Клонирование органов человека. Клонирование организмов. Может показаться, что РПЦ разрешает клонирование в терапевтических целях, но это не так

Сообщения о разрешении работ по клонированию органов человека, промелькнувшие в средствах массовой информации, звучат интригующе фантастично. К клонированным лягушкам и овечкам вроде бы все уже привыкли. Неужели на подходе штамповка печени, почек, сердца и легких? Давайте разбираться.

Для того чтобы вырастить в лаборатории, к примеру, человеческую почку и успешно пересадить ее пациенту, необходимо решить две проблемы. Первая – проблема отторжения чужеродных клеток и тканей. Зачем делать искусственный орган, если можно взять природный. Высокий, к сожалению, уровень смертности в мире от всевозможных несчастных случаев поставляет материал для подобных пересадок. Беда в том, что иммунная система реципиента (т.е. человека, которому пересадили орган) будет реагировать на чужие клетки так же, как она реагирует на вирусы гриппа или краснухи, – она будет эти клетки убивать. Не будем сейчас вдаваться в тонкости, почему так происходит. На эту тему написано много популярных статей и книг. Существует три способа, которые позволяют проблему отторжения обойти.

Можно подавить иммунитет реципиента специальными лекарствами – иммуносупрессорами. Неплохо для предотвращения отторжения, но в этом случае пациент будет страдать от нежелательных побочных эффектов. В частности, если иммунную систему «выключить», активизируются всевозможные патогенные микроорганизмы, которых в теле любого человека хватает. Каждый из нас представляет собой настоящий ходячий зоопарк, где в клетках сидят различные бактерии, вирусы, всевозможные грибки. Их постоянно держит под контролем иммунная система.

Второй вариант – подобрать орган от такого донора, клетки которого по целому ряду показателей будут напоминать клетки реципиента. Другими словами, надо найти орган-двойник. Для этого в развитых странах мира создаются целые банки данных. Шансов на успех все равно немного. Биологи насчитывают десятки параметров, по которым иммунная система может отличать «своих» от «чужих». Красные кровяные клетки обладают всего двумя белками, наличие или отсутствие которых и создает четыре основные группы крови. Мало кому из неспециалистов известно, что на самом деле таких белков на поверхности клеток найдено уже много десятков, и случайное совпадение их индивидуальной комбинации маловероятно. Поэтому в очереди за нужной для пересадки почкой можно стоять годами.

Наконец, третий путь, наиболее перспективный и наименее разработанный, – создать орган из клеток, которые не отторгаются иммунной системой. Такие клетки существуют. Это некоторые клетки плода. Они еще не успели приобрести специфичные метки, по которым их может распознать и собственная, и чужая иммунные системы. Если провести очень далекую аналогию, то это клетки-детеныши, которых принимают на воспитание любые взрослые иммунные системы. О возможности выращивания таких клеток, взятых на самых ранних стадиях развития эмбриона, в основном и велась в последнее время дискуссия в научных и околонаучных кругах. Однако между выращиванием в массе таких клеток и получением из них органа расстояние примерно такое же, как от первых плавильных печей до космического корабля.

Кстати, «невидимые» для иммунной системы клетки есть и в теле взрослого человека. Например, глубинные клетки кожи. Их можно выделять и выращивать на питательных средах. В результате получаются тонкие лоскутки «искусственной» кожи, которые с успехом используются в противоожоговой терапии в нашей стране и за рубежом.

Мысль о том, что если орган для пересадки нельзя достать, то его надо сделать, высказывал еще в конце 1980-х гг. директор программы по пересадке печени в Бостонской детской больнице доктор Чарльз Ваканти. Однако орган – очень сложная система: он включает множество разнообразных тканей, его пронизывают кровеносные сосуды, нервы. Как воссоздать эту систему и как воспроизвести нужную форму органа в лаборатории? Это вторая и пока практически не решенная проблема на пути создания (клонирования) органов для пересадок.

Кое-какие подходы для ее решения, впрочем, намечаются. Возьмите, например, нос и уши. Их форма создается хрящом, а хрящ устроен достаточно просто. В нем нет ни кровеносных сосудов, ни нервных окончаний. Чтобы получить искусственное ухо, делают следующее. Из пористого полимера отливают нужную форму и «заселяют» ее хондроцитами – клетками, создающими натуральный хрящ. Сами по себе хондроциты выращивать вне организма удается, однако уши и носы в пластиковых чашках не вырастают. Хондроциты сами по себе такие сложные пространственные формы создавать не умеют. Однако им можно помочь, расположив их в пространстве нужным образом. Через некоторое время волокна полимера, из которого был сделан шаблон, рассасываются, и получается «живой» хрящ нужной формы.

Согласитесь, это уже кое-что, хотя до почки или печени еще далеко. Они состоят из разных тканей, и вряд ли удастся «собирать» из них эти органы наподобие того, как на конвейере собирают из отдельных деталей автомобиль. Здесь человеческая и биологическая технологии расходятся. Человеческая техника построена на сборке сложных агрегатов из блоков, которые создаются заранее и отдельно. Биологическая техника основана на постепенном, пошаговом «выращивании» структур из развивающихся зачатков. Никаких заранее созданных частей при этом не существует. Все они формируются в процессе развития. Если ученым удастся заставить выделенные клетки действовать таким же образом, то появится, хотя и отдаленный, шанс на получение сложных искусственных органов вроде печени или почек.

Наконец, существует еще один путь развития трансплантологии. Вы замечали – человечество научилось летать, но делает оно это совсем не так, как птицы. Самолеты крыльями не машут. Возможен такой путь и в медицине. Более того, он уже постепенно осуществляется. Создан и работает прибор «искусственная почка». Пока живых клеток в нем нет. Но, быть может, в будущем удастся создать этакого «кентавра» – начиненный электроникой орган, в состав которого будут входить живые ткани. Он не будет копией натуральной почки, но функции ее выполнять станет отменно.

Пока все сказанное лишь далекая перспектива, которую, однако, с осторожным оптимизмом можно наметить. До «клонирования», т.е. до массового производства таких сложных органов, как почки, печень или селезенка, еще очень далеко. Поэтому берегите свое здоровье!

Сообщения о разрешении работ по клонированию органов человека, промелькнувшие в средствах массовой информации, звучат интригующе фантастично. К клонированным лягушкам и овечкам вроде бы все уже привыкли. Неужели на подходе штамповка печени, почек, сердца и легких? Давайте разбираться.

Для того чтобы вырастить в лаборатории, к примеру, человеческую почку и успешно пересадить ее пациенту, необходимо решить две проблемы. Первая – проблема отторжения чужеродных клеток и тканей. Зачем делать искусственный орган, если можно взять природный. Высокий, к сожалению, уровень смертности в мире от всевозможных несчастных случаев поставляет материал для подобных пересадок. Беда в том, что иммунная система реципиента (т.е. человека, которому пересадили орган) будет реагировать на чужие клетки так же, как она реагирует на вирусы гриппа или краснухи, – она будет эти клетки убивать. Не будем сейчас вдаваться в тонкости, почему так происходит. На эту тему написано много популярных статей и книг. Существует три способа, которые позволяют проблему отторжения обойти.

Можно подавить иммунитет реципиента специальными лекарствами – иммуносупрессорами. Неплохо для предотвращения отторжения, но в этом случае пациент будет страдать от нежелательных побочных эффектов. В частности, если иммунную систему «выключить», активизируются всевозможные патогенные микроорганизмы, которых в теле любого человека хватает. Каждый из нас представляет собой настоящий ходячий зоопарк, где в клетках сидят различные бактерии, вирусы, всевозможные грибки. Их постоянно держит под контролем иммунная система.

Второй вариант – подобрать орган от такого донора, клетки которого по целому ряду показателей будут напоминать клетки реципиента. Другими словами, надо найти орган-двойник. Для этого в развитых странах мира создаются целые банки данных. Шансов на успех все равно немного. Биологи насчитывают десятки параметров, по которым иммунная система может отличать «своих» от «чужих». Красные кровяные клетки обладают всего двумя белками, наличие или отсутствие которых и создает четыре основные группы крови. Мало кому из неспециалистов известно, что на самом деле таких белков на поверхности клеток найдено уже много десятков, и случайное совпадение их индивидуальной комбинации маловероятно. Поэтому в очереди за нужной для пересадки почкой можно стоять годами.

Наконец, третий путь, наиболее перспективный и наименее разработанный, – создать орган из клеток, которые не отторгаются иммунной системой. Такие клетки существуют. Это некоторые клетки плода. Они еще не успели приобрести специфичные метки, по которым их может распознать и собственная, и чужая иммунные системы. Если провести очень далекую аналогию, то это клетки-детеныши, которых принимают на воспитание любые взрослые иммунные системы. О возможности выращивания таких клеток, взятых на самых ранних стадиях развития эмбриона, в основном и велась в последнее время дискуссия в научных и околонаучных кругах. Однако между выращиванием в массе таких клеток и получением из них органа расстояние примерно такое же, как от первых плавильных печей до космического корабля.

Кстати, «невидимые» для иммунной системы клетки есть и в теле взрослого человека. Например, глубинные клетки кожи. Их можно выделять и выращивать на питательных средах. В результате получаются тонкие лоскутки «искусственной» кожи, которые с успехом используются в противоожоговой терапии в нашей стране и за рубежом.

Мысль о том, что если орган для пересадки нельзя достать, то его надо сделать, высказывал еще в конце 1980-х гг. директор программы по пересадке печени в Бостонской детской больнице доктор Чарльз Ваканти. Однако орган – очень сложная система: он включает множество разнообразных тканей, его пронизывают кровеносные сосуды, нервы. Как воссоздать эту систему и как воспроизвести нужную форму органа в лаборатории? Это вторая и пока практически не решенная проблема на пути создания (клонирования) органов для пересадок.

Кое-какие подходы для ее решения, впрочем, намечаются. Возьмите, например, нос и уши. Их форма создается хрящом, а хрящ устроен достаточно просто. В нем нет ни кровеносных сосудов, ни нервных окончаний. Чтобы получить искусственное ухо, делают следующее. Из пористого полимера отливают нужную форму и «заселяют» ее хондроцитами – клетками, создающими натуральный хрящ. Сами по себе хондроциты выращивать вне организма удается, однако уши и носы в пластиковых чашках не вырастают. Хондроциты сами по себе такие сложные пространственные формы создавать не умеют. Однако им можно помочь, расположив их в пространстве нужным образом. Через некоторое время волокна полимера, из которого был сделан шаблон, рассасываются, и получается «живой» хрящ нужной формы.

Согласитесь, это уже кое-что, хотя до почки или печени еще далеко. Они состоят из разных тканей, и вряд ли удастся «собирать» из них эти органы наподобие того, как на конвейере собирают из отдельных деталей автомобиль. Здесь человеческая и биологическая технологии расходятся. Человеческая техника построена на сборке сложных агрегатов из блоков, которые создаются заранее и отдельно. Биологическая техника основана на постепенном, пошаговом «выращивании» структур из развивающихся зачатков. Никаких заранее созданных частей при этом не существует. Все они формируются в процессе развития. Если ученым удастся заставить выделенные клетки действовать таким же образом, то появится, хотя и отдаленный, шанс на получение сложных искусственных органов вроде печени или почек.

Наконец, существует еще один путь развития трансплантологии. Вы замечали – человечество научилось летать, но делает оно это совсем не так, как птицы. Самолеты крыльями не машут. Возможен такой путь и в медицине. Более того, он уже постепенно осуществляется. Создан и работает прибор «искусственная почка». Пока живых клеток в нем нет. Но, быть может, в будущем удастся создать этакого «кентавра» – начиненный электроникой орган, в состав которого будут входить живые ткани. Он не будет копией натуральной почки, но функции ее выполнять станет отменно.

Пока все сказанное лишь далекая перспектива, которую, однако, с осторожным оптимизмом можно наметить. До «клонирования», т.е. до массового производства таких сложных органов, как почки, печень или селезенка, еще очень далеко. Поэтому берегите свое здоровье!

Ежегодно жизни тысяч людей по всему миру спасают операции по трансплантации органов. Но десятки тысяч пациентов гибнут из-за того, что донорских органов им не досталось. Трансплантология в последнее десятилетие развивается очень быстро, но главный вопрос все еще не решен: где взять органы для пересадки?

Вариантов несколько:
- взять орган от донора, и почти всю жизнь пациента подавлять иммунитет, чтобы побороть отторжение органа;
- заменить искусственным аналогом (в случаях, когда это возможно);
- вырастить новый «орган в пробирке».
Безусловно, орган из пробирки решит множество проблем: организм примет его как свой, а, значит, не будет отторжения, при этом это будет полностью функциональный орган, а не «протез», лишь частично восполняющий функции. А значит, пациент, получивший такой орган, сможет с большей вероятностью вернуться к полноценной жизни.
Прекрасное решение, но как вырастить такой орган и какие вообще органы возможно вырастить «в пробирке»? И современная наука уже много лет бьётся над решением этих проблем.
Клонирование органов
Наверное многие помнят овечку Долли, которую клонировали в Рослинском институте, в Шотландии, близ Эдинбурга в 1996 году. Тогда в прессе много говорили о возможности клонирования органов. Но научное сообщество поспешило опровергнуть возможность клонирования отдельных органов человека, т. к. соматические (не половые) клетки всего организма имеют одинаковый генетический набор.
Конечно, можно сделать клона – такого же полноценного человека, которого к тому же сначала надо вырастить, и лишь потому него взять органы. Но это было бы, по меньшей мере, неэтично. Единственный перспективный путь – получить органы invitro (вне живого организма).
Клеточные культуры помогут в поисках Уже давно в рутинной работе в научно-исследовательских целях учёными используются клеточные культуры. Клеточные культуры – это клетки человека либо животных, которые растут на специальных питательных средах. Изначально в качестве сред использовались плазма или аллантоисная жидкость, однако со временем изобрели среды постоянного состава. Основные требования к средам – поддержание определённого уровня кислотности (как правило Ph6 - 7,5), осмотического давления, а также наличие необходимых питательных веществ.
Среды для культивирования могут иметь различный состав. На питательной среде клетки культуры начинают активно делиться. В течение некоторого периода времени клетки покрывают всю поверхность культуральной плашки. После этого исследователи собирают клетки, делят их на части и помещают в новые плашки. Процесс перемещения клеток в новые плашки называется пересевом и может многократно повторяться в течение многих месяцев.
Цикл пересева клеток называется пассаж. Однако такое ведение клеток в культуре характерно для трансформированных (изменённых) клеток, которые зачастую уже не похожи на те, из которых были получены. Обычные же соматические клетки взрослого человека очень ограничены в возможностях самовоспроизведения, причём, чем более высоко специализирована клетка, тем меньше поколений клеток она может дать. Другими словами, взять обычные клетки и вырастить из них хоть что-нибудь (даже не целый орган) практически невозможно.
И всё-таки есть в нашем теле клетки, которые могут давать много поколений потомков: это стволовые клетки (в костном мозге, жировой ткани, мозге и др.). Огромным прорывом было открытие в организме взрослого человека стволовых клеток.
На сегодняшний день известно множество стволовых клеток в человеческом организме. С их помощью надеются также вскоре лечить множество болезней человека, однако, как и везде в физиологии и медицине, в этой перспективе множество подводных камней, например один из них – опасность опухолеобразования. Но если использовать эти клетки для создания биоинженерных органов, «органов из пробирки», то возможно удастся избежать этого риска.
Органы – это целые системы клеток разных типов, которые взаимодействуют друг с другом, имеют определённое пространственное строение и выполняют определённую функцию. Потому мало просто суметь вырастить клетки на питательной среде, необходимо ещё и «заставить» их взаимодействовать, создавать структуру.
И эти вопросы старается решить метод «органной культуры». Когда на питательных средах вместе могут сокультивироваться уже несколько типов клеток, которые взаимодействуют и создают определённые структуры. И всё же органные культуры – это не органы, а лишь системы клеток.Наука в поискеВ настоящее время по всему миру множество учёных ведёт поиски возможностей выращивания если не целых органов, то хотя бы«органоидов», которые смогут выполнять часть функций того или иного органа. Это технологии будущего, т. к. они основаны на использовании технологий культивирования из стволовых клеток необходимых человеку тканей, что в настоящее время является проблемой, также находящейся на стадии научных исследований и разработок.
Одним из методов, близких к применению, пожалуй, можно считать запатентованный в 1999г. способ восстановления целостности гиалинового хряща суставов, путем введения в сустав взвеси аутологичных костномозговых стромальных клеток-предшественников, выращенных in vitro. (Патент на изобретение №: 2142285 Автор: Чайлахян Р. К.) В этом случае используется выращивание «в пробирке» не целого органа, в данном случае хряща, а лишь культивирование клеток-предшественников хряща, которые затем вводятся в сустав.
В настоящее время уже проходят клиническое испытание метод лечения остеоартритов при помощи трансплантации клеток. Этот метод состоит в удалении зрелых клеток хряща пациента (хондроцитов) и культивирования их в определенных условиях in vitro. Когда число клеток увеличится, пациенту проводят хирургическую операцию по имплантированию клеток в коленный сустав. Имплантированные хондроциты в последствии помогут образованию здорового хряща. В отличие от предыдущего метода, в данном случае клетки вводятся не в виде суспензии, а на подложке, что требует оперативного вмешательства, однако дает лучшую приживаемость клеток.
В 2005-2006 году появилась информация о возможности выращивания костно-дентального эквивалента, то есть зуба. Эксперименты былипроведены на крысах и свиньях (когда костно-дентальный эквивалент свиньи выращивался в тканях крысы). Зачатки коренных зубов получали из свиней 6-месячного возраста. Из них выделяли клетки и высаживали их на специальные матрицы из синтетических полимеров. Полученные конструкции помещали в сальник бестимусных крыс (бестимусные крысы – животные со сниженным иммунитетом для снижения вероятности отторжения помещённой конструкции), то есть крысы использовались как питательная среда.
Одновременно создавали эквивалент костной ткани. Для этого на те же синтетические полимеры наносили остеобласты (клетки из которых развиваются костные клетки) тех же животных. Эквивалент костной ткани культивировался в роторном биореакторе в течение 10 дней. Через 4 недели эквивалент зуба извлекали из сальника и совмещали с эквивалентом костной ткани. Полученную конструкцию снова помещали в сальник бестимусных крыс на 8 недель.
В результате, эквивалент зуба, помещенного в сальник крыс, при гистологическом исследовании имел строение, характерное для нормального зуба уже через 4 месяца. Композиция костной ткани с эквивалентом зуба при гистологическом исследовании имела структуру губчатой кости, а интегрированный в нее зуб состоял из дентина, эмали и пульпы с сосудами, как полноценный орган. Однако аналогичных исследований с тканями людей пока не проводилось.
Кроме того, сейчас очень много работ появляется в новом направлении: это некий синтез донорского органа и клеток реципиента. Для этого необходимо из донорского органа удалить все клетки при помощи специальных химических агентов. При этом все внеклеточные структуры сохраняются. Оставшийся «каркас» органа затем заселяется клетками реципиента. Так решается вопрос и с сохранением архитектоники органа, и с преодолением иммунного отторжения органа донора.
По данному принципу уже получены такие органы как печень и лёгкие, однако все испытания пока проводятся на животных.Так, в октябре 2010г. появилась публикация американских исследователей, в которой они описали создание биоинженерной печени. Это органоподобная структура, которая может выполнять функции печени. Однако о создании полноценной печени в культуре говорить ещё рано, хотя, несомненно, это уже большой шаг в данном направлении.
Совсем недавно вышла новая статья, в которой авторы говорят о создании биоинженерного лёгкого, моделирование проводили на крысах с использованием человеческих клеток. Полученный орган трансплантировали крысе и он выполнял функции лёгкого. Однако исследования на приматах, а уж тем более на людях, пока не проводились.
Таким образом, «органы из пробирки» - это, несомненно, технологии будущего, которые уже сегодня могут становиться реальностью. Однако как и любые новые разработки, пока это единичные модели, они стоят больших и физических, и финансовых затрат (как, скажем, уникальные автомобили, собранные вручную), однако, когда-нибудь они станут конвейерными технологиями.

С момента изобретения термина «клон» в 1963 году генная инженерия пережила несколько колоссальных скачков: мы научились извлекать гены, разработали метод полимеразной цепной реакции, расшифровали геном человека и клонировали ряд млекопитающих. И все же, на человеке эволюция клонирования остановилась. С какими этическими, религиозными и технологическими проблемами она столкнулась? Т&P изучили историю создания генетических копий, чтобы понять, почему мы до сих пор не клонировали себя.

Слово «клонирование» (англ. «cloning») происходит от древнегреческого слова «κλών» - «веточка, отпрыск». Этот термин описывает целый ряд разнообразных процессов, которые позволяют создать генетическую копию биологического организма или его части. Внешний вид такой копии может отличаться от оригинала, однако с точки зрения ДНК она всегда полностью ему идентична: группа крови, свойства тканей, сумма качеств и предрасположенностей остаются теми же, что и в первом случае.

История клонирования началась больше ста лет назад, в 1901 году, когда немецкому эмбриологу Хансу Шпеману удалось разделить двухклеточный зародыш саламандры пополам, и вырастить из каждой половины полноценный организм. Так ученым стало известно, что на ранних стадиях развития необходимый объем информации содержит каждая клетка эмбриона. Год спустя другой специалист, генетик из США Уолтер Саттон предположил, что эти сведения находятся в клеточном ядре. Ханс Шпеман принял эту информацию к сведению и через 12 лет, в 1914 году, успешно провел опыт по пересадке ядра из одной клетки в другую, а спустя еще 24 года, в 1938 году, предположил, что ядро можно пересадить в безъядерную яйцеклетку.

Затем развитие клонирования практически остановилось, и только в 1958 году британскому биологу Джону Гердону удалось успешно клонировать шпорцевую лягушку. Для этого он использовал неповрежденные ядра соматических (не принимающих участие в размножении) клеток организма головастика. В 1963 году другой биолог, Джон Холдейн впервые использовал термин «клон», описывая работы Гердона. Тогда же китайский эмбриолог Тун Дичжоу провел эксперимент по переносу ДНК взрослого карпа-самца в икринку женской особи и получил жизнеспособную рыбу, - а заодно и звание «отца китайского клонирования». После этого было проведено несколько успешных экспериментов по клонированию живых организмов: моркови, выращенной из изолированной клетки (1964 год), мышей (1979 год), овцы, чей организмы был создан из эмбриональных клеток (1984 год), двух коров, «рожденных» из дифференцированных клеток однонедельного эмбриона и клеток зародыша (1986 год), еще двух овец по кличке Меган и Мораг (1995 год) и, наконец, Долли (1996 год). И все же, для ученых Долли стала скорее вопросом, чем ответом на вопрос.

Медицинские проблемы: аномалии и «старые» теломеры

Именно Долли на сегодняшний день принадлежит звание самого знаменитого клона в истории дисциплины. Ведь она была создана на основе генетического материала взрослой особи, а не зародыша или эмбриона, как ее предшественницы и предшественники. Однако источник ДНК, согласно предположением ряда ученых, стал для клонированной овцы проблемой. Концы хромосом в организме Долли - теломеры - оказались такими же короткими, как и у ее ядерного донора - взрослой овцы. За длину этих фрагментов в организме отвечает специфический фермент - теломераза. В случае со взрослым организмом млекопитающего она, чаще всего, активна только в половых и стволовых клетках, а также в клетках лимфоцитов в момент иммунного ответа. В тканях, состоящих из такого материала, хромосомы постоянно удлиняются, а вот во всех остальных - укорачиваются после каждого деления. Когда хромосомы достигают критической длины, клетка перестает делиться. Вот почему теломераза считается одним из главных внутриклеточных механизмов, который регулирует продолжительность жизни клеток.

Сегодня нельзя сказать точно, стали ли «старые» хромосомы Долли причиной ее ранней для овец кончины. Она прожила 6,5 лет, что составляет чуть больше половины обычной для этого вида продолжительности жизни.

Специалистам пришлось усыпить Долли, поскольку у нее развился вызванный вирусом аденоматоз (доброкачественные опухоли) легких и тяжелый артрит. Обыкноывенные овцы тоже нередко страдают этими заболеваниями, но чаще в конце жизни, так что исключать влияние длины теломер Долли на деградацию тканей, очевидно, нельзя. Ученым, которые хотели проверить гипотезу о «старых» теломерах клонированных живых существ, не удалось ее подтвердить: искусственное «состаривание» ядер клеток молодого теленка путем их длительного культивирования в пробирке после рождения его клонов дало совершенно противоположный результат: длина теломер в хромосомах новорожденных телят сильно увеличилась и даже перегнала нормальные показатели.

Теломеры клонированных животных могут оказаться короче, чем у их обыкновенных собратьев, однако это не единственная проблема. Большая часть эмбрионов млекопитающих, полученных путем клонирования, погибает. Момент рождения тоже является критическим. Новорожденные клоны часто страдают гигантизмом, умирают от респираторного дистресса, дефектов развития почек, печени, сердца, мозга, а также отсутствия в крови лейкоцитов. Если животное все-таки выживает, нередко к старости у него развиваются другие аномалии: например, клонированные мыши в преклонном возрасте часто страдают ожирением. Тем не менее, потомство клонированных теплокровных существ не наследует пороков их физиологии. Это позволяет говорить о том, что изменения ДНК и хроматина, которые могут возникать при пересадке донорского ядра, являются обратимыми и стираются, когда геном проходит через зародышевый путь: ряд поколений клеток от первичных половых клеток зародыша до половых продуктов взрослого организма.

Общественный аспект: как социализировать клона

Клонирование не позволяет полностью повторить сознание человека, ведь далеко не все в процессе его формирование обусловлено генетикой. Вот почему о полной идентичности донорской и клонированной личности речи идти не может, а потому практическая ценность клонирования в действительности намного ниже, чем то, как традиционно видят ее в своем сознании писатели- и режиссеры-фантасты. И все же, сегодня в любом случае остается неясным, как создать для клонированного человека место в обществе. Какое имя он должен носить? Как в его случае оформить отцовство, материнство, брак? Как решать правовые вопросы имущества и наследования? Очевидно, воссоздание человека на основе донорского генетического материала потребовало бы появления особой общественной и правовой ниши. Ее возникновение изменило бы ландшафт привычной системы семейных и социальных отношений намного сильнее, чем, к примеру, регистрация однополых браков.

Религиозный аспект: человек в роли Бога

Представители крупнейших религий и конфессий выступают против клонирования человека. Папа Римский Иоанн Павел II, который был предстоятелем Римско-католической церкви с 1978 по 2005 год, сформулировал ее позицию так: «Путь, указанный Христом, - это путь уважения человека, и любые исследования должны иметь целью познание его в его истинности, чтобы потом служить ему, а не манипулировать им в соответствии с проектом, который иногда высокомерно считается лучшим, чем проект самого Создателя. Для христианина тайна бытия настолько глубока, что она неисчерпаема для человеческого познания. Человек же, который с самонадеянностью Прометея возносит себя до арбитра между добром и злом, превращает прогресс в собственный абсолютный идеал и впоследствии бывает раздавлен им. Прошедший век с его идеологиями, которыми печально отмечена его трагическая история, и войнами, избороздившими его, стоит перед глазами всех как демонстрация результата такой самонадеянности».

Патриарх Русской православной церкви Алексий II, занимавший этот пост с 1990 по 2008 год, выступил против экспериментов по генетическому воссозданию человека еще жестче. «Клонирование человека - аморальный, безумный акт, ведущий к разрушению человеческой личности, бросающий вызов своему Создателю», - заявил патриарх. Далай-лама XIV также высказывался в отношении экспериментов по генетическому воссозданию человека с опаской. «Что касается клонирования, то, как научный эксперимент, оно имеет смысл, если принесет пользу конкретному человеку, но если применять его сплошь и рядом, в этом нет ничего хорошего», - заявил буддийский первосвященник.

Опасения верующих и служителей церкви вызывает не только тот факт, что в подобных экспериментах человек заступает за рамки традиционных способов воспроизведения своего вида и, по сути, берет на себя роль Бога, но и то, что даже в рамках одной попытки клонирования тканей с использованием эмбриональных клеток должно быть создано несколько зародышей, большая часть из которых погибнет или будет умерщвлена. В отличие от процесса клонирования, который предсказуемо не упоминается в Библии, о зарождении жизни человека в канонических христианских текстах информация есть. Псалом Давида 138:13-16 говорит: «Ибо Ты устроил внутренности мои и соткал меня во чреве матери моей. Славлю Тебя, потому что я дивно устроен. Дивны дела Твои, и душа моя вполне сознает это. Не сокрыты были от Тебя кости мои, когда я созидаем был в тайне, образуем был во глубине утробы. Зародыш мой видели очи Твои; в Твоей книге записаны все дни, для меня назначенные, когда ни одного из них еще не было». Это утверждение богословы традиционно трактуют как указание на то, что душа человека возникает не в момент его появления на свет, а раньше: между зачатием и рождением. Из-за этого уничтожение или гибель эмбриона может рассматриваться как убийство, а это противоречит одной из библейских заповедей: «Не убий».

Польза клона: воссоздавать органы, а не людей

Клонирование биологического материала человека в ближайшие десятилетия, тем не менее, может все-таки оказаться полезным и лишиться, наконец, своей «криминальной» мистической и этической составляющей. Современные технологии сохранения пуповинной крови позволяют брать из нее стволовые клетки для создания органов для пересадки. Такие органы идеально подходят человеку, поскольку несут в себе его собственный генетический материал и не отторгаются организмом. При этом для такой процедуры нет необходимости воссоздавать зародыш. Эксперименты для развития подобной технологии уже проводились: в 2006 году британским ученым удалось вырастить небольшую печень из клеток пуповинной крови зачатого и рожденного обычным способом младенца. Это произошло спустя несколько месяцев после его появления на свет. Орган получился небольшим: всего 2 см в диаметре, - однако его ткани были в порядке.

Тем не менее, сегодня более известны формы терапевтического клонирования, которые предполагают создание бластоцисты: эмбриона ранней стадии развития, состоящего из порядка 100 клеток. В перспективе бластоцисты, разумеется, являются людьми, так что их использование нередко вызывает такие же споры, как и клонирование с целью получения живого человека. Отчасти именно поэтому сегодня все формы клонирования, включая терапевтическое, во многих странах официально запрещены. Воссоздание человеческого биоматериала в терапевтических целях разрешается только в США, Индии, Великобритании и некоторых частях Австралии. Технологии сохранения пуповинной крови сегодня используются нередко, однако пока ученые рассматривают ее лишь как потенциальное средство борьбы с диабетом I типа и сердечнососудистыми заболеваниями, а не как возможный ресурс для создания органов для трансплантации.