на
интенсивность синтеза
тропных гормонов гипофиза.
Тропные гормоны регулируют
активность образования
гормонов:
- увеличение в крови уровня
гормона угнетает его
образование,
- - уменьшение уровня гормона
в крови – стимулирует синтез

Регуляция кальциевого гомеостаза

Тирокальцитонин (кальцитонин) синтезируется
С-клетками щитовидной железы и участвует в
регуляции обмена кальция в организме:
способствует минерализации костей, снижает
уровень кальция крови, что обеспечивает
сбережение кальция в организме.
Это антагонист паратгормона паращитовидных
желез.
Витамин D.

Витамин D и его влияние на обмен кальция

Эпифиз – биологические часы

Мелатонин через гипоталамо-гипофизарные механизмы
ослабляет выработку половых гормонов. Вероятно в связи с
тем, что суммарная суточная освещенность в южных регионах
выше, у проживающих здесь подростков половое созревание
происходит в более раннем возрасте. Cдерживающее влияние
мелатонина на выработку половых гормонов наглядно
проявляется в том, что у мальчиков началу полового
созревания предшествует резкое падение его уровня в крови.
Но эпифиз продолжает оказывать влияние на уровень половых
гормонов и у взрослых. Так, у женщин наибольший уровень
мелатонина наблюдается в период менструаций, а
наименьший - во время овуляции. При ослаблении
мелатонинсинтезирующей функции эпифиза наблюдается
повышение половой потенции.

Гормоны эпифиза и восприятие света

Заключение
Эндокринный гомеостаз можно охарактеризовать как
сохранение (или восстановление) равновесия между
концентрацией гормона, находящегося в циркуляции, и
напряжением секреторной активности железы,
продуцирующей этот гормон. Другими словами,
поддержание эндокринного постоянства предполагает,
что в случаях возрастания концентрации того или иного
гормона в крови сверх нормального значения
деятельность железы, его продуцирующей, должна
ослабляться и, наоборот, должна усиливаться, если
уровень гормона этой железы в крови оказывается ниже
потребностей организма.

Список использованной литературы

http://biofile.ru/bio/10965.html
http://www.tepka.ru/biologiya_cheloveka/60.html
http://bonoesse.ru/blizzard/A/Fiziologija/Gomeostaz/Gomeostaz
_end_sisteme.html
http://bonoesse.ru/blizzard/A/Patfiz/Ivanov/Narushenija_jendok
rinnoj_sistemy.html

Различают несколько типов взаимодействия между эндокринными железами.

1. Взаимодействие по принципу положительной и отрицательной прямой и обратной связи . Например, тиреотропный гормон передней доли гипофиза стимулирует продукцию гормонов щитовидной железы. При удалении передней доли гипофиза происходит атрофия щитовидной железы и развивается дефицит тиреотропных гормонов. Эта прямая положительная связь. Другой пример, гиперфункция щитовидной железы тормозит образование тиреотропного гормона, т. е. реализуется отрицательная обратная связь между щитовидной железой и передней долей гипофиза.

2. Синергизм гормональных влияний или однонаправленное действие разных гормонов . Например, адреналин и глюкагон – активируют расщепление гликогена в печени до глюкозы и вызывают повышение содержания сахара в крови (молекулярные основы этого синергизма различны).

3. Антагонизм гормональных влияний . Например, инсулин и адреналин вызывают разные эффекты, инсулин-гипогликемию, адреналин – гипергликемию. Однако этот пример относительного, а не абсолютного антагонизма в организме. На самом деле происходит улучшение углеводного питания тканей: адреналин способствует превращению резервного гликогена печени в глюкозу, которая поступает в кровь, а инсулин обеспечивает проникновение глюкозы к клеткам с дальнейшим процессом ее утилизации.

4. Пермиссионное (разрешающее) действие гормонов выражается в том, что гормон, не вызывая физиологического эффекта сам, создает условия для реакции клеток и органов на действие других гормонов. Например, влияние глюкокортикоидов на эффекты адреналина. Сами глюкокортикоиды не влияют ни на тонус гладких мышц сосудов, ни на распад гликогена печени, но они создают условия, при которых даже низкие (подпороговые) концентрации адреналина повышают артериальное давление и вызывают гипергликемию как результат глюкогенолиза в печени.

Регуляция функций эндокринной системы

Интенсивность выделения каждого гормона железой в данный момент регулируется в соответствии с потребностью организма в данном гормоне.

Существует несколько способов регуляции функций эндокринных
желез.

Во-первых, через прямое влияние на клетки желез концентрации того вещества, уровень которого регулирует данный гормон. Например, выработка паратгормона, повышающего уровень кальция в крови, снижается при воздействии на клетки паращитовидных желез повышенных концентраций кальция. Усиление секреции инсулина возникает при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу.



Во-вторых, опосредованно через нейрогормональные или гормональные механизмы, т. е. с участием других желез внутренней секреции.

В-третьих, при помощи прямых нервных влияний на секреторные клетки железы (наблюдаются только в мозговом веществе надпочечников и эпифизе). В остальных железах внутренней секреции нервные волокна регулируют в основном тонус кровеносных сосудов и, следовательно, кровоснабжение железы, от уровня которого зависит, в известной мере, функция железы.

Функционирование эндокринной системы осуществляется в тесном взаимодействии и взаимовлиянии с нервной системой. Так, например, гипоталамус получает информацию из внешней и внутренней среды. Эта информация по сенсорным системам поступает в различные отделы головного мозга. Из них она в переработанном виде передается в гипоталамус, где она интегрируется с информацией, полученной им непосредственно от внутренней среды. В результате этого в гипоталамусе выделяются регуляторные гормоны, которые включаются в общую систему эндокринной регуляции. Наряду с этим формируются нервные влияния на железы, которые осуществляются через вегетативную нервную систему.

Нервная регуляция эндокринной системы через гипоталамус осуществляется, в основном, с участием структур лимбической системы: гиппокампа, миндалины, переднего таламуса, полосатого тела, соответствующих областей коры больших полушарий головного мозга. При этом регуляция со стороны лимбической системы может, осуществляется двумя путями: трансгипофизарным и парагипофизарным.

Вопросы для самоконтроля

1. Какие инкреторные образования образуют эндокринную систему?

2. Какова биологическая роль эндокринной системы в организме? Перечислите основные функции эндокринной системы.



3. Перечислите основные железы внутренней секреции и их гормоны.

4. Какова роль гормонов в организме?

5. Назовите основные виды гормонов (в зависимости от химической природы). Какими общими биологическими свойствами они обладают?

6. Какова взаимосвязь желез внутренней секреции?

7. Какова реакция эндокринной системы на легкую мышечную работу, мышечную работу средней тяжести и истощающую мышечную работу?


Глава 12. ПИЩЕВАРЕНИЕ

12.1. Общая характеристика пищеварительных процессов

Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Эти вещества поступают в организм с пищей. Но только минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище. Белки, жиры и углеводы попадают в организм в виде сложных комплексов, и для того чтобы всосаться и подвергнуться усвоению, требуется сложная физическая и химическая переработка пищи.

Пищеварение – совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма. Эти процессы идут в определенной последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишке с участием печени и желчного пузыря, поджелудочной железы), что обеспечивается регуляторными механизмами различного уровня (табл. 12.1).

Таблица 12.1.

Пищеварение в различных отделах пищеварительной системы

Ротовая полость Пища смачивается слюной, слизью, происходит расщепление некоторых углеводов под действием слюны. Длительность нахождения пищи в ротовой полости – от нескольких секунд до нескольких десятков секунд.
Глотка Происходит акт глотания – проникновения пищи в пищевод. Длительность акта глотания – около 1 секунды.
Пищевод Сокращение стенок пищевода продвигает пищу в желудок независимо от положения тела. Длительность прохождения пищи по пищеводу – 8–9 секунд для твердой пищи и 1–2 секунды для жидкой.
Желудок Расщепление некоторых белков, всасывание в кровь воды, минеральных веществ. Длительность нахождения пищи в желудке – от 4 до 10 часов в зависимости от характера пищи. Дольше всего задерживается в желудке жирная пища, меньше всего – жидкости.
Тонкий кишечник Расщепление белков, углеводов, жиров, всасывание водорастворимых витаминов, минеральных веществ, продуктов расщепление белков и углеводов в кровь, жирорастворимых витаминов и продуктов расщепления жиров – в лимфу. Время пищеварения в тонком кишечнике – от нескольких часов до нескольких десятков часов.

Продолжение таблицы

Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться, носит название пищеварительного конвейера

Пищеварительная система состоит из пищеварительного канала и пищеварительных желез.

Пищеварительный канал представляет собой полую трубку, начинающуюся с ротовой полости и заканчивающуюся анальным отверстием, имеющую расширения в отдельных местах (например, желудок). Длина пищеварительного канала 8–12 метров (основная длина приходится на кишечник).
В стенках органов пищеварительного канала содержатся мышечные клетки. Их сокращение способствует перемешиванию пищи с пищеварительными соками, ее всасыванию и продвижению по пищеварительному каналу.

Основные отделы пищеварительного канала: ротовая полость, глотка, пищевод, желудок, кишечник (подразделяется на тонкий кишечник и толстый кишечник), заканчивающийся анальным отверстием.

Пищеварительные железы выделяют слизь, которая помогает продвижению пищи по пищеварительному каналу, и пищеварительные соки, с помощью которых происходит расщепление пищи до низкомолекулярных веществ, способных всосаться в кровеносные или лимфатические сосуды. Основные пищеварительные железы: слюнные железы (выделяют слизь и слюну), клетки желудка (выделяют желудочный сок, слизь и соляную кислоту), печень (выделяет желчь), пищеварительная часть поджелудочной железы (выделяет сок поджелудочной железы), клетки кишечника (выделяют слизь и кишечный сок).

Желудочно-кишечный тракт выполняет следующие функции:

1. Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного сока, сока поджелудочной железы, кишечного сока, желчи. Эти соки содержат ферменты, которые расщепляют белки, жиры и углеводы на простые химические соединения. Минеральные соли, витамины, вода поступают в кровь в неизменном виде.

2. Двигательная или моторная функция, осуществляется за счет мускулатуры пищеварительного аппарата и включает в себя процессы жевания в полости рта, глотания, перемещения химуса по пищеварительному тракту и удаление из организма непереваренных остатков.

3. Всасывательная функция. Всасывание – это проникновение различных веществ через стенку желудочно-кишечного тракта в кровь и лимфу. Всасыванию подвергаются в основном продукты гидролитического расщепления пищи – моносахара, жирные кислоты и глицерин, аминокислоты и др. В зависимости от локализации процесса пищеварения его делят на внутриклеточное и внеклеточное.

4. Экскреторная функция пищеварительного тракта выражается в том, что пищеварительные железы выделяют в полость желудочно-кишечного тракта продукты обмена, например, аммиак, мочевину и др., соли тяжелых металлов, лекарственные вещества, которые затем удаляются из организма.

5. Инкреторная функция связана с образованием в пищеварительном тракте некоторых гормонов, которые оказывают воздействие на процесс пищеварения. К таким гормонам относятся: гастрин, секретин, холецистокинин-панкреозимин, мотилин и многие другие гормоны, которые влияют на моторную и секреторную функции желудочно-кишечного тракта.

6. Защитная функция.

7. Гомеостатическая функция, (например, поддержание рН и др.) и участие в кроветворении (выработка внутреннего фактора Кастла в желудке).

В зависимости от происхождения гидролитических ферментов пищеварение делят на 3 типа: собственное, симбионтное и аутолитическое.

Собственное пищеварение осуществляется ферментами, синтезированными железами человека или животного.

Симбионтное пищеварение происходит под влиянием ферментов, синтезированных симбионтами макроорганизма (микроорганизмами) пищеварительного тракта. Так происходит переваривание клетчатки пищи в толстой кишке.

Аутолитическое пищеварение осуществляется под влиянием ферментов, содержащихся в составе принимаемой пищи. Материнское молоко содержит ферменты, необходимые для его створаживания.

В зависимости от локализации процесса гидролиза питательных веществ различают внутриклеточное и внеклеточное пищеварение. У высших животных и человека пищеварение осуществляется внеклеточно.

Внеклеточное пищеварение делят на дистантное (полостное) и контактное (пристеночное, или мембранное).

Дистантное (полостное) пищеварение осуществляется с помощью ферментов пищеварительных секретов в полостях желудочно-кишечного тракта на расстоянии от места образования этих ферментов.

Контактное (пристеночное, или мембранное) пищеварение (А. М. Уголев) происходит в тонкой кишке в зоне гликокаликса, на поверхности микроворсинок с участием ферментов, фиксированных на клеточной мембране, и заканчивается всасыванием – транспортом питательных веществ через энтероцит в кровь или лимфу. Наличие в слизистой оболочке тонкой кишки складок, ворсинок, микроворсинок увеличивает внутреннюю поверхность кишки в
300–500 раз, что обеспечивает гидролиз и всасывание на огромной поверхности тонкой кишки.


Этапы переваривания пищи

Пищеварение в полости рта. Пищеварение начинается в ротовой полости, где происходит механическая и химическая обработка пищи. Механическая обработка заключается в измельчении пищи, смачивании ее слюной и формировании пищевого комка. Химическая обработка происходит за счет ферментов, содержащихся в слюне.

Моторная функция (механическая обработка) в полости рта начинается с акта жевания.

Жевание –физиологический акт, который обеспечивает измельчение пищевых веществ, смачивание их слюной и формирование пищевого комка. Жевание обеспечивает качество механической обработки пищи в полости рта. Оно оказывает влияние на процесс пищеварения в других отделах пищеварительного тракта, изменяя их секреторную и моторную функции. В акте жевания и формировании пищевого комка обязательное участие принимает слюна. Слюна – это смесь секретов трех пар крупных слюнных желез околоушных, подчелюстных, подъязычных и множества мелких железок, расположенных в слизистой оболочке полости рта. К секрету, выделяемому из выводных протоков слюнных желез, примешиваются эпителиальные клетки, частицы пищи, слизь, слюнные тельца (нейтрофильные лейкоциты, иногда лимфоциты), микроорганизмы. Такая слюна, смешанная с различными включениями, называется ротовой жидкостью. Ее рН равна 6,8–7,4. У взрослого человека за сутки образуется 0,5–2 л слюны. Состав ротовой жидкости изменяется в зависимости от характера пищи, состояния организма, а также под влиянием факторов внешней среды.

Секрет слюнных желез содержит около 99% воды и 1% сухого остатка. Органические вещества представлены в основном белками. В слюне имеются самые различные по происхождению белки, в том числе и белковое слизистое вещество муцин.В слюне содержатся азотсодержащие компоненты: мочевина, аммиак, креатинин и др.

Функции слюны:

1. Пищеварительная функция.

2. Экскреторная функция. В составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные вещества (хинин, стрихнин). Выделяются также некоторые токсичные вещества, поступившие в организм (соли ртути, свинца, алкоголь).

3. Защитная функция. Слюна обладает бактерицидным действием благодаря содержанию лизоцима. Муцин способен нейтрализовать кислоты и щелочи. В слюне находится большое количество иммуноглобулинов, что защищает организм от патогенной микрофлоры. Слюна защищает слизистую оболочку полости рта от пересыхания.

4. Трофическая функция. Слюна является источником кальция, фосфора, цинка для формирования эмали зуба.

Отделение слюны происходит в точном соответствии с качеством и количеством принимаемых пищевых веществ. Например, при приеме воды слюна почти не отделяется. При поступлении в полость рта вредных веществ выделяется большое количество жидкой слюны, отмывающей полость рта от этих вредных веществ и т. д. Такой приспособительный характер слюноотделения обеспечивается центральными механизмами регуляции деятельности слюнных желез, а запускаются эти механизмы информацией, поступающей от рецепторов полости рта.

Глотание. После того, как сформировался пищевой комок, происходит глотание. Это рефлекторный процесс, в котором выделяют три фазы:

Ротовую (произвольную и непроизвольную);

Глоточную (быструю непроизвольную);

Пищеводную (медленную непроизвольную).

Глотательный цикл длится около 1 с. Во время акта глотания происходят сокращения пищевода, которые имеют характер волны, возникающей в верхней части и распространяющейся в сторону желудка. Моторика пищевода регулируется в основном эфферентными волокнами блуждающего и симпатического нервов и интрамуральными нервными образованиями пищевода.

Центр глотания расположен рядом с центром дыхания продолговатого мозга и находится с ним в реципрокных отношениях (при глотании дыхание задерживается).

Пищеварение в желудке. Пища из ротовой полости поступает в желудок, где она подвергается дальнейшей химической и механической обработке. Кроме того, желудок является пищевым депо. Механическая обработка пищи обеспечивается моторной деятельностью желудка, химическая осуществляется за счет ферментов желудочного сока. Размельченные и химически обработанные пищевые массы в смеси с желудочным соком образуют жидкий или полужидкий химус.

В желудке различают два основных вида движении:

Перистальтические (осуществляются за счет сокращения циркулярных мышц желудка);

Тонические (возникают за счет изменения тонуса мышц, что приводит к уменьшению объема желудка и повышению давления в нем. Тонические сокращения способствуют перемешиванию содержимого желудка и пропитыванию его желудочным соком, что значительно облегчает ферментативное переваривание пищевой кашицы).

Секреторная деятельность желудка. Состав и свойства желудочного сока. Желудочный сок продуцируется железами желудка, расположенными в его слизистой оболочке. В области свода желудка железы содержат гландулоциты (главные клетки), которые продуцируют пепсиногены; париетальные гландулоциты (обкладочные клетки) синтезируют и выделяют соляную кислоту; мукоциты (добавочные клетки) выделяют мукоидный секрет. При обычных условиях за сутки у человека выделяется 2–2,5 л желудочного сока. Желудочный сок имеет кислую реакцию, его рН равен 1,5–1,8.

Из неорганических компонентов желудочного сока наибольшее значение имеет соляная кислота. Она находится в свободном и в связанном состоянии, ее содержание в желудочном соке составляет 0,3–0,5%.

Функции соляной кислоты:

Участвует в антибактериальном действии желудочного сока;

Вызывает денатурацию и набухание белков, что способствует их последующему расщеплению пепсинами;

Активирует пепсиногены;

Создает кислую среду, которая необходима для действия пепсинов;

Участвует в регуляции деятельности пищеварительного тракта.

Факторы, которые стимулируют секрецию соляной кислоты в желудке: гастрин, гистамин, продукты гидролиза белков.

Главный ферментативный процесс в желудке заключается в начальном расщеплении белков, с помощью протеолитических ферментов. Основными ферментами, которые гидролизуют белки, являются пепсины. Пепсины выделяются в неактивной форме в виде пепсиногенов. Пепсиногены активируются соляной кислотой и, таким образом образуются несколько пепсинов, которые гидролизуют белки с максимальной скоростью при рН 1,5–2,0.

Другой протеолитический фермент, близкий к пепсинам, гастриксин гидролизует белки при рН 3,2–3,5. Возможность пепсинов активно функционировать при различных значениях рН обеспечивает гидролиз белков в различных слоях химуса при разной кислотности.

Фермент ренин (химозин) створаживает молоко в присутствии солей кальция.

В желудочном соке содержится фермент липаза, но она мало активна и гидролизует только эмульгированные жиры.

Гидролиз углеводов в желудке осуществляется под влиянием ферментов слюны.

Важной составной частью желудочного сока являются мукоиды (желудочная слизь), которые покрывают слизистую желудка по всей поверхности и предохраняют ее от механических повреждений и от самопереваривания.

В желудке вырабатывается гастромукопротеид, или внутренний фактор Касла. Только при наличии внутреннего фактора возможно образование комплекса с витамином В12, участвующего в эритропоэзе.

Фазы желудочной секреции (по И. П. Павлову). Отделение желудочного сока происходит в две фазы:

Первая – сложнорефлекторная («мозговая»);

Вторая – нервно-гуморальная (желудочная и кишечная).

1. Сложнорефлекторная («мозговая») фаза желудочной секреции называется так потому, что она состоит из двух компонентов:условно-рефлекторного и безусловно-рефлекторного.

Условно-рефлекторное отделение желудочного сока происходит при раздражении обонятельных, зрительных, слуховых рецепторов запахом, видом пищи, разговором о пище и звуковыми раздражителями, связанными с приготовлением пищи. В результате синтеза афферентных зрительных, слуховых и обонятельных раздражении в таламусе, гипоталамусе, лимбической системе и коре больших полушарий головного мозга повышается возбудимость нейронов пищеварительного бульбарного центра, и создаются условия для запуска секреторной активности желудочных желез. Желудочный сок, отделяемый в этот период, И. П. Павлов назвал запальным или аппетитным. Он представляет собой ценность, т. к. богат ферментами, его отделение сопровождается ощущением, аппетита и создает условия для дальнейшего нормального пищеварения в желудке и кишечнике. При поступлении пищи в полость рта начинается безусловно-рефлекторное отделение желудочного сока.

2. Нервно-гуморальная фаза желудочной секреции состоит из двух компонентов – желудочной и кишечной фазы. Желудочная фаза наступает при соприкосновении пищевого содержимого со слизистой оболочкой желудка. Отделение желудочного сока в эту фазу осуществляется за счет раздражения механорецепторов слизистой оболочки желудка, а затем за счет гуморальных факторов – продуктов гидролиза пищи, которые поступают в кровь и возбуждают железы желудка. Кишечная фаза желудочной секреции начинается с момента поступления химуса в двенадцатиперстную кишку. Химус раздражает механо-, осмо- и хеморецепторы слизистой оболочки кишки и рефлекторно изменяет интенсивность желудочной секреции. Кроме того, влияние на желудочное сокоотделение в эту фазу оказывают местные гормоны (секретин, холецистокинин-панкреозимин), выработка которых стимулируется поступающим в двенадцатиперстную кишку кислым желудочным химусом.

Пищеварение в кишечнике. Пищеварение в тонкой кишке. Моторная деятельность тонкой кишки осуществляются в результате координированных движений продольного (наружного) и поперечного (внутреннего) слоев гладкомышечных клеток. По функциональному признаку сокращения делят на две группы:

1) локальные – обеспечивают растирание и перемешивание содержимого тонкой кишки;

Маятникообразные;

Ритмическая сегментация;

Перистальтические;

Тонические.

Маятникообразные сокращения обусловлены последовательным сокращением кольцевых и продольных мышц кишки. Последовательные изменения длины и диаметра кишки приводят к перемещению пищевой кашицы то в одну, то в другую сторону (наподобие маятника). Маятникообразные сокращения способствуют перемешиванию химуса с пищеварительными соками. Ритмическая сегментация обеспечивается сокращением кольцевых мышц в результате чего, образующиеся поперечные перехваты делят кишку на небольшие сегменты. Ритмическая сегментация способствует растиранию химуса и перемешиванию его с пищеварительными соками. Перестальтические сокращения обусловлены одновременным сокращением продольного и кольцевого слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и проталкивание химуса в одновременно расширенный, за счет сокращения продольных мышц нижний участок кишки. Таким образом, перистальтические сокращения обеспечивают продвижение химуса по кишке. Тонические сокращения имеют небольшую скорость и даже могут вообще не распространяться, а только суживать просвет кишки на незначительном протяжении.

Секреторная деятельность тонкой кишки. Тонкая кишка и в первую очередь ее начальный отдел – двенадцатиперстная кишка, являются основным пищеварительным отделом всего желудочно-кишечного тракта. Именно в тонкой кишке пищевые вещества превращаются в те соединения, которые могут всасываться из кишки в кровь и лимфу.

В гидролизе пищевых веществ в двенадцатиперстной кишке особенно велика роль поджелудочной железы и печени, секретирующей желчь. Сок поджелудочной железы богат ферментами, которые расщепляют белки, жиры и углеводы. Амилаза поджелудочного сока превращает углеводы в моносахара. Панкреатическая липаза очень активна вследствие эмульгирующего действия желчи на жиры. Рибонуклеаза панкреатического сока расщепляет рибонуклеиновую кислоту до нуклеотидов. Протеолитические ферменты панкреатического сока выделяются в неактивном состоянии и активируются другими ферментами. Трипсиноген поджелудочного сока под действием фермента двенадцатиперстной кишки энтерокиназы превращается в трипсин, который гидролизует пептидные связи. Химотрипсин синтезируется в виде химотрипсиногена и активируется трипсином.

Кишечный сок выделяется железами всей слизистой оболочки тонкой кишки. В кишечном соке обнаружено более 20 различных ферментов, основными из которых являются: энтерокиназа, пептидазы, щелочная фосфатаза, нуклеаза, липаза, фосфолипаза, амилаза, лактаза, сахараза. В естественных условиях эти ферменты фиксированы в зоне щеточной каймы и осуществляют пристеночное пищеварение.

Химическими стимуляторами секреции тонкой кишки являются продукты переваривания белков, жиров, панкреатический сок, соляная кислота и др.

Регуляция моторной деятельности тонкой кишки осуществляется нервными и гуморальными механизмами. Парасимпатические нервные волокна усиливают, а симпатические тормозят сокращения тонкой кишки. Акт приема пищи условно – и безусловно рефлекторно кратковременно тормозит, а затем усиливает моторику тонкой кишки. Моторная деятельность тонкой кишки во многом зависит от физических и химических свойств химуса: грубая пища и жиры повышают ее активность. Для моторной деятельности тонкой кишки большое значение имеют рефлексы с различных отделов пищеварительного тракта.

Гуморальные вещества вазопрессин, брадикинин, серотонин, гистамин, гастрин, мотилин, холецистокинин-панкреозимин, щелочи, кислоты, соли и другие усиливают моторику тонкой кишки.

Пищеварение в толстой кишке. Моторная деятельность толстой кишки обеспечивает накопление кишечного содержимого, всасывание из него ряда веществ, в основном воды, формирование каловых масс и удаление их из кишечника. Различают следующие виды сокращений толстой кишки:

Тонические;

Маятникообразные;

Ритмическая сегментация;

Перистальтические сокращения;

Антиперистальтические сокращения (способствуют всасыванию воды и формированию каловых масс);

Пропульсивные сокращения – обеспечивают продвижение содержимого кишечника в каудальном направлении.

Регуляция моторной деятельности толстой кишки осуществляется автономной нервной системой, причем, симпатические нервные волокна тормозят моторику, а парасимпатические – усиливают. Моторику толстой кишки тормозят: серотонин, адреналин, глюкагон, а также раздражение механорецепторов прямой кишки. Большое значение в стимуляции моторики толстой кишки имеют местные механические и химические раздражения.

Секреторная деятельность толстой кишки выражена слабо. Железы слизистой оболочки толстой кишки выделяют небольшое количество сока, богатого слизистыми веществами, но бедного ферментами. В соке толстой кишки в небольшом количестве находятся: катепсин, пептидазы, липаза, амилаза и нуклеазы.

Большое значение в жизнедеятельности организма и функций пищеварительного тракта имеет микрофлора толстой кишки. Нормальная микрофлора желудочно-кишечного тракта является необходимым условием жизнедеятельности организма. В желудке микрофлоры содержится мало, значительно больше ее в тонком отделе кишечника и особенно много в толстой кишке.

Значение микрофлоры кишечника заключается в том, что она участвует в конечном разложении остатков непереваренной пищи. Микрофлора участвует в инактивировании и разложении ферментов и других биологически активных веществ. Нормальная микрофлора подавляет патогенные микроорганизмы и предупреждает инфицирование организма. Ферменты бактерий расщепляют волокна клетчатки, непереваренные в тонкой кишке. Кишечная флора синтезирует витамин К и витамины группы В, а также другие вещества, необходимые организму. С участием микрофлоры кишечника в организме происходит обмен белков, фосфолипидов, желчных и жирных кислот, билирубина и холестерина.

Всасывание.Под всасыванием понимают совокупность процессов, обеспечивающих перенос различных веществ в кровь и лимфу из пищеварительного тракта.

Различают транспорт макро – и микромолекул. Транспорт макромолекул и их агрегатов осуществляется с помощью фагоцитоза и пиноцитоза и называется эндоцитозом. Некоторое количество веществ может транспортироваться по межклеточным пространствам – путем персорбции. За счет этих механизмов из полости кишечника во внутреннюю среду проникает небольшое количество белков (антитела, аллергены, ферменты и т. д.), некоторые краски и бактерии.

Из желудочно-кишечного тракта транспортируются в основном микромолекулы: мономеры питательных веществ и ионы. Этот транспорт делится на:

Активный транспорт;

Пассивный транспорт;

Облегченную диффузию.

Активный транспорт веществ – это перенос веществ через мембраны против концентрационного, осмотического и электрохимического градиентов с затратой энергии и при участии специальных транспортных систем: мобильных переносчиков, конформационных переносчиков и транспортных мембранных каналов.

Пассивный транспорт осуществляется без затраты энергии по концентрационному, осмотическому и электрохимическому градиентам и включает в себя: диффузию, фильтрацию, осмос.

Движущей силой диффузии частиц растворенного вещества является их концентрационный градиент. Разновидностью диффузии является осмос, при котором перемещение происходит в соответствии с концентрационным градиентом частиц растворителя. Под фильтрацией понимают процесс переноса раствора через пористую мембрану под действием гидростатического давления.

Облегченная диффузия, как и простая диффузия, осуществляется без затраты энергии по градиенту концентрации. Однако облегченная диффузия более быстрый процесс и осуществляется с участием переносчика.

Всасывание в различных отделах пищеварительного тракта. Всасывание происходит на всем протяжении пищеварительного тракта, но интенсивность его в разных отделах различна. В полости рта всасывание практически отсутствует вследствие кратковременного пребывания в ней веществ и отсутствия мономерных продуктов гидролиза. Однако, слизистая оболочка полости рта проницаема для натрия, калия, некоторых аминокислот, алкоголя, некоторых лекарственных веществ.

В желудке интенсивность всасывания также невелика. Здесь всасывается вода и растворенные в ней минеральные соли, кроме того, в желудке всасываются слабые растворы алкоголя, глюкоза и в небольших количествах аминокислоты.

В начальном отделе тонкой кишки – двенадцатиперстной кишке интенсивность всасывания больше, чем в желудке, но и здесь оно относительно невелико. Основной процесс всасывания происходит в тощей и подвздошной кишках тонкого кишечника. В процессе всасывания в тонкой кишке особое значение имеют сокращения ворсинок. Стимуляторами сокращения ворсинок являются продукты гидролиза питательных веществ (пептиды, аминокислоты, глюкоза, экстрактивные вещества пищи), а также некоторые компоненты секретов пищеварительных желез, например, желчные кислоты.

Всасывание в толстой кишке в нормальных условиях незначительно. Здесь происходит в основном всасывание воды и формирование каловых масс, В небольших количествах в толстой кишке могут всасываться глюкоза, аминокислоты, а также другие легко всасывающиеся вещества. На этом основании применяют питательные клизмы, т. е. введение легкоусваивающихся питательных веществ в прямую кишку.

Физиология печени

Печень является полифункциональным органом. Она выполняет следующие функции.

1. Участвует в обмене белков, углеводов, жиров, витаминов, стероидных гормонов, микроэлементов.

2. Печень играет важную роль в поддержании гомеостаза, благодаря ее участию в обмене гормонов.

3. Защитная (барьерная) функция печени (фагоцитоз микроорганизмов, обезвреживание токсических веществ эндогенного и экзогенного характера).

4. В печени синтезируются вещества, участвует в свертывании крови и компоненты противосвертывающей системы.

5. Экскреторная функция печени связана с желчеобразованием, т. к. экскретируемые печенью вещества входят в состав желчи. К таким веществам относятся билирубин, тироксин, холестерин и др.

6. Печень является депо крови.

7. Теплопродукция.

8. Участие в процессах пищеварения.

Желчеобразование. У человека за сутки образуется около 500–1500 мл желчи. Процесс образования желчи – желчеотделение идет непрерывно, а желчевыделение – поступление желчи в двенадцатиперстную кишку осуществляется периодически в основном в связи с приемом пищи. Натощак желчь в кишечник почти не поступает, она скапливается в желчном пузыре. Поэтому принято различать печеночную и пузырную желчь, несколько отличающихся по составу. При прохождении желчи по желчевыводящим путям и при нахождении в желчном пузыре за счет всасывания воды и минеральных солей происходит концентрирование желчи, к ней добавляется муцин, увеличивается ее плотность и снижается рН (6,0–7,0), вследствие образования желчных кислот и всасывания бикарбонатов.

Образование желчи осуществляется следующими механизмами:

Активная секреция компонентов желчи (желчные кислоты) гепатоцитами;

Активный и пассивный транспорт некоторых веществ из крови (вода, глюкоза, электролиты, витамины, гормоны и др.);

Реабсорбция воды и некоторых веществ из желчных капилляров, протоков и желчного пузыря.

Процесс образования желчи осуществляется непрерывно, но интенсивность его изменяется вследствие регуляторных влияний. Акт еды, различные виды принятой пищи усиливают желчеобразование, т. е. образование желчи изменяется при раздражении рецепторов желудочно-кишечного тракта и внутренних органов, а также с помощью условно-рефлекторных механизмов.

Гуморальными стимуляторами желчеобразования являются: сама желчь, секретин, глюкагон, гастрин, холецистокинин-панкреозимин.

Раздражение блуждающих нервов, введение желчных кислот и высокое содержание в них полноценных белков усиливают желчеобразование и выделение с ней органических компонентов.

Основные принципы регуляции пищеварения:

1. Функции пищеварительной системы зависят от состава и количества пищи, что впервые было показано Павловым.

2. Существует определенная связь между активностью различных пищеварительных ферментов и качеством пищи. Если в пищеварительный канал поступают жиры, белки и углеводы, то в первую очередь перевариваются жиры, затем углеводы и, наконец, белки.

3. Питание может стимулировать не только секрецию ферментов, но и их синтез, а состав диеты – определять соотношение пищеварительных ферментов у данного организма

12.2. Значение работ И. П. Павлова в изучении
физиологических механизмов пищеварения

До начала исследований И. П. Павлова существовали весьма неточные фрагментарные сведения о пищеварительной системе. Основная ч

Нарушение эндокринных механизмов регуляции

Эндокринная регуляция связана с непосредственным влиянием одних гормонов на биосинтез и секрецию других. Гормональную регуляцию эндокринных функций осуществляет несколько групп гормонов.

Особую роль в гормональной регуляции многих эндокринных функций играет передняя доля гипофиза. В различных ее клетках образуется ряд тропных гормонов (АКТГ, ТТГ, ЛГ, СТГ), основное значение которых сводится к направленной стимуляции функций и трофики некоторых периферических эндокринных желез (кора надпочечников, щитовидная железа, гонады). Все тропные гормоны имеют белково-пептидную природу (олигопептиды, простые белки, гликопротеиды).

После экспериментального хирургического удаления гипофиза зависимые от него периферические железы подвергаются гипотрофии, в них резко снижается гормональный биосинтез. Следствием этого является подавление процессов, регулируемых соответствующими периферическими железами. Аналогичная картина наблюдается у человека при полной недостаточности функции гипофиза (болезнь Симмондса). Введение тропных гормонов животным после гипофизэктомии постепенно восстанавливает структуру и функцию зависимых от гипофиза эндокринных желез.

К негипофизарным гормонам, непосредственно регулирующим периферические эндокринные железы, относятся, в частности, глюкагон (гормон а-клеток поджелудочной железы, который наряду с влиянием на углеводный и липидный обмен в периферических тканях может оказывать прямое стимулирующее действие на Р-клетки той же железы, вырабатывающие инсулин) и инсулин (непосредственно контролирует секрецию катехоламинов надпочечниками и СТГ гипофизом).

Нарушения в системе обратной связи

В механизмах регуляции «гормон-гормон» существует сложная система регуляторных взаимосвязей - как прямых (нисходящих), так и обратных (восходящих).

Разберем механизм обратной связи на примере системы «гипоталамус-гипофиз-периферические железы».

Прямые связи начинаются в гипофизотропных областях гипоталамуса, которые получают по афферентным путям мозга внешние сигналы к запуску системы.

Гипоталамический стимул в форме определенного рилизинг-фактора передается в переднюю долю гипофиза, где усиливает или ослабляет секрецию соответствующего тропного гормона. Последний в повышенных или сниженных концентрациях через системную циркуляцию поступает к регулируемой им периферической эндокринной железе и изменяет ее секреторную функцию.

Обратные связи могут исходить как от периферической железы (наружная обратная связь), так и от гипофиза (внутренняя обратная связь). Восходящие наружные связи заканчиваются в гипо- таламусе и гипофизе.

Так, половые гормоны, кортикоиды, тиреоидные гормоны могут оказывать через кровь обратное влияние и на регулирующие их области гипоталамуса, и на соответствующие тропные функции гипофиза.

Важное значение в процессах саморегуляции имеют также внутренние обратные связи, идущие от гипофиза к соответствующим гипоталамическим центрам.

Таким образом, гипоталамус:

С одной стороны, принимает сигналы извне и посылает приказы по линии прямой связи к регулируемым эндокринным железам;

С другой стороны, реагирует на сигналы, идущие изнутри системы от регулируемых желез по принципу обратной связи.

По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Первые как бы самоограничивают, самокомпенсируют работу системы, вторые самозапускают ее.

При удалении периферической железы, регулируемой гипофизом, или при ослаблении ее функции секреция соответствующего тропного гормона возрастает. И наоборот: усиление ее функции приводит к торможению секреции тропного гормона.

Процесс саморегуляции функции желез по механизму обратной связи всегда нарушается при любой форме патологии эндокринной системы. Классическим примером может служить атрофия коры надпочечников при длительном лечении кортикостероидами (в первую очередь, глюкокортикоидными гормонами). Объясняется это тем, что глюкокортикоиды (кортикостерон, кортизол и их аналоги):

Являются мощными регуляторами углеводного и белкового обмена, вызывают повышение концентрации глюкозы в крови, тормозят синтез белка в мышцах, соединительной ткани и лимфоидной ткани (катаболический эффект);

Стимулируют образование белка в печени (анаболический эффект);

Повышают резистентность организма к различным раздражителям (адаптивный эффект);

Обладают противовоспалительным и десенсибилизирующим действием (в больших дозах);

Являются одним из факторов, поддерживающих артериальное давление, количество циркулирующей крови и нормальную проницаемость капилляров.

Указанные эффекты глюкокортикоидов обусловили их широкое клиническое применение при заболеваниях, в основе патогенеза которых лежат аллергические процессы либо воспаление. В этих случаях вводимый извне гормон по механизму обратной связи тормозит функцию соответствующей железы, но при длительном введении приводит к ее атрофии. Поэтому больные, прекратившие лечение препаратами глюкокортикоидных гормонов, попадая в ситуацию, когда под влиянием повреждающих факторов (операция, бытовая травма, интоксикация) у них развивается стрессовое состояние, не отвечают адекватным усилением секреции собственных кортикостероидов. В результате у них может развиться острая надпочечниковая недостаточность, которая сопровождается сосудистым коллапсом, судорогами, развитием комы. Смерть у таких больных может наступить через 48 часов (при явлениях глубокой комы и сосудистого коллапса). Аналогичная картина может наблюдаться при кровоизлиянии в надпочечники.

Значение механизма обратной связи для организма можно рассмотреть также на примере викарной гипертрофии одного из надпочечников после хирургического удаления второго (односторонняя адреналэктомия). Такая операция вызывает быстрое падение уровня кортикостероидов в крови, что усиливает через гипоталамус адренокортикотропную функцию гипофиза и приводит к повышению концентрации АКТГ в крови, следствием которого является компенсаторная гипертрофия оставшегося надпочечника.

Длительный прием тиреостатиков (или антитиреоидных веществ), подавляющих биосинтез гормонов щитовидной железы (метилурацил, мерказолил, сульфаниламиды), вызывает усиление секреции тиреотропного гормона, а это, в свою очередь, обусловливает разрастание железы и развитие зоба.

Важную роль механизм обратной связи играет также в патогенезе адреногенитального синдрома.

Неэндокринная (гуморальная) регуляция

Неэндокринная (гуморальная) регуляция - регулирующее действие на эндокринные железы некоторых негормональных метаболитов.

Этот способ регуляции в большинстве случаев является, по существу, самонастройкой эндокринной функции. Так, глюкоза, гуморально действуя на эндокринные клетки, изменяет интенсивность продукции инсулина и глюкагона поджелудочной железой, адреналина мозговым слоем надпочечников, СТГ аденогипофизом. Уровень секреции паратгормона околощитовидными железами и кальцитонина щитовидной железой, контролирующих кальциевый обмен, в свою очередь, регулируется концентрацией ионов кальция в крови. Интенсивность биосинтеза альдостерона корой надпочечников обусловлена уровнем ионов натрия и калия в крови.

Неэндокринная регуляция эндокринных процессов представляет собой один из важнейших способов поддержания метаболического гомеостаза.

Для ряда желез (а- и (3-клетки островкового аппарата поджелудочной железы, околощитовидные железы) гуморальная регуляция негормональными агентами по принципу самонастройки имеет первостепенное физиологическое значение.

Особый интерес приобретает образование негормональных факторов стимуляции деятельности эндокринных желез в условиях патологии. Так, при некоторых формах тиреотоксикоза и воспаления щитовидной железы (тиреоидит) в крови больных появляется длительно действующий тиреоидный стимулятор (longactingthyroidstimulator - LATS.

LATS представлен гормонально активными аутоантителами (IgG), вырабатываемыми к патологическим компонентам (аутоантигенам) клеток щитовидной железы. Аутоантитела, избирательно связываясь с клетками щитовидной железы, специфически стимулируют в ней процессы секреции тиреоидных гормонов, приводя к развитию патологической гиперфункции. Они действуют аналогично ТТГ, усиливая процессы синтеза и секреции щитовидной железой тироксина и трийодтиронина.

Не исключено, что аналогичные метаболиты могут образовываться и к специфическим белкам других эндокринных желез, вызывая нарушение их функции.

Периферические (внежелезистые) механизмы регуляции

Функция той или иной эндокринной железы зависит также от величины концентрации гормонов в крови, уровня их резервирования комплексообразующими (связывающими) системами крови, скорости их захвата периферическими тканями. В развитии многих эндокринных заболеваний весьма значительную роль могут играть:

1) нарушение инактивации гормонов в тканях и

2) нарушение связывания гормонов белками;

3) образование антител к гормону;

4) нарушение соединения гормона с соответствующими ре- цепторами в клетках-мишенях;

5) наличие антигормонов и их действие на рецепторы по меха- низму конкурентного связывания.

Антигормоны - вещества (в том числе гормоны), имеющие сродство к рецепторам данного гормона и взаимодействующие с ними. Занимая рецепторы, они блокируют эффект данного гормона.

Патологические процессы в железе – эндокринопатии

Одной из причин нарушения нормальных взаимодействий в эндокринной системе являются патологические процессы в самих эндокринных железах, вследствие прямого поражения одной или нескольких из них. В патологических условиях возможно несколько вариантов нарушения деятельности эндокринных желез:

1) не соответствующая потребностям организма чрезмерно высокая инкреция (гиперфункция);

2) не соответствующая потребностям организма чрезмерно низкая инкреция (гипофункция);

3) качественное нарушение гормонообразования в железе, качественное нарушение инкреции (дисфункция).

Ниже приведена классификация эндокринопатии.

1. По характеру изменения функции: гиперфункция, гипофункция, дисфункция, эндокринные кризы.

Дисфункция - нарушение соотношений между гормонами, выделяемыми одной и той же железой. Примером может служить нарушение соотношений между эстрогенами и прогестероном, считающееся важным фактором патогенеза фибромиомы матки.

Эндокринные кризы - острые проявления эндокринной патологии - могут быть гипер- и гипофункциональными (тиреотоксичекий криз, гипотиреоидная кома и др.).

2.По происхождению: первичные (развивающиеся в результате первичного повреждения ткани железы) и вторичные (развивающиеся в результате первичного повреждения гипоталамуса).

3.По распространенности нарушений: моногландулярные и полигландулярные.