Влияние электромагнитного излучения на человека и защита от излучений. Влияние электромагнитных излучений на организм человека

Источники электромагнитного излучения природного, техногенного происхождения создают общий фон среды обитания. Влияние ЭМ-поля на жизнедеятельность живых организмов является доказанным фактом.

Естественные излучатели

Естественная среда обитания человека – электромагнитное пространство: геомагнитное поле, солнечная радиация, грозовые разряды. Человек является одновременно излучателем и приемником ЭМВ. Обменные процессы в организме имеют ионную природу. Трудно представить, какие формы примет жизнь при отсутствии электромагнетизма. Поверхность Земли имеет положительный статический заряд 130 V/m.

Чем выше над уровнем моря, тем меньше статический заряд:

  • 100 м – 100 V/m;
  • 1 000 м – 45 V/m;
  • 20 000 м – 1 V/m.

Грозовые облака меняют напряженность ЭМП в 30 раз без разрядов молний. Электрическая проводимость атмосферного воздуха колеблется в зависимости от температуры, влажности. Облачная погода, туман повышают концентрацию ионов, увеличивая общий потенциал поверхности.

Человеческий организм приспособлен к вариативности электромагнитного поля Земли. Обменные процессы в организме проходят в ионной форме. Атмосфера защищает от воздействия жесткой радиации. Ядерные реакции на Солнце, звездах других систем являются причиной ультрафиолетовых, инфракрасных, рентгеновских волн. Они наносят вред здоровью даже при минимальных дозах. Обладая высокой частотой и энергией, разрушают клетки организма, могут вызвать необратимые последствия.

Переход заряженных частиц в атоме или молекуле с одного уровня на другой во время ядерной реакции сопровождается энергетическим всплеском. Возникают новые частицы со своими волновыми характеристиками. Колебания электромагнитных излучений имеют разную частоту, от которой зависит длина волны, энергия.

По мощности (частоте) излучение подразделяется на 6 типов:

  • низкочастотное;
  • радиоволновое;
  • инфракрасное;
  • световое;
  • ультрафиолетовое;
  • рентгеновское.

Технические средства, созданные человеком, имеют такой же волновой спектр. Они могут совмещаться, усиливая воздействия, или диссонировать, создавая помехи для функционирования.

Техногенные волновые излучатели

Человек научился воспроизводить ЭМИ для своих целей. Источники электромагнитного поля являются необходимой частью современной жизни.

Воспроизводятся в земных условиях:

  • высокочастотные – гамма и рентгеновские лучи;
  • среднечастотные – инфракрасные, световые, ультрафиолетовые;
  • низкочастотные – радио, микроволны.

Искусственные излучатели стали привычными и встречаются на каждом шагу:

  • компьютеры;
  • бытовая техника;
  • мобильные устройства;
  • передающие электро-, теле- и радиоустройства;
  • промышленные механизмы;
  • электротранспорт;
  • медицинское и научное оборудование.

Искусственные высоковольтные источники электромагнитных полей:

  • трансформаторы;
  • мониторы;
  • телевизоры.

Основные типы источников электромагнитного излучения: атомарный уровень и проводниковый. Примером проводникового излучателя является высоковольтная линия электропередач: поток свободных электронов совершает синхронные колебательные движения, создавая напряжение.

Воздействие искусственного ЭМ-фона

Линии электропередач создают напряженность, размеры которого зависят от передаваемого напряжения.

Санитарная зона определяется из расчета напряженности поля:

  • для ЛЭП 220 кВ расстояние составит 50 м;
  • для ЛЭП 750 кВ – 250 м;
  • для ЛЭП 1 150 кВ – 300 м.

Радиоволны различной частоты – основной источник возникновения ЭМ-шума:

  • радиолокация в аэропортах, на метеостанциях;
  • базовые станции мобильной связи;
  • теле-, радиостанции;
  • ППС спутниковой связи;
  • радиотелефоны.

Радары работают на высоких частотах (от 500 МГЦ до 100 ГГЦ). Мощные излучатели, работая в прерывистом режиме, тем не менее создают плотный энергетический потом на значительном расстоянии из-за круглосуточного характера работы. Аэропорты в городской черте – основной источник облучения жилых кварталов.

Приемопередающие станции мобильной связи используют частоты от 500 до 2 000 МГЦ. Деятельность станций зависит от нагрузки (количества абонентов на связи). Пиковые величины облучения приходятся на дневное время, в ночные часы равны нулю.

Телеизлучатели, расположенные на высоте от 100 м над землей, оказывают меньшее влияние на напряженность поверхностного поля, чем радиопередающие центры. Радиотрансляторы работают в диапазоне ультракоротких и сверхвысоких частот, охватывая зоны до 100 км по круговому радиусу. Неблагоприятному воздействию подвергается не только работающий персонал, но и прилегающая жилая застройка.

Станции спутниковой связи представляют угрозу для здоровья, если находиться в зоне действия узконаправленного энергетического потока. Мобильные телефоны не оказывают существенного влияния на фон. Трамвай, метро, троллейбус в среднем имеют показатель 50-80 мкТл.

ЭМ-загрязнение от бытовых электроприборов зависит от их мощности:

  • утюг, холодильник имеют предельно допустимый показатель 0,2 мкТл;
  • стиральная машина, электрочайник – 0,5 мкТл;
  • электроплита – 1-3 мкТл;
  • печь-СВЧ – 8мкТл;
  • пылесос – 100 мкТл.

Стандарты ограничивают мощность статического напряжения оборудования и техники, применяемых в быту от 1 до 20 KV/m. Функционирование технических средств может быть затруднено из-за ЭМ-помех.

ЭМ-совместимость

Внешние возмущения от грозовых разрядов резко меняют частотный диапазон электростатического поля.

Последствия ударов молний – выход из строя:

  • телекоммуникационных систем;
  • беспроводной связи;
  • линий электропередач;
  • падение мощности оборудования (на производстве, электротранспорте и пр. видах).

Совмещение на одной площади нескольких излучателей ухудшает или мешает их работе. Микроволновая печь, имеющая частоту излучения в 100 ГГЦ, затруднит прием сигнала на мобильный телефон в радиусе 50 см. По этой причине запрещено использование смартфонов во время медицинского обследования на компьютерном томографе, МРТ, УЗИ, ЭКГ.

Во избежание помех разрабатываются стандарты совместимости (ЭМС). Промышленная застройка не возможна без соблюдения стандартов ЭМС. Для этого проводится обследование на обстановку (ЭМО), помехи (ЭМП), помехоустойчивость.

ЭМС учитывается при выпуске предметов широкого потребления, в которых учтены медицинские показания безопасного использования. Рекомендуется прибегнуть к дополнительным мерам безопасности при постоянном применении.

Безопасные расстояния, на которых воздействие ЭМИ заканчивается:

  • мобильный телефон – 2,5 см;
  • телевизор – 1 м;
  • печь СВЧ – 1 м;
  • системный блок – 0.5 м;
  • монитор – 0,5 м.

Напряженность у земной поверхности, бытовая техника (кроме СВЧ), средства связи, коммуникаций относятся к безвредным ЭМИ.

Измерители волновых излучений

Для определения напряженности применяется флюксметр (веберметр). Принцип действия прибора заключается в фиксации магнитного потока при помощи катушки и гальванометра. Магнитные величины взаимосвязаны с электрическими, что объясняет применение прибора.
Флюксметр используют:

  • в промышленных установках (на мостовых кранах, использующих переменные магниты для складирования черных металлов);
  • при строительстве меридиональных трубопроводов большого сечения (для измерения магнитного поля);
  • для защиты электроустановок от ЭМ-бурь, вызванных вспышкой на Солнце (показания веберметра позволяют вовремя принять ограничительные действия);
  • для защиты от блуждающих токов электростанций, подстанций, магистральных трубопроводов.

Флюксметры бывают магнитоэлектрические и фотоэлектрические. Отличие – большей чувствительности последних из-за применения компенсационного усилителя. Измерение магнитного потока с помощью ЭДС, единицы измерения – Вб/дел.

Тесламетры (разновидность флюксметра) измеряют ЭДС между полупроводниковыми пластинами, единица измерения – мкТл. Приборы компактны, имеют погрешность до 2%, широкий диапазон частот как переменного, так и постоянного тока.

Воздействие ЭМИ на человеческий организм

Электромагнитные излучения оказывают био- и тепловое воздействие на ткани и органы человека.

На человеческий организм оказывает влияние:

  • мощность излучения;
  • длительность;
  • тип воздействия.

Энергия переменного поля поглощается тканями неодинаково из-за различий в структуре. Неравномерный подъем температуры вызывает перенагрев органов и тканей, имеющих недостаточную теплорегуляцию. Передача теплоты во внешнюю среду затруднена, в результате чего повреждаются/разрушаются клетки.

В первую очередь страдают:

  • глазной хрусталик;
  • желчный пузырь;
  • мочевой пузырь.

Мозг, кишечник имеют слабую возможность для терморегуляции.

Заболевания, вызываемые ЭМП:

  • катаракта;
  • гипотония;
  • заболевания кроветворной системы (разрушение эритроцитов);
  • мигрень;
  • нарушения эндокринной системы;
  • синдром хронической усталости.

Воздействие сильного ЭМ-поля неблагоприятно влияет на беременность, вызывая нарушение внутриутробного развития плода. Эндокринные нарушения у мужчин – это снижение потенции, бесплодность. Разрушение кровяных телец блокирует работу иммунной системы. В головном мозге нарушаются нейронные связи: ухудшается память, внимание. Инфракрасная форма ЭМИ опасна высокой энергией частиц, вызывающих перегрев организма. При температуре выше 42 градусов останавливается кровоток, человек погибает. Злоупотребление ультрафиолетовым облучением может привести к меланоме (раку кожи).

Природные ЭМ-волны, необходимые для существования земных организмов, могут быть губительны в высокочастотном диапазоне. Устройства и механизмы – источники ЭМ-загрязнения, что является побочным эффектом от их применения.

Если естественное электромагнитное поле остаётся практически постоянным на протяжении тысячелетий, то уровень искусственных электромагнитных полей сильно вырос за последние десятилетия.

Источниками искусственных электромагнитных полей являются: электромагнитные поля низкочастотного диапазона, которые используются в промышленном производстве (термическая обработка); высокочастотные поля (радиосвязь, медицина, ТВ, радиовещание); электромагнитные поля СВЧ-диапазона (радиолокация, навигация, медицина, сотовая связь), и т. д.

Применение электромагнитных полей в промышленности значительно улучшает условия труда, однако, при этом возникает ряд проблем по защите персонала от их воздействия. Электромагнитные поля всепроникающи, способны распространяться со скоростью света и не обнаруживаются органами чувств. Органы чувств человека не воспринимают электромагнитные поля в рассматриваемом диапазоне частот, человек не может сам контролировать уровень излучения и оценить грозящую опасность.

Степень воздействия электромагнитного излучения на человека зависит от интенсивности излучения, частоты и времени действия.

Длительное воздействие на человека электромагнитных полей большой интенсивности вызывает достаточно сильное стрессовое состояние, повышенную утомляемость, сонливость, нарушение сна, головную боль, гипертонию, боли в области сердца. Воздействие полей сверхвысоких частот может вызвать изменение в крови, заболевание глаз.

Виды и источники электромагнитных излучений.

Совокупность электрического и магнитного полей называется электромагнитным полем (ЭМП). Электромагнитные излучения (ЭМИ) представляют собою распространяющиеся в пространстве с конечной скоростью взаимосвязанные и не могущие существовать друг без друга переменные электрические и магнитные поля. Они обладают волновыми и квантовыми свойствами.

К волновым свойствам относят скорость распространения ЭМИ в пространстве (С), частоту колебаний поля (f) и длину волны (λ). Скорость распространения всех видов ЭМИ равна в атмосфере примерно 300000 км в сек.

Источники ЭМП естественные: атмосферное электричество, космические лучи, излучение солнца. Искусственные: генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров и др. Источники электромагнитных полей промышленной частоты - это все электрические приборы, линии электропередач.

Переменное ЭМП является совокупностью двух взаимосвязанных полей: электрического (Е, В/м) и магнитного (Н, A/м).


Характеристики ЭМП: длина волны λ, [м]; частота колебаний f, [Гц]; скорость распространения С, м/с.

Длина электромагнитных волн бывает самой различной: от значений порядка 103 м (радиоволны) до 10-8 см (рентгеновские лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые ускоренно движущимися заряженными частицами. Обнаруживаются электромагнитные волны в конечном счете по их действию на заряженные частицы. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и гамма-излучениям , сильно поглощаемым атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волн. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Радиоволны

f = 105-1011 Гц

Получают с помощью колебательных контуров и макроскопических вибраторов.

Свойства: Радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение: Радиосвязь, телевидение, радиолокация.

При прочих равных условиях доза ионизирующего излучения тем больше, чем больше время облучения, т.е. доза со временем накапливается. Доза, отнесённая ко времени воздействия, называется уровнем радиации и измеряется в рентгенах в час (Р/ч).

Внешнее излучение действует на весь организм человека.

Фоновое облучение организма человека складывается из естественного радиационного фона Земли (космическое излучение, излучение от находящихся в почве, стройматериалах, в воде и воздухе естественных радиоактивных элементов; излучение от радиоактивных природных элементов, которые с пищей и водой попадают внутрь организма, фиксируются в тканях и сохраняются в теле человека всю жизнь) и искусственных источников облучения (в медицине - рентген, флюорограмма, лазер; в промышленности - предприятия ядерно-топливного цикла; в быту - компьютеры, телевизоры, часы со светящимися циферблатами).

Средняя доза облучения от всех природных источников - 200 мР/год, от искусственных источников 150 - 300 мР/год. В целом фоновое облучение составляет 500 мР/год.

При полете в самолете на высоте 8 км дополнительное облучение составляет 1,35 мкР/год.

Цветной телевизор на расстоянии 2,5 метра от экрана излучает 0,0025 мкР/час, 5 см. от экрана - 100 мкР/час.

Средняя эквивалентная доза облучения при медицинских исследованиях 25 - 40 мкР/год.

Воздействие электромагнитных излучений на человека.

Воздействие электромагнитных полей (ЭМП) на человека зависит от интенсивности поля, длины волны, времени воздействия и функционального состояния организма.

От длины волны зависит глубина проникновения поля в живой организм. Длинноволновые ЭМП проникают глубоко в организм, подвергая воздействию спинной и головной мозг. ЭМП СВЧ диапазона свою энергию расходуют, в основном, в поверхностном слое кожи, приводя к тепловому воздействию. От этого больше всего страдают органы, не защищённые жировым слоем, бедные кровеносными сосудами (глаза, мозг, почки, желчный и мочевой пузырь, семенники). Избыточная теплота отводится из организма благодаря терморегуляции. Однако, начиная с определённой величины, называемой тепловым порогом, организм не справляется с отводом образующейся теплоты и температура тела повышается. При этом значение теплового порога тем ниже, чем выше частота ЭМП. Например, для волн дециметрового диапазона тепловой порог 40 мВт/см2, а для миллиметровых волн - 7 мВт/см2.

Постоянное воздействие ЭМП ведет к функциональным расстройствам нервной, эндокринной и сердечно-сосудистой систем, у человека понижается кровяное давление, замедляется пульс, тормозятся рефлексы, изменяется состав крови. Тепловое воздействие может привести к перегреву тела и отдельных органов, нарушению их функциональной деятельности. ЭМП СВЧ диапазона приводят к тепловой катаракте (помутнение хрусталика глаза). Субъективно проявление воздействия ЭМП выражается в повышенной утомляемости, головной боли, раздражительности, одышке, сонливости, ухудшении зрения, повышении температуры тела.

Допустимые уровни воздействия ЭМП приведены в ГОСТ12.1.006-84 "Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля". ГОСТ12.1.006-84 устанавливает предельно допустимые значения плотности потока энергии электромагнитного поля.

Предельно допустимые значения плотности потока энергии электромагнитного поля составляют - 25мкВт/см2 в течение 8 часов, 100мкВт/см2 в течение 2 часов, при этом максимальное значение не должно превышать 1000мкВт/см2.

ЭМП с частотой от 60 кГц до 300 МГц нормируются отдельно по электрической и по магнитной составляющей, так как на этих частотах на человека действуют независимо друг от друга электрическое и магнитное поле. Для полей СВЧ диапазона (300 МГц - 300 ГГц) нормируют предельно-допустимую плотность потока энергии, которая не должна превышать 10 Вт/м2.

Если значения ЭМП на рабочих местах превышают допустимые, то необходимо предусмотреть соответствующие способы защиты человека.

Во времена СССР на военных заводах, в НИИ, КБ, люди связанные с высокочастотным излучением получали: 15% надбавку за вредность, сокращенный рабочий день, сокращение возраста выхода на пенсию.

Чувствительность организма к высокочастотному излучению начинается при уровнях много меньше теплового воздействия. Начиная порядка долей микроватт на сантиметр квадратный; до единиц милливатт продолжается фаза угнетения организма, далее наступает фаза стимуляции - улучшение под влиянием высокочастотного излучения общего состояния организма или чувствительности его отдельных органов, а на плотности более 10 мВт/см2 снова наступает фаза угнетения организма».

Сотовый телефон является источником неионизирующего излучения в диапазонах 900 и 1800 МГц.

По воздействию на организм человека высокочастотное излучение условно делится на два вида:

1) Тепловое - за счет нагрева тканей организма человека, проявляется на больших уровнях излучения. Наиболее подвержены тепловому воздействию глаза (хрусталик) и яички у мужчин. Это связано с тем, что в этих органах мало кровеносных сосудов, поэтому из-за крайне низкого теплоотвода глаза и яички поражаются в первую очередь.

Следует отметить, что уровень излучения сотового телефона не оказывает заметного теплового воздействие на человека, но может снижать остроту зрения.

2) Нетепловое (информационное) воздействие - проявляется на небольших уровнях излучения, как результат взаимодействия высокочастотного излучения с биополем человека. Проявляется косвенно, как дополнительный стресс организма, в комплексе с другими негативными воздействиями (экология, продукты питания, психическое напряжение жителей мегаполисов). Воздействие неионизирующего излучения имеет тенденцию накапливаться в организме.

Это выглядит следующим образом: через некоторое время после начала разговора по сотовому телефону организм человека начинает защищаться от электромагнитного поля излучаемого телефоном: увеличивает уровень своих полей. По окончании разговора биополе человека оказывается возбужденным, (степень и продолжительность возбуждения зависит от индивидуальных особенностей); организм незамедлительно начинает восстанавливать его конфигурацию. Далее следует другой звонок, воздействие повторяется, и так день за днем. В результате воздействия от последующего звонка накладываются на предыдущие.

Под воздействием ионизирующего излучения в организме человека наблюдаются изменения:

1. Первичные (возникают в молекулах ткани и живых клетках);

2. Нарушение функций всего организма.

Защита от воздействия электромагнитных излучений.

Защита человека от неблагоприятного биологического действия ЭМП строится по следующим основным направлениям: организационные мероприятия; инженерно-технические мероприятия; лечебно-профилактические мероприятия.

К организационным мероприятиям по защите от действия ЭМП относятся: выбор режимов работы излучающего оборудования; разработка нормативных актов, регламентирующих допустимый уровень излучения; ограничение места и времени нахождения в зоне действия ЭМП (защита расстоянием и временем); обозначение и ограждение зон с повышенным уровнем ЭМП.

Для каждой установки, излучающей электромагнитную энергию, должны определяться санитарно-защитные зоны в которых интенсивность ЭМП превышает ПДУ. Границы зон определяются расчетно для каждого конкретного случая размещения излучающей установки при работе их на максимальную мощность излучения и контролируются с помощью приборов. Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека.

От электрического поля промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления санитарно-защитных зон для линий электропередачи и снижением напряженности поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Защита от магнитного поля промышленной частоты практически возможна только на стадии разработки изделия или проектирования объекта.

Основные требования к обеспечению безопасности населения от электрического поля промышленной частоты, создаваемого системами передачи и распределения электроэнергии, изложены в Санитарных нормах и правилах «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты» № 2971-84.

В настоящее время ряд стран разработали документы, регламентирующие нормы излучения бытовых электронных приборов. Общепризнанным лидером, чьи национальные стандарты превратились в мировые, стала Швеция. Первый популярный шведский стандарт назывался MPR 2 (1990 год). Для своего времени MPR 2 весьма жестко регламентировал нормы на излучение. Но истинно наднациональными и почетными для производителей мониторов и сотовых телефонов стали жесткие нормы стандартов ТСО.

Эти стандарты обновляются каждые три года.

Аббревиатура ТСО расшифровывается как «Шведская федерация профсоюзов». За разработкой стандарта стоят: собственно Федерация, Шведское общество охраны природы, национальный комитет промышленного и технического развития (NUTEK) и измерительная компания SEMKO, имеющая вес и авторитет независимой сертификации.

Заключение.

В связи с бурным развитием техники, электроники уровень искусственных электромагнитных полей сильно вырос за последние десятилетия. Практически все мы находимся в условиях одновременного воздействия электромагнитных полей, ионизирующих излучений, химических веществ и других неблагоприятных факторов внешней среды. В результате совместного действия всех этих факторов процессы в организме протекают иначе, чем они протекали бы при воздействии только естественных магнитных полей (магнитное поле Земли, радиоизлучение солнца, атмосферное электричество).

Традиционно при рассмотрении биологических эффектов от электромагнитного поля считалось, что основным механизмом воздействия является "тепловое” поражение тканей. Исходя из этого, и разрабатывались стандарты безопасности во многих странах. Однако в последнее время появляется все большее количество доказательств, что существуют другие пути взаимодействия электромагнитного поля живого организма при интенсивностях поля недостаточных для тепловых воздействий. В числе отдаленных проявлений этих воздействий и раковые, и гормональные заболевания, и многое другое.

Контрольные вопросы:

1. Радиационная авария?

2. Радиационное поражение?

3. Виды электромагнитных излучений?

4. Защита от электромагнитного излучения?

В последние годы вследствие развития технологий организм человека подвергается высокому уровню воздействия электромагнитного излучения (ЭМИ), что не могло не вызвать серьезного беспокойства во всем мире.

Каково же влияние на живые организмы? Их последствия зависят от того, к какой категории радиации - ионизирующей или нет - они относятся. Первый тип обладает высоким энергетическим потенциалом, который действует на атомы в клетках и приводит к изменению их естественного состояния. Это может быть смертельно опасным, так как вызывает раковые и другие заболевания. К неионизирующей радиации относят электромагнитное излучение в виде радиоволн, микроволнового излучения и электрических колебаний. Хотя структуру атома она изменить не может, но ее воздействие способно привести к необратимым последствиям.

Невидимая опасность

Публикации в научной литературе подняли вопрос о неблагоприятном воздействии на отдельных лиц и общество в целом неионизирующего излучения ЭМП, исходящего от силовых, электрических и беспроводных устройств в быту, на производстве, в учебных и общественных заведениях. Несмотря на многочисленные проблемы в установлении неопровержимых научных доказательств вреда и пробелы в выяснении точных механизмов его нанесения, эпидемиологический анализ все больше наводит на мысль о значительном потенциале травматического воздействия, производимого неионизирующим облучением. Защита от электромагнитного излучения становится все более актуальной.

В связи с тем, что медицинское образование не акцентирует внимание на состоянии окружающей среды, некоторые врачи не в полной мере осознают вероятные проблемы для здоровья, которые связаны с ЭМИ, и, как следствие этого, проявления неионизирующего излучения могут диагностироваться неверно и подвергаться неэффективному лечению.

Если возможность повреждения тканей и клеток, связанная с воздействием рентгеновского излучения, сомнений не вызывает, то влияние электромагнитных излучений на живые организмы, когда они исходят от ЛЭП, мобильных телефонов, электроприборов и некоторые машин, только недавно начало привлекать к себе внимание в качестве потенциальной угрозы здоровью.

Электромагнитный спектр

Относится к типу энергии, которая исходит или излучается далеко за пределы ее источника. Энергия электромагнитного излучения существует в различных формах, каждая из которых обладает различными физическими свойствами. Они могут быть измерены и выражены с помощью частоты или длины волны. Одни волны имеют высокую частоту, другие - среднюю и третьи - низкую. Диапазон электромагнитного излучения включает много различных форм энергии, исходящей из различных источников. Их название используется для классификации типов ЭМИ.

Короткая длина волны электромагнитного излучения, соответствующая высокой частоте, является характеристикой гамма-лучей, рентгеновского и ультрафиолетового излучения. Более спектра включают микроволновое излучение и радиоволны. Световое излучение относят к среднему участку спектра ЭМИ, оно обеспечивает нормальное зрение и является светом, который мы воспринимаем. Инфракрасная энергия ответственна за восприятие человеком тепла.

Большинство форм энергии, таких как рентгеновские лучи, ультрафиолет и радиоволны, невидимы и незаметны для человека. Для их обнаружения требуется измерение электромагнитного излучения с использованием специальных приборов, и, как следствие, люди не могут оценить степень воздействия энергетических полей в этих диапазонах.

Несмотря на отсутствие восприятия, действие высокочастотной энергии, включая рентгеновское излучение, называемое ионизирующим, потенциально опасно для клеток человека. Изменяя атомный состав клеточных структур, разбивая химические связи и индуцируя образование свободных радикалов, достаточное воздействие ионизирующей радиации может повредить генетический код в ДНК или спровоцировать мутации, тем самым увеличивая риск возникновения злокачественных новообразований или гибель клеток.

Антропогенное ЭМИ

Влияние электромагнитного излучения на организм, особенно неионизирующего, которым называют формы энергии с более низкими частотами, многими учеными недооценивалось. Считалось, что оно не производит неблагоприятного эффекта при нормальных уровнях воздействия. В последнее время, однако, появляется все больше данных, которые свидетельствуют о том, что некоторые частоты неионизирующего излучения могут потенциально приносить биологический вред. Большинство исследований их влияния на здоровье касалось следующих трех основных видов антропогенного ЭМИ:

  • нижняя шкала электромагнитных излучений от ЛЭП, электроприборов и электронного оборудования;
  • микроволновое и радиоизлучение беспроводных устройств связи, таких как сотовые телефоны, сотовые башни, антенны, а также телевизионные и радиовышки;
  • электрическое загрязнение вследствие работы некоторых видов техники (например, плазменных телевизоров, некоторых энергосберегающих приборов, двигателей с регулируемой частотой вращения и т. д.), производящих сигналы, частота электромагнитного излучения которых находится в диапазоне 3-150 кГц (распространяются и переизлучаются проводкой).

Токи в земле, которые иногда называют блуждающими, проводами не ограничены. Ток движется по пути наименьшего сопротивления и может проходить через любые доступные пути, в том числе по земле, проводам и различным объектам. Соответственно, электрическое напряжение также передается через землю и по строительным конструкциям посредством металлических водопроводных или канализационных труб, в результате чего неионизирующее излучение попадает в ближайшую окружающую среду.

ЭМИ и здоровье человека

В то время как исследования, изучавшие негативные свойства электромагнитных излучений, иногда давали противоречивые результаты, диагностика репродуктивной дисфункции и предрасположенности к раку, по всей видимости, подтверждает подозрения о том, что воздействие ЭМП может представлять угрозу здоровью человека. Неблагоприятный исход беременности, включая выкидыши, мертворождение, преждевременные роды, изменение соотношения полов и врожденные аномалии - все было связано с влиянием ЭМИ на мать.

В большом проспективном исследовании, опубликованном в журнале «Эпидемиология», например, сообщается о пиковом воздействии ЭМИ на 1063 беременных женщин в районе Сан-Франциско. Участники эксперимента носили детекторы магнитного поля, и ученые обнаружили значительный рост смертности плода при увеличении уровня максимального воздействия ЭМП.

ЭМИ и рак

Были изучены утверждения о том, что интенсивное воздействие некоторых частот ЭМИ может быть канцерогенным. Например, «Международный журнал рака» недавно опубликовал важное исследование по методу «случай-контроль» по связи между детской лейкемией и магнитными полями в Японии. Оценивая уровень электромагнитного излучения в спальнях, ученые подтвердили, что высокие уровни воздействия приводят к значительно большему риску заболевания детской лейкемией.

Физическое и психологическое воздействие

Люди с электромагнитной сверхчувствительностью часто страдают от истощения, которое может повлиять на любую часть организма, включая центральную нервную систему, опорно-двигательный аппарат, желудочно-кишечный тракт и эндокринную систему. Эти симптомы часто приводят к постоянному психологическому стрессу и страху попасть под действие ЭМИ. Многие пациенты становятся недееспособными от одной мысли о том, что невидимый сигнал беспроводной связи в любое время и в любом месте может спровоцировать болезненные ощущения в их организме. Постоянный страх и озабоченность проблемами со здоровьем влияют на самочувствие вплоть до развития фобии и боязни электричества, которые у некоторых вызывают желание покинуть цивилизацию.

Мобильные телефоны и телекоммуникация

Сотовые телефоны передают и принимают сигналы с помощью ЭМП, которые частично поглощаются их пользователями. Так как эти источники электромагнитного излучения обычно находятся в тесной близости с головой, эта особенность привела к появлению опасений о возможном неблагоприятном влиянии их использования на здоровье человека.

Одной из проблем экстраполяции результатов их применения в экспериментальных исследованиях на грызунах является то, что частота максимального поглощения РЧ-энергии зависит от размера тела, его формы, ориентации и положения.

Резонансное поглощение у крыс находится в диапазоне СВЧ и рабочих частот мобильных телефонов, используемых в опытах (от 0,5 до 3 ГГц), но в масштабе человеческого организма оно возникает при 100 МГц. Этот фактор может приниматься во внимание при расчетах мощности поглощенной дозы, но представляет проблему для тех исследований, в которых для определения уровня экспозиции используется лишь напряженность внешнего поля.

Относительная глубина проникновения у лабораторных животных по сравнению с размером головы человека больше, а параметры тканей и механизм перераспределения тепла различаются. Другим потенциальным источником неточностей в уровне экспозиции является воздействие радиочастотного излучения на клетку.

Действие высоковольтного излучения на людей и окружающую среду

Линии электропередач напряжением выше 100 кВ - это самые мощные источники электромагнитного излучения. Исследования радиационного воздействия на технический персонал стартовали с началом строительства первых 220-кВ ЛЭП, когда появились случаи ухудшения здоровья рабочих. Ввод в эксплуатацию линий электропередач напряжением 400 кВ привел к публикации многочисленных работ в этой области, которые впоследствии стали основой для принятия первых нормативных актов, ограничивающих действие 50-Гц электрического поля.

ЛЭП с напряжением более 500 кВ оказывают воздействие на окружающую среду в виде:

  • электрического поля частотой 50 Гц;
  • излучения ;
  • магнитного поля промышленной частоты.

ЭМП и нервная система

Гематоэнцефалический барьер млекопитающих состоит из эндотелиальных клеток, связанных с запирающими зонами, а также прилегающими перицитами и внеклеточным матриксом. Помогает поддерживать высокостабильную внеклеточную среду, необходимую для точной синаптической передачи, и защищает нервную ткань от повреждения. Увеличение его низкой проницаемости для гидрофильных и заряженных молекул может нанести вред здоровью.

Температура окружающей среды, превышающая пределы терморегуляции млекопитающих, повышает проницаемость гематоэнцефалического барьера для макромолекул. Нейрональное поглощение альбумина в различных областях мозга зависит от его температуры и проявляется при ее повышении на 1 °С и выше. Так как достаточно сильные радиочастотные поля могут привести к нагреванию тканей, логично предположить, что влияние на человека электромагнитного излучения имеет следствием повышенную проницаемость гематоэнцефалического барьера.

ЭМП и сон

Верхняя шкала электромагнитных излучений оказывает некоторое влияние на сон. Эта тема стала актуальной по нескольким причинам. Среди других симптомов жалобы на нарушения сна упоминались в анекдотических сообщениях о людях, считающих, что на них действует ЭМИ. Это привело к спекуляциям о том, что электромагнитные поля могут помешать нормальному течению сна с вытекающими отсюда последствиями для здоровья. Потенциальный риск нарушения сна следует рассматривать с учетом того, что он является очень сложным биологическим процессом, контролируемым центральной нервной системой. И хотя точные нейробиологические механизмы пока не установлены, регулярное чередование состояний бодрствования и покоя является необходимым требованием для обеспечения правильной работы мозга, метаболического гомеостаза и иммунной системы.

Кроме того, сон, как представляется, является именно той физиологической системой, изучение которой позволит выяснить влияние на человека электромагнитного излучения высокой частоты, так как в этом биологическом состоянии организм чутко реагирует на внешние раздражители. Есть данные о том, что слабые ЭМП, интенсивность которых значительно ниже той, при которой может возникнуть повышение температуры, также могут стать причиной биологического воздействия.

В настоящее время исследования влияния неионизирующего высокочастотного ЭМИ четко ориентированы на риск развития рака, что объясняется беспокойством по поводу канцерогенных свойств ионизирующего излучения.

Негативные проявления

Таким образом, влияние на человека электромагнитного излучения, даже неионизирующего, имеет место, особенно в случае высоковольтных ЛЭП и эффекта короны. СВЧ-излучение воздействует на нервную, сердечно-сосудистую, иммунную и репродуктивную системы, в том числе вызывая повреждение нервной системы, изменяя ее реакцию, электроэнцефалограмму, гематоэнцефалитический барьер, провоцируя нарушение (бодрствования - сна) путем вмешательства в работу шишковидной железы и создавая гормональный дисбаланс, изменения сердечного ритма и кровяного давления, ухудшая иммунитет по отношению к патогенам, вызывая слабость, истощение, проблемы роста, повреждения ДНК и рак.

Рекомендуется возводить здания вдали от источников ЭМИ, а защита от электромагнитного излучения высоковольтных ЛЭП должна быть обязательной. В городах кабели необходимо прокладывать под землей, а также использовать оборудование, нейтрализующее действие ЭМИ.

По результатам корреляционного анализа, основанного на экспериментальных данных, был сделан вывод о том, что значительно уменьшить влияние на человека электромагнитного излучения ЛЭП можно, сократив расстояние провеса проводов, что приведет к увеличению дистанции между токопроводящей линией и точкой измерения. Кроме того, на это расстояние оказывает влияние и рельеф местности под ЛЭП.

Меры предосторожности

Электричество является неотъемлемой частью жизни современного общества. Это означает, что ЭМИ всегда будет вокруг нас. И для того чтобы ЭМП делали нашу жизнь проще, а не короче, следует соблюдать некоторые меры предосторожности:

  • Не стоит позволять детям играть вблизи линий электропередач, трансформаторов, спутниковых передатчиков и источников микроволнового излучения.
  • Следует избегать мест, где плотность превышает 1 мГс. Следует замерить уровень ЭМП приборов в выключенном и работающем состоянии.
  • Необходимо провести перестановку в офисе или дома таким образом, чтобы не подвергаться действию поля электроприборов и компьютеров.
  • Нельзя слишком близко сидеть перед компьютером. Мониторы сильно различаются по силе их ЭМИ. Не следует стоять у работающей микроволновой печи.
  • Переместить электроприборы как минимум на 2 м от кровати. Нельзя допускать наличия проводки под кроватью. Демонтировать диммеры и 3-позиционные переключатели.
  • Следует соблюдать меры предосторожности при использовании беспроводных устройств, таких как электрические зубные щетки, бритвы.
  • Кроме того, рекомендуется носить как можно меньше ювелирных изделий и снимать их на ночь.
  • Также необходимо помнить о том, что ЭМИ проходит сквозь стены, и учитывать источники в соседней комнате или за стенами помещения.

Содержание статьи

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, электромагнитные волны, возбуждаемые различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

Может показаться удивительным, что внешне столь разные физические явления имеют общую основу. В самом деле, что общего между кусочком радиоактивного вещества, рентгеновской трубкой, ртутной газоразрядной лампой, лампочкой фонарика, теплой печкой, радиовещательной станцией и генератором переменного тока, подключенным к линии электропередачи? Как, впрочем, и между фотопленкой, глазом, термопарой, телевизионной антенной и радиоприемником. Тем не менее, первый список состоит из источников, а второй – из приемников электромагнитного излучения. Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений – в сущности разные стороны одного явления.

Взаимодействие между источником и приемником формально состоит в том, что при всяком изменении в источнике, например при его включении, наблюдается некое изменение в приемнике. Это изменение происходит не сразу, а спустя некоторое время, и количественно согласуется с представлением о том, что нечто перемещается от источника к приемнику с очень большой скоростью. Сложная математическая теория и огромное число разнообразных экспериментальных данных показывают, что электромагнитное взаимодействие между источником и приемником, разделенными вакуумом или разреженным газом, может быть представлено в виде волн, распространяющихся от источника к приемнику со скоростью света с .

Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени (т.е. частота f ) меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 10 20 колебаний в секунду в случае рентгеновского и гамма-излучений. Поскольку длина волны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением l = с /f , она тоже изменяется в широких пределах – от нескольких тысяч километров для низкочастотных колебаний до 10 –14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра. И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство. Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна – радиосигналы удаленного на миллионы километров космического аппарата. Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется.

Источники электромагнитного излучения.

Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи).

Гамма-лучи испускаются самопроизвольно при распаде ядер атомов радиоактивных веществ, например радия. При этом происходят сложные процессы изменения структуры ядра, связанные с движением зарядов. Генерируемая частота f определяется разностью энергий E 1 и E 2 двух состояний ядра: f = (E 1 – E 2)/h , где h – постоянная Планка.

Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода (антикатода) электронами, обладающими большими скоростями. Быстро замедляясь в материале анода, эти электроны испускают так называемое тормозное излучение, имеющее непрерывный спектр, а происходящая в результате электронной бомбардировки перестройка внутренней структуры атомов анода, в результате которой атомные электроны переходят в состояние с меньшей энергией, сопровождается испусканием так называемого характеристического излучения, частоты которого определяются материалом анода.

Такие же электронные переходы в атоме дают ультрафиолетовое и видимое световое излучение. Что же касается инфракрасного излучения, то оно обычно является результатом изменений, мало затрагивающих электронную структуру и связанных преимущественно с изменениями амплитуды колебаний и вращательного момента импульса молекулы.

В генераторах электрических колебаний имеется «колебательный контур» того или иного типа, в котором электроны совершают вынужденные колебания с частотой, зависящей от его конструкции и размеров. Наиболее высокие частоты, соответствующие миллиметровым и сантиметровым волнам, генерируются клистронами и магнетронами – электровакуумными приборами с металлическими объемными резонаторами, колебания в которых возбуждаются токами электронов. В генераторах более низких частот колебательный контур состоит из катушки индуктивности (индуктивность L ) и конденсатора (емкость C ) и возбуждается ламповой или транзисторной схемой. Собственная частота такого контура, которая при малом затухании близка к резонансной, дается выражением .

Переменные поля очень низких частот, используемые для передачи электрической энергии, создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.

Теория Максвелла, эфир и электромагнитное взаимодействие.

Когда океанский лайнер в тихую погоду проходит на некотором расстоянии от рыбацкой лодки, то спустя какое-то время лодка начинает сильно раскачиваться на волнах. Причина этого всем понятна: от носа лайнера по поверхности воды бежит волна в виде последовательности горбов и впадин, которая и достигает рыбацкой лодки.

Когда при помощи специального генератора в установленной на искусственном спутнике Земли и направленной на Землю антенне возбуждаются колебания электрического заряда, в приемной антенне на Земле (также через некоторое время) возбуждается электрический ток. Как же передается взаимодействие от источника к приемнику, если между ними отсутствует материальная среда? И если сигнал, поступающий на приемник, можно представить в виде некоторой падающей волны, то что это за волна, которая способна распространяться в вакууме, и как могут возникать горбы и впадины там, где ничего нет?

Над этими вопросами в применении к видимому свету, распространяющемуся от Солнца к глазу наблюдателя, ученые задумывались уже давно. На протяжении большей части 19 в. такие физики, как О.Френель , И.Фраунгофер , Ф.Нейман, пытались найти ответ в том, что пространство на самом деле не пусто, а заполнено некой средой («светоносным эфиром»), наделенной свойствами упругого твердого тела. Хотя такая гипотеза и помогла объяснить некоторые явления в вакууме, она привела к непреодолимым трудностям в задаче о прохождении света через границу двух сред, например воздуха и стекла. Это побудило ирландского физика Дж.Мак-Куллага отбросить идею упругого эфира. В 1839 он предложил новую теорию, в которой постулировалось существование среды, по своим свойствам отличной от всех известных материалов. Такая среда не оказывает сопротивления сжатию и сдвигу, но сопротивляется вращению. Из-за этих странных свойств модель эфира Мак-Куллага вначале на вызвала особого интереса. Однако в 1847 Кельвин продемонстрировал наличие аналогии между электрическими явлениями и механической упругостью. Исходя из этого, а также из представлений М.Фарадея о силовых линиях электрического и магнитного полей, Дж.Максвелл предложил теорию электрических явлений, которая, по его словам, «отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям в некой всепроникающей среде, причем эти напряжения такие же, с какими имеют дело инженеры, а среда и есть именно та среда, в которой, как предполагают, распространяется свет». В 1864 Максвелл сформулировал систему уравнений, охватывающую все электромагнитные явления. Примечательно, что его теория во многом напоминала теорию, предложенную за четверть века до этого Мак-Куллагом. Уравнения Максвелла были столь всеохватывающими, что из них выводились законы Кулона , Ампера , электромагнитной индукции и следовал вывод о совпадении скорости распространения электромагнитных явлений со скоростью света.

После того как уравнениям Максвелла была придана более простая форма (заслуга в основном О.Хевисайда и Г.Герца), полевые уравнения стали ядром электромагнитной теории. Хотя эти уравнения сами по себе и не требовали максвелловской интерпретации на основе представлений о напряжениях и давлениях в эфире, такая интерпретация повсеместно была принята. Несомненный успех уравнений в предсказании и объяснении различных электромагнитных явлений был воспринят как подтверждение справедливости не только уравнений, но и механистической модели, на основе которой они были выведены и истолкованы, хотя эта модель была совершенно не существенна для математической теории. Фарадеевские силовые линии поля и трубки тока наряду с деформациями и смещениями стали существенными атрибутами эфира. Энергия рассматривалась как запасенная в напряженной среде, а ее поток Г.Пойнтинг в 1884 представил вектором, носящим теперь его имя. В 1887 Герц экспериментально продемонстрировал существование электромагнитных волн. В серии блестящих экспериментов он измерил скорость их распространения, а также показал, что они могут отражаться, преломляться и поляризоваться. В 1896 Г.Маркони получил патент на радиосвязь.

В континентальной Европе независимо от Максвелла развивалась теория дальнодействия – совершенно другой подход к проблеме электромагнитного взаимодействия. Максвелл писал по этому поводу: «Согласно теории электричества, которая делает большие успехи в Германии, две заряженные частицы непосредственно действуют друг на друга на расстоянии с силой, которая, по Веберу, зависит от их относительной скорости и действует, согласно теории, основанной на идеях Гаусса и развитой Риманом, Лоренцом и Нейманом, не мгновенно, а спустя некоторое время, зависящее от расстояния. По достоинству оценить мощь этой теории, которая столь выдающимся людям объясняет любой вид электрических явлений, можно, лишь изучив ее». Теорию, о которой говорил Максвелл, наиболее полно развил датский физик Л.Лоренц с помощью скалярного и векторного запаздывающих потенциалов, почти таких же, как и в современной теории. Максвелл отвергал идею запаздывающего действия на расстоянии, будь то потенциалы или силы. «Эти физические гипотезы совершенно чужды моим представлениям о природе вещей», – писал он. Тем не менее, теория Римана и Лоренца в математическом отношении была идентична его теории, и в конце концов он согласился, что в пользу теории дальнодействия свидетельствуют более убедительные доказательства. В своем Трактате об электричестве и магнетизме (Treatise on Electricity and Magnetism , 1873) он писал: «Не следует упускать из виду, что мы сделали всего лишь один шаг в теории действия среды. Мы высказали предположение, что она находится в состоянии напряжения, но совершенно не объяснили, что это за напряжение и как оно поддерживается».

В 1895 голландский физик Х.Лоренц объединил ранние ограниченные теории взаимодействия между неподвижными зарядами и токами, которые предвосхищали теорию запаздывающих потенциалов Л.Лоренца и были созданы в основном Вебером, с общей теорией Максвелла. Х.Лоренц рассматривал материю как содержащую электрические заряды, которые, различными способами взаимодействуя между собой, производят все известные электромагнитные явления. Вместо того чтобы принять концепцию запаздывающего действия на расстоянии, описываемого запаздывающими потенциалами Римана и Л.Лоренца, он исходил из предположения, что движение зарядов создает электромагнитное поле , способное распространяться сквозь эфир и переносить импульс и энергию от одной системы зарядов к другой. Но необходимо ли для распространения электромагнитного поля в виде электромагнитной волны существование такой среды, как эфир? Многочисленные эксперименты, призванные подтвердить существование эфира, в том числе и эксперимент по «увлечению эфира», дали отрицательный результат. Более того, гипотеза о существовании эфира оказалась в противоречии с теорией относительности и с положением о постоянстве скорости света. Вывод можно проиллюстрировать словами А.Эйнштейна: «Если эфиру не свойственно никакое конкретное состояние движения, то вряд ли имеет смысл вводить его как некую сущность особого рода наряду с пространством».

Излучение и распространение электромагнитных волн.

Движущиеся с ускорением электрические заряды и периодически изменяющиеся токи воздействуют друг на друга с некоторыми силами. Величина и направление этих сил зависят от таких факторов, как конфигурация и размеры области, содержащей заряды и токи, величина и относительное направление токов, электрические свойства данной среды и изменения в концентрации зарядов и распределении токов источника. Из-за сложности общей постановки задачи закон сил нельзя представить в виде одной формулы. Структура, именуемая электромагнитным полем, которую при желании можно рассматривать как чисто математический объект, определяется распределением токов и зарядов, создаваемым заданным источником с учетом граничных условий, определяемых формой области взаимодействия и свойствами материала. Когда речь идет о неограниченном пространстве, эти условия дополняются особым граничным условием – условием излучения . Последнее гарантирует «правильное» поведение поля на бесконечности.

Электромагнитное поле характеризуется вектором напряженности электрического поля E и вектором магнитной индукции B , каждый из которых в любой точке пространства имеет определенную величину и направление. На рис. 2 схематически изображена электромагнитная волна с векторами E и B , распространяющаяся в положительном направлении оси х . Электрическое и магнитное поля тесно взаимосвязаны: они представляют собой компоненты единого электромагнитного поля, поскольку переходят друг в друга при преобразованиях Лоренца. Говорят, что векторное поле линейно (плоско) поляризовано, если направление вектора остается всюду фиксированным, а его длина периодически изменяется. Если вектор вращается, но длина его не меняется, то говорят, что поле имеет круговую поляризацию; если же длина вектора периодически изменяется, а сам он вращается, то поле называется эллиптически поляризованным.

Соотношение между электромагнитным полем и колеблющимися токами и зарядами, поддерживающими это поле, можно проиллюстрировать на относительно простом, но очень наглядном примере антенны типа полуволнового симметричного вибратора (рис. 3). Если тонкую проволоку, длина которой составляет половину длины волны излучения, разрезать посередине и к разрезу подключить высокочастотный генератор, то приложенное переменное напряжение будет поддерживать примерно синусоидальное распределение тока в вибраторе. В момент времени t = 0, когда амплитуда тока достигает максимального значения, а вектор скорости положительных зарядов направлен вверх (отрицательных – вниз), в любой точке антенны заряд, приходящийся на единицу ее длины, равен нулю. По прошествии первой четверти периода (t = T /4) положительные заряды будут сосредоточены на верхней половине антенны, а отрицательные – на нижней. При этом ток равен нулю (рис. 3,б ). В момент t = T /2 заряд, приходящийся на единицу длины, равен нулю, а вектор скорости положительных зарядов направлен вниз (рис. 3,в ). Затем к концу третьей четверти заряды перераспределяются (рис. 3,г ), а по ее завершении заканчивается полный период колебаний (t = T ) и все снова выглядит так, как на рис. 3,а .

Чтобы сигнал (например, меняющийся во времени ток, приводящий в действие громкоговоритель радиоприемника) можно было передать на расстояние, излучение передатчика нужно промодулировать путем, например, изменения амплитуды тока в передающей антенне в соответствии с сигналом, что повлечет за собой модуляцию амплитуды колебаний электромагнитного поля (рис. 4).

Передающая антенна является той частью передатчика, где электрические заряды и токи совершают колебания, излучая в окружающее пространство электромагнитное поле. Антенна может иметь самые разнообразные конфигурации, в зависимости от того, какую форму электромагнитного поля необходимо получить. Она может быть одиночным симметричным вибратором или же системой симметричных вибраторов, расположенных на определенном расстоянии друг от друга и обеспечивающих необходимое соотношение между амплитудами и фазами токов. Антенна может представлять собой симметричный вибратор, расположенный перед сравнительно большой плоской или изогнутой металлической поверхностью, играющей роль отражателя. В диапазоне сантиметровых и миллиметровых волн особенно эффективна антенна в форме рупора, соединенного с металлической трубой-волноводом, который играет роль линии передачи. Токи в короткой антенне на входе волновода индуцируют переменные токи на его внутренней поверхности. Эти токи и связанное с ними электромагнитное поле распространяются по волноводу к рупору.

Меняя конструкцию антенны и ее геометрию, можно добиться такого соотношения амплитуд и фаз колебаний токов в различных ее частях, чтобы излучение усиливалось в одних направлениях и ослаблялось в других (антенны направленного действия).

На больших расстояниях от антенны любого типа электромагнитное поле имеет довольно простой вид: в любой данной точке векторы напряженности электрического поля Е и индукции магнитного поля В колеблются в фазе во взаимно перпендикулярных плоскостях, убывая обратно пропорционально расстоянию от источника. При этом волновой фронт имеет форму увеличивающейся в размерах сферы, а вектор потока энергии (вектор Пойнтинга) направлен вовне по ее радиусам. Интеграл от вектора Пойнтинга по всей сфере дает полную, усредненную по времени, излучаемую энергию. При этом волны, распространяющиеся в радиальном направлении со скоростью света, переносят от источника не только колебания векторов E и B , но также импульс поля и его энергию.

Прием электромагнитных волн и явление рассеяния.

Если в зоне электромагнитного поля, распространяющегося от удаленного источника, поместить проводящий цилиндр, то индуцированные в нем токи будут пропорциональны напряженности электромагнитного поля и, кроме того, будут зависеть от ориентации цилиндра относительно фронта падающей волны и от направления вектора напряженности электрического поля. Если цилиндр имеет вид проволоки, диаметр которой мал по сравнению с длиной волны, то индуцированный ток будет максимальным, когда проволока параллельна вектору Е падающей волны. Если проволоку разрезать посередине и к образовавшимся выводам присоединить нагрузку, то к ней будет подводиться энергия, как это и имеет место в случае радиоприемника. Токи в этой проволоке ведут себя так же, как и переменные токи в передающей антенне, а потому она тоже излучает поле в окружающее пространство (т.е. происходит рассеяние падающей волны).

Отражение и преломление электромагнитных волн.

Передающую антенну обычно устанавливают высоко над поверхностью земли. Если антенна находится в сухой песчаной или скалистой местности, то грунт ведет себя как изолятор (диэлектрик), и токи, индуцируемые в нем антенной, связаны с внутриатомными колебаниями, поскольку здесь нет свободных носителей заряда, как в проводниках и ионизованных газах. Эти микроскопические колебания создают над поверхностью земли поле отраженной от земной поверхности электромагнитной волны и, кроме того, изменяют направление распространения волны, входящей в грунт. Эта волна движется с меньшей скоростью и под меньшим углом к нормали, чем падающая. Такое явление называется преломлением. Если же волна падает на участок поверхности земли, имеющий, наряду с диэлектрическими, также и проводящие свойства, то общая картина для преломленной волны выглядит намного сложнее. Как и прежде, волна меняет направление движения у границы раздела, но теперь поле в грунте распространяется таким образом, что поверхности равных фаз уже не совпадают с поверхностями равных амплитуд, как это обычно имеет место в случае плоской волны. Кроме того, быстро затухает амплитуда волновых колебаний, поскольку электроны проводимости при столкновениях отдают свою энергию атомам. В результате энергия волновых колебаний переходит в энергию хаотического теплового движения и рассеивается. Поэтому там, где грунт проводит электричество, волны не могут проникнуть в него на большую глубину. То же самое относится и к морской воде, чем затрудняется радиосвязь с подводными лодками.

В верхних слоях земной атмосферы располагается слой ионизованного газа, который называется ионосферой. Он состоит из свободных электронов и положительно заряженных ионов. Под действием посылаемых с земли электромагнитных волн заряженные частицы ионосферы начинают колебаться и излучать собственное электромагнитное поле. Заряженные ионосферные частицы взаимодействуют с посланной волной примерно так же, как и частицы диэлектрика в рассмотренном выше случае. Однако электроны ионосферы не связаны с атомами, как в диэлектрике. Они реагируют на электрическое поле посланной волны не мгновенно, а с некоторым сдвигом по фазе. В результате волна в ионосфере распространяется не под меньшим, как в диэлектрике, а под бóльшим углом к нормали, чем посланная с земли падающая волна, причем фазовая скорость волны в ионосфере оказывается больше скорости света c . Когда волна падает под некоторым критическим углом, угол между преломленным лучом и нормалью становится близок к прямому, а при дальнейшем увеличении угла падения излучение отражается в сторону Земли. Очевидно, что в этом случае электроны ионосферы создают поле, которым компенсируется поле преломленной волны в вертикальном направлении, а ионосфера действует как зеркало.

Энергия и импульс излучения.

В современной физике выбор между теорией электромагнитного поля Максвелла и теорией запаздывающего дальнодействия делается в пользу теории Максвелла. До тех пор, пока нас интересует только взаимодействие источника и приемника, обе теории одинаково хороши. Однако теория дальнодействия не дает никакого ответа на вопрос, где находится энергия, которую уже излучил источник, но еще не принял приемник. Согласно теории Максвелла, источник передает энергию электромагнитной волне, в которой она и находится, пока не будет передана поглотившему волну приемнику. При этом на каждом этапе соблюдается закон сохранения энергии.

Таким образом, электромагнитные волны обладают энергией (а также импульсом), что заставляет считать их столь же реальными, как, например, атомы. Электроны и протоны, находящиеся на Солнце, передают энергию электромагнитному излучению, в основном в инфракрасной, видимой и ультрафиолетовой областях спектра; примерно через 500 с, достигнув Земли, оно эту энергию отдает: повышается температура, в зеленых листьях растений происходит фотосинтез, и т.д. В 1901 П.Н.Лебедев экспериментально измерил давление света, подтвердив, что свет имеет не только энергию, но и импульс (причем соотношение между ними согласуется с теорией Максвелла).

Фотоны и квантовая теория.

На рубеже 19 и 20 вв., когда казалось, что исчерпывающая теория электромагнитного излучения, наконец, построена, природа преподнесла очередной сюрприз: оказалось, что помимо волновых свойств, описываемых теорией Максвелла, излучение проявляет также свойства частиц, причем тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем. Оказалось, что энергия каждого выбитого электрона зависит от частоты n падающего света, но не от его интенсивности. Это свидетельствует о том, что энергия, связанная со световой волной, передается дискретными порциями – квантами. Если увеличивать интенсивность падающего света, то растет число выбитых в единицу времени электронов, но не энергия каждого из них. Иными словами, излучение передает энергию определенными минимальными порциями – как бы частицами света, которые были названы фотонами. Фотон не имеет ни массы покоя, ни заряда, но обладает спином, а также импульсом, равным hn /c , и энергией, равной hn ; он перемещается в свободном пространстве с постоянной скоростью c .

Каким же образом электромагнитное излучение может иметь все свойства волн, проявляющиеся в интерференции и дифракции, но вести себя как поток частиц в случае фотоэффекта? В настоящее время наиболее удовлетворительное объяснение этой двойственности можно найти в сложном формализме квантовой электродинамики. Но и эта изощренная теория имеет свои трудности, а ее математическая непротиворечивость вызывает сомнения. ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КВАНТОВАЯ МЕХАНИКА; ВЕКТОР.

К счастью, в макроскопических задачах излучения и приема миллиметровых и более длинных электромагнитных волн квантовомеханические эффекты обычно не имеют существенного значения. Число фотонов, излучаемых, например, симметричной вибраторной антенной, столь велико, а энергия, переносимая каждым из них, столь мала, что можно забыть о дискретных квантах и считать, что испускание излучения – непрерывный процесс.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.