Производственный шум воздействует. Вред производственных шумов. Методы борьбы с шумом

Шум как гигиенический фактор это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.

По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).

Шум как физическое явление это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. Для человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой лизатор к восприятию звуков частотой 1000--3000 Гц (речевая зона).

ИСТОЧНИКИ ПРОИЗВОДСТВЕННОГО ШУМА

По природе возникновения шумы машин или агрегатов делятся на:

механические,

аэродинамические и гидродинамические

электромагнитные.

При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

Механический шум

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические шумы:

шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;

шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;

кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

Шумы электромагнитного происхождения

Шумы электромагнитного происхождения возникают в различных электротехнических изделиях (например при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 20?30 дБ (микромашины) до 100?110 дБ (крупные быстроходные машины).

ВРЕДНЫЕ ВОЗДЕЙСТВИЯ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА

Длительное воздействие интенсивного шума (выше 80 дБА) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости, которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость), характеризуемые постоянным изменением порога слышимости.

Различают следующие степени потери слуха:

I степень (легкое снижение слуха) - потеря слуха в области речевых частот составляет 10 - 20 дБ, на частоте 4000 Гц - 20 - 60 дБ;

II степень (умеренное снижение слуха) - потеря слуха в области речевых частот составляет 21 - 30 дБ, на частоте 4000 Гц - 20 - 65 дБ;

III степень (значительное снижение слуха) - потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц - 20 - 78 дБ.

Действие шума на организм человека не ограничивается воздействием на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 - 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ(А). Установлено повышение на 10 - 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 - 70 дБ(А). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБА).

Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 - 60 дБА), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.

При импульсных и нерегулярных шумах степень воздействия шума повышается.

Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.

В настоящее время "шумовая болезнь" характеризуется комплексом симптомов:

снижение слуховой чувствительности;

изменение функции пищеварения, выражающейся в понижении кислотности;

сердечнососудистая недостаточность;

нейроэндокринные расстройства.

Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБА производительность труда снижается на 20%.

Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.

Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа - ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 - 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.

ХАРАКТЕРИСТИКИ И ВИДЫ ПРОИЗВОДСТВЕННЫХ ШУМОВ

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот.

При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f2 = 2 f1 , называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых

шум звук слух акустика

f2 = 21/3 f1 = 1, 26 f1 .

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой:

КЛАССИФИКАЦИЯ ШУМОВ

Способ классификации

Характеристика шума

По характеру спектра шума

широкополосные

Непрерывный спектр шириной более одной октавы

тональные

В спектре которого имеются явно выраженные дискретные тона

По временным характеристикам

постоянные

Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ(А)

непостоянные:

колеблющиеся во времени

прерывистые

импульсные

Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А)

Уровень звука непрерывно изменяется во времени

Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

ИЗМЕРЕНИЕ ШУМА. ШУМОМЕРЫ

Шумоизмерительные приборы - шумомеры - состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) - быстро, S (slow) - медленно, I (pik) - импульс. Шкалу F применяют при измерениях постоянных шумов, S - колеблющихся и прерывистых, I - импульсных.

Стандартные частотные характеристики А, В, С, D

А - характеристика, приближающаяся к частотной характеристике чувствительности человеческого уха;

В, С - характеристики, использующиеся при измерении громких звуков, для которых чувствительность человеческого уха меньше изменяется в зависимости от частоты;

D - характеристика, используемая при измерении шумов самолетов.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31, 5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.

В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.Частотная характеристика фильтра К(f) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f. Частотная характеристика типового октавного полосового фильтра показана на рис.3.6. Полосовой фильтр характеризуется полосой пропускания B = f2 - f1, т.е. областью частот между двумя частотами f1 и f2, на которых частотная характеристика К(f) имеет значение (затухание) не более 3 дБ.

f1 и f2 - частоты среза фильтра, f0 = (f1 * f2)1/2 - центральная частота фильтра

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов

НОРМИРОВАНИЕ ШУМА

Шум оказывает негативное влияние на весь организм человека. Шумы средних уровней (менее 80 дБА) не вызывают потери слуха, но тем не менее оказывают утомляющее неблагоприятное влияние, которое складывается с аналогичными влияниями других вредных факторов и зависит от вида и характера трудовой нагрузки на организм.

Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих.

Для разных видов шумов применяются различные способы нормирования.

Для постоянных шумов нормируются уровни звукового давления LPi (дБ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для ориентировочной оценки шумовой характеристики рабочих мест допускается за шумовую характеристику принимать уровень звука L в дБ(А), измеряемый по временной характеристике шумомера "S - медленно".

Нормируемыми параметрами прерывистого и импульсного шума в расчетных точках следует считать эквивалентные (но энергии) уровни звукового давления Lэкв в дБ в октавных полосах частот со среднегеометрическими частотами 63, 125, 500, 1000, 2000, 4000 и 8000 Гц.

Для непостоянных шумов нормируется так же эквивалентный уровень звука в дБ(А).

Допустимые уровни звукового давления для рабочих мест служебных помещений и для жилых и общественных зданий и их территорий различны.

Нормативным документом, регламентирующим уровни шума для различных категорий рабочих мест служебных помещений является ГОСТ 12.1.003-83 "ССБТ. Шум. Общие требования безопасности".

Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах частот, уровни звука и эквивалентные уровни звука в дБА для жилых и общественных зданий и их территорий следует принимать в соответствии со СНиП 11-12-88 "Защита от шума".

ЗАЩИТА ОТ ШУМА

Слух позволяет человеку воспринимать звуковую информацию. Вместе с тем, насыщение окружающего пространства шумами повышенной интенсивности может привести к искажению звуковой информации и нарушению слуховой активности человека.

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Наиболее опасно длительное воздействие интенсивного шума на слух человека, которое может привести к частичной или полной потере слуха. Медицинская статистика показывает, что тугоухость в последние годы выходит на ведущее место в структуре профессиональных заболеваний и не имеет тенденции к снижению.

Поэтому важно знать особенности восприятия звука человеком, допустимые с точки зрения обеспечения здоровья, высокой производительности и комфортности уровни шума, а также средства и способы борьбы с шумом.

Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования. В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных -- безударными, например замена клепки -- пайкой, ковки и штамповки обработкой давлением; замена металла в некоторых деталях незвучными материалами, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Противошумы - средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. "Беруши" - коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы - самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периодические медицинские осмотры. Таким осмотрам подлежат лица, работающие на производствах, где шум превышает предельно допустимый уровень (ПДУ) в любой октавной полосе.

  • 1. 1. Физиолого-гигиенические основы труда и обеспечение комфортных условий жизнедеятельности
  • 1.2. Физиологические основы труда и профилактика утомления Физиологические изменения в организме при работе.
  • 1.3. Общие санитарно-технические требования к производственным помещениям и рабочим местам
  • 1.4. Регулирование температуры, влажности и чистоты воздуха в помещениях
  • 1.5. Оптимизация освещения помещений и рабочих мест
  • 1.6. Приспособление производственной среды к возможностям человеческого организма
  • 2. Вредные факторы производственной среды и их влияние на организм человека
  • 2.1. Влияние на организм неблагоприятного производственного микроклимата и меры профилактики
  • 2.2. Производственная вибрация и ее воздействие на человека
  • 2.3. Производственный шум и его воздействие на человека
  • 2.4. Производственная пыль и ее влияние на организм человека Понятие и классификация пыли.
  • 2.5. Вредные вещества и профилактика профессиональных отравлений
  • 2.6. Влияние на организм человека электромагнитных полей и неионизирующих излучений
  • 2.7. Ионизирующие излучения и обеспечение радиационной безопасности
  • Раздел II безопасность жизнедеятельности и окружающая природная среда
  • 1. Современный мир и его влияние на окружающую природную среду
  • 2. Техногенное воздействие на природу
  • 3. Экологический кризис и его последствия
  • Раздел III безопасность жизнедеятельности и жилая (бытовая) среда
  • 1. Понятие и основные группы неблагоприятных факторов жилой (бытовой) среды
  • 2. Влияние на здоровье человека состава воздуха жилых и общественных помещений
  • 3. Физические факторы жилой среды (свет, шум, вибрация, эмп) и их значение в формировании условий жизнедеятельности человека
  • Раздел IV обеспечение безопасности и экологичности технических систем
  • 1. Производственные средства безопасности
  • 2. Средства индивидуальной защиты
  • 3. Средства защиты окружающей среды от вредных факторов (экобиозащитная техника)
  • 3.1. Очистка газопылевых выбросов
  • 3.2. Очистка промышленных и бытовых стоков
  • Раздел V безопасность населения и территорий в чрезвычайных ситуациях
  • 1. Чс, классификация и причины возникновения
  • 1.2. Классификация чрезвычайных ситуаций
  • 1.3. Понятие риска
  • 1.4. Причины и профилактика чс
  • 2. Характеристика и классификация чс техногенного происхождения
  • 2.1. Аварии на химически опасных объектах
  • 2.2. Аварии на радиационно-опасных объектах
  • 2.3. Аварии на пожаро- и взрывоопасных объектах
  • 2.4. Аварии на транспорте
  • 2.5. Аварии на гидротехнических сооружениях
  • 2.6. Аварии на объектах коммунального хозяйства
  • 3.1. Общая характеристика чс природного происхождения
  • 3.2. Чс геологического характера
  • 3.3. Чс метеорологического характера
  • 3.5. Природные пожары
  • 3.6. Биологические чс
  • 3.7. Космические чс
  • 4. Защита населения и территорий в чс
  • 4.1. Единая государственная система
  • 4.2. Организация работы комиссии по чс объекта
  • 4.3. Осуществление мероприятий по защите персонала объекта при угрозе и возникновении чс
  • 4.4. Устойчивость функционирования организаций
  • Раздел VI
  • 1. Антропогенные опасности, их причины и предупреждение
  • 2. Социальные опасности
  • Раздел VII
  • 1. Организационные и правовые основы охраны окружающей среды
  • 1.1. Государственная политика защиты окружающей среды
  • 1.2. Экологическое законодательство
  • 1.3. Органы управления, надзора и контроля в сфере охраны окружающей среды
  • 2. Качество и мониторинг окружающей среды
  • 2.1. Оценка и нормативы качества природной среды
  • 2.2. Мониторинг окружающей среды
  • 3. Правовое обеспечение безопасности жизнедеятельности на производстве
  • 3.1. Законодательство по охране труда
  • 3.4. Организация и функции служб охраны труда на предприятии
  • 3.5. Государственный надзор и общественный контроль за соблюдением законодательства по охране труда
  • 3.6. Производственный травматизм и меры но его предупреждению
  • 4. Ответственность работодателя за нанесение ущерба здоровью работников
  • 5. Организация и управление пожарной безопасностью
  • 6. Международное сотрудничество в области безопасности жизнедеятельности охраны окружающей среды
  • Раздел VIII
  • 1. Условия и обеспечение безопасности труда
  • 2. Принципы, методы и средства обеспечения безопасности
  • 3. Обеспечение техники безопасности на предприятиях
  • 3.1. Техника безопасности при эксплуатации электрооборудования
  • 3.2. Техника безопасности при эксплуатации холодильников
  • 3.4. Техника безопасности при эксплуатации транспортных и погрузочно-разгрузочных машин
  • 3.5. Техника безопасности при эксплуатации котлов и сосудов, работающих под давлением
  • 3.6. Техника безопасности при выполнении строительно-монтажных и ремонтных работ
  • 3.7. Противопожарная профилактика
  • 2.3. Производственный шум и его воздействие на человека

    В различных отраслях экономики имеются источники шума - это механическое оборудование, людские потоки, городской транспорт.

    Шум - это совокупность апериодических звуков различной интенсивности и частоты (шелест, дребезжание, скрип, визг и т. п.). С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый звук. Длительное воздействие шума на человека может привести к такому профессиональному заболеванию, как "шумовая болезнь".

    По физической сущности шум - это волнообразное движение частиц упругой среды (газовой, жидкой или твердой) и поэтому характеризуется амплитудой колебания (м), частотой (Гц), скоростью распространения (м/с) и длиной волны (м).

    Характер негативного воздействия на органы слуха и подкожный

    рецепторный аппарат человека зависит еще и от таких показателей шума, как уровень звукового давления (дБ) и громкость. Первый показатель называется силой звука (интенсивностью) и определяется звуковой энергией в эргах, передаваемой за секунду через отверстие в 1 см2. Громкость шума определяется субъективным восприятием слухового аппарата человека. Порог слухового восприятия зависит еще и от диапазона частот. Так, ухо менее чувствительно к звукам низких частот.

    Воздействие шума на организм человека вызывает негативные изменения прежде всего в органах слуха, нервной и сердечнососудистой системах. Степень выраженности этих изменений зависит от параметров шума, стажа работы в условиях воздействия шума, длительности действия шума в течение рабочего дня, индивидуальной чувствительности организма. Действие шума на организм человека отягощается вынужденным положением тела, повышенным вниманием, нервно-эмоциональным напряжением, неблагоприятным микроклиматом.

    Действие шума на организм человека. К настоящему времени накоплены многочисленные данные, позволяющие судить о характере и особенностях влияния шумового фактора на слуховую функцию. Течение функциональных изменений может иметь различные стадии. Кратковременное понижение остроты слуха под воздействием шума с быстрым восстановлением функции после прекращения действия фактора рассматривается как проявление адаптационной защитно-приспособительной реакции слухового органа. Адаптацией к шуму принято считать временное понижение слуха не более чем на Ю-15 дБ с восстановлением его в течение 3 мин после прекращения действия шума. Длительное воздействие интенсивного шума может приводить к перераздражению клеток звукового анализатора и его утомлению, а затем к стойкому снижению остроты слуха. Установлено, что утомляющее и повреждающее слух действие шума пропорционально его высоте (частоте). Наиболее выраженные и ранние изменения наблюдаются на частоте 4000 Гц и близкой к ней области частот. При этом импульсный шум (при одинаковой эквивалентной мощности) действует более неблагоприятно, чем непрерывный. Особенности его воздействия существенно зависят от превышения уровня импульса над уровнем, определяющим шумовой фон на рабочем месте.

    Развитие профессиональной тугоухости зависит от суммарного времени воздействия шума в течение рабочего дня и наличия пауз, а также общего стажа работы. Начальные стадии профессионального поражения наблюдаются у рабочих со стажем 5 лет, выраженные (поражение слуха на все частоты, нарушение восприятия шепотной и разговорной речи) - свыше 10 лет.

    Помимо действия шума на органы слуха установлено его вредное влияние на многие органы и системы организма, в первую очередь на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется нарушение слуховой чувствительности. Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным настроением, изменением кожной чувствительности и другими нарушениями, в частности замедляется скорость психических реакций, наступает расстройство сна и т. д. У работников умственного труда происходит снижение темпа работы, ее качества и производительности.

    Действие шума может привести к заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах (нарушение основного, витаминного, углеводного, белкового, жирового, солевого обменов), нарушению функционального состояния сердечнососудистой системы. Звуковые колебания могут восприниматься не только органами слуха, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем, на 20-30 дБ меньше уровня, воспринимаемого ухом. Если при невысоких уровнях шума передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на организм человека. При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

    Таким образом, воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной, сердечнососудистой и других систем, которые могут рассматриваться как профессиональное заболевание - шумовая болезнь. Профессиональный неврит слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и проч. Случаи заболевания встречаются у лиц, работающих на ткацких станках, с рубильными, клепальными молотками, обслуживающих прессоштамповочное оборудование, у испытателей-мотористов и других профессиональных групп, длительно подвергающихся интенсивному шуму.

    Нормирование уровня шума. При нормировании шума используют два метода нормирования: по предельному спектру шума и уровню звука в дБ. Первый метод является основным для постоянных шумов и позволяет нормировать уровни звукового давления в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Шум на рабочих местах не должен превышать допустимых уровней, соответствующих рекомендациям Технического комитета акустики при Международной организации по стандартизации. Совокупность восьми допустимых уровней звукового давления называется предельным спектром. Исследования показывают, что допустимые уровни уменьшаются с ростом частоты (более неприятный шум).

    Второй метод нормирования общего уровня шума, измеренного по шкале А, которая имитирует кривую чувствительности уха человека, и называемого уровнем звука в дБА, используется для ориентировочной оценки постоянного и непостоянного шума, так как в этом случае мы не знаем спектра шума. Уровень звука (дБА) связан с предельным спектром зависимостью 1а = ПС + 5.

    Для тонального и импульсного шума допустимые уровни должны приниматься на 5 дБ меньше значений.

    Методы борьбы с шумом. Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

    Устранение причины шума, т. е. замена шумящего оборудования, механизмов на более современное нешумящее оборудование;

    Изоляция источника шума от окружающей среды (применение глушителей, экранов, звукопоглощающих строительных материалов);

    Ограждение шумящих производств зонами зеленых насаждений;

    Применение рациональной планировки помещений;

    Использование дистанционного управления при эксплуатации шумящего оборудования и машин;

    Использование средств автоматики для управления и контроля технологическими производственными процессами;

    Использование индивидуальных средств защиты (беруши, наушники, ватные тампоны);

    Проведение периодических медицинских осмотров с прохождением аудиометрии;

    Соблюдение режима труда и отдыха;

    Проведение профилактических мероприятий, направленных на восстановление здоровья.

    Интенсивность звука определяется по логарифмической шкале громкости. В шкале - 140 дБ. За нулевую точку шкалы принят "порог слышимости" (слабое звуковое ощущение, едва воспринимаемое ухом, равное примерно 20 дБ), а за крайнюю точку шкалы - 140 дБ - максимальный предел громкости.

    Громкость ниже 80 дБ обычно не влияет на органы слуха, громкость от 0 до 20 дБ - очень тихая; от 20 до 40 - тихая; от 40 до 60 - средняя; от 60 до 80 - шумная; выше 80 дБ - очень шумная.

    Для измерения силы и интенсивности шума применяют различные приборы: шумомеры, анализаторы частот, корреляционные анализаторы и коррелометры, спектрометры и др. Принцип работы шумомера состоит в том, что микрофон преобразует колебания звука в электрическое напряжение, которое поступает на специальный усилитель и после усиления выпрямляется и измеряется индикатором по градуированной шкале в децибелах.

    Анализатор шума предназначен для измерения спектров шумов оборудования. Он состоит из электронного полосного фильтра с шириной полосы пропускания, равной 1/3 октавы. Основными мероприятиями по борьбе с шумом являются рационализация технологических процессов с использованием современного оборудования, звукоизоляция источников шума, звукопоглощение, улучшенные архитектурно-планировочные решения, средства индивидуальной защиты.

    На особо шумных производственных предприятиях используют индивидуальные шумозащитные приспособления: антифоны, противошумные наушники (рис. 1.6) и ушные вкладыши типа "беруши". Эти средства должны быть гигиеничными и удобными в эксплуатации.

    В России разработана система оздоровительно-профилактических мероприятий по борьбе с шумом на производствах, среди которых важное место занимают санитарные нормы и правила. Выполнение установленных норм и правил контролируют органы санитарной службы и общественного контроля.

    Вопросы для самоконтроля

    1. Понятие шума, единицы его измерения и классификация шумов.

    2. Какие изменения возникают при действии шума на организм человека?

    3. Укажите методы нормирования и допустимые уровни шума.

    4. Какие мероприятия используются для борьбы с шумом на производстве?

    Шум - один из наиболее распространенных факторов производственной среды. Источниками звуков и шумов являются . Основные производственные процессы, сопровождающиеся шумом, это:

    • клепка
    • штамповка
    • испытание авиамоторов
    • работа на ткацких станках и др.

    Создание новых видов современной промышленной техники, оборудования больших мощностей и значительного числа оборотов приводят к возрастанию интенсивности шума, усложнению его характера.

    Действие шума может проявляться в:

    • специфической патологии органа слуха;
    • неблагоприятном влиянии на нервную, сердечно-сосудистую и другие системы организма;
    • снижении производительности труда;
    • возникновении травм.

    Производственный шум

    Под шумом обычно понимается комплекс звуков разной интенсивности и высоты, беспорядочно изменяющихся во времени, неблагоприятно действующих на организм человека.

    С физической точки зрения звук и шумы представляют собой волнообразно распространяющееся колебательное движение частиц упругой среды. Чем больше амплитуда колебаний звучащего тела, тем больше амплитуда звукового давления и соответствующая сила звука или шума.

    Человеческое ухо способно воспринимать колебания в диапазоне от 16 до 20 000 в секунду. Звуковое колебательное движение характеризуется:

    • Амплитудой
    • Периодом
    • Частотой колебания

    Число колебаний, которое совершает частица в единицу времени, называется частотой колебания и измеряется в герцах (Гц). Герц - одно колебание в секунду.

    Для санитарно-гигиенической характеристики шума на производстве пользуются не физическими (давление, энергия), а относительными величинами, так называемыми децибелами (дБ), основанными на субъективном восприятии звука.

    Шкала децибел имеет то преимущество, что весь огромный диапазон интенсивностей (от едва слышимых до чрезмерно громких) выражается числами от 0 до 140 дБ. Это позволяет при характеристике уровней шумов оперировать малыми числами.

    Воспринимаемый нами шелест листьев равен 30 дБ,
    громкая речь - 70 дБ,
    автомобильный сигнал – 90 дБ,
    шум в ткацких цехах равен 105-110 дБ,
    при ручной клепке металла 110 — 115 дБ.

    Важной характеристикой шума является плотность распределения мощности по спектру частот.

    Если в составе шума преобладают интенсивности звуков с частотой колебаний не более 300-400 Гц, то такой шум называют низкочастотным. При преобладании интенсивности звуков с частотой колебаний от 400 до 1000 Гц шум называют среднечастотным, выше частоты 1000 Гц — высокочастотным.

    Шум принято разделять также на:

    • Стабильный
    • Импульсный

    В производственных условиях на первый план выступает воздействие шума на орган слуха. Воздействие шума может сказаться на работоспособности учащихся, мешать нормальному ходу обучения.

    Так, шум в 95-105 дБ, характерный для текстильного производства, вызывал у учащихся ухудшение показателей мышечной и умственной работоспособности.

    Существенные изменения в функциональном состоянии центральной нервной системы под влиянием шума отмечались у учащихся, проходящих производственное обучение в шумных цехах различных производств.

    Более значительные, чем у взрослых механизаторов сельского хозяйства, наблюдались сдвиги в функциональном состоянии 17-летних учащихся сельских ПТУ, подвергавшихся воздействию высокочастотного шума. Отмеченные сдвиги наступали уже через 3 часа после начала работы и выражались в понижении работоспособности, остроты слуха почти на 33%, т.е. развитии у них выраженного утомления.

    Исследования функционального состояния учащихся, работающих в слесарных и токарных мастерских профтехучилищ, выявили изменения артериального давления, сдвиги со стороны центральной нервной и мышечной систем, а также снижение общей работоспособности. Подобные явления связаны с воздействием факторов производственной среды и в первую очередь шума.

    Исследования, проведенные среди взрослых рабочих и подростков, позволили выявить у последних более сильное снижение слуха по сравнению со взрослыми, работающими в аналогичных условиях производственной среды.

    Борьба с производственным шумом

    Для борьбы с производственным шумом предусматриваются следующие мероприятия:
    1. изоляция источников шума в производственных помещениях путем установления плотных деревянных, кирпичных перегородок с перенесением за перегородку. При невозможности изолировать источники шума возле них устанавливают звукоизолированные кабины для обслуживающего персонала;

    2. установка агрегатов, работа которых сопровождается сильным сотрясением (молоты, штамповочные автоматы и др.), на виброизолирующие материалы или специальный фундамент;

    3. замена шумных технологических процессов бесшумными (штамповка и ковка заменяются обработкой давлением, электросваркой);

    4. расположение шумных цехов на определенном расстоянии от жилых строений с соблюдением зон разрывов; кроме того, их сосредоточивают в одном месте и окружают зелеными насаждениями; утолщенные стены цехов с внутренней стороны облицовывают специальными акустическими плитами;

    5. применение индивидуальных приспособлений для защиты органа слуха.

    Для профилактики отрицательного воздействия шумового фактора в учебно-производственных помещениях предусматривают следующие мероприятия:
    1. Снижение шума в источнике его образования.

    2. Устранение возможности передачи шума от источника и из помещения, где установлены агрегаты, создающие шум, в соседние помещения и за пределы здания за счет усиления звукоизолирующих свойств конструкций.

    3. Снижение уровня шума в помещениях с шумным оборудованием.

    4. Рациональная планировка помещений, имеющих источники шума.

    Профилактика

    Ограничение вредного воздействия шума на организм обучающихся и работающих подростков может быть достигнуто также с помощью:

    • технической и медицинской профилактики воздействия шума;
    • использования коллективных и индивидуальных средств защиты;
    • организации рационального режима труда и отдыха подростков.

    Техническая профилактика проводится обслуживающим персоналом, осуществляющим постоянный контроль за исправностью, герметизацией, звукоизоляцией производственного оборудования, состоянием вентиляционных установок.

    Помещения, имеющие источники ума, не должны облицовываться керамической плиткой и окрашиваться масляной краской. Для усиления звукопоглощения под оборудованием рекомендуется размещать функциональные поглотители в виде кубов, конусов и др.

    Рациональная планировка помещений предусматривает раздельное размещение шумных и тихих цехов и оборудования.

    Медицинская профилактика воздействия шума заключается в своевременной организации предварительных и периодических медицинских осмотров учащихся. При приеме подростков для обучения специальностям, освоение которых связано с воздействием производственного шума, должны строго учитываться медицинские противопоказания.

    Коллективные и индивидуальные средства защиты используются при невозможности проведения мероприятий по снижению производственного шума до нормативных уровней. К таким средствам могут быть отнесены:

    • звукоизолированные кабины наблюдения и дистанционного управления
    • переносные полузакрытые кабины
    • экраны
    • тихие комнаты отдыха
    • различные индивидуальные средства защиты органа слуха: наушники, вкладыши, тампоны и др.

    Организация рационального режима труда и отдыха будет способствовать уменьшению степени неблагоприятного воздействия шума на организм.

    Опасный шум

    Предельный уровень шума для подростков на производстве - 65 дБ. В настоящее время принято оценивать шумы в виде показателя предельного спектра (ПС), численная величина которого соответствует уровню звукового давления шума в децибелах со среднегеометрической частотой 1000 Гц.

    Учитывая, что не во всех случаях удается снизить производственный шум до установленных норм (ПС-65), в целях профилактики целесообразно введение таких режимов труда, которые учитывали бы длительность пребывания подростков-учащихся на рабочих местах.

    Кроме того, в работе должны быть предусмотрены обязательные 10-15-минутные перерывы, которые проводят в специально отведенных помещениях, изолированных от воздействия шумовых факторов. Такие перерывы устраиваются для подростков, работающих:

    • первый год — через 50 мин работы;
    • второй год - через 1,5 ч работы;
    • третий год - через 2 ч работы.

    По истечении допустимого времени работы в условиях производственного шума подростки могут выполнять другую работу по усмотрению администрации.

    шум - один из наиболее распространенных неблагоприятных физических факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием авиации, транспорта. Шум - сочетание различных по частоте и силе звуков.

    Звук - колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения. Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. обычно слышимый диапазон 16 Гц - 20 кГц.

    ультразвуковой диапазон - свыше 20 кГц, инфразвук - меньше 20 Гц,устойчивый слышимый звук - 1000 Гц - 3000 Гц

    Вредное воздействие шума :

    сердечно-сосудистая система;

    неравная система;

    органы слуха (барабанная перепонка)

    Физические характеристики шума

    интенсивность звука J, [Вт/м2];

    звуковое давление Р, [Па];

    частота f, [Гц]

    Интенсивность - кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1м2, перпендикулярно распространению звуковой волны.

    Звуковое давление - дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны.

    Длительное воздействие шума на организм человека приводит к развитию утомления, нередко переходящего в переутомление, к снижению производительности и качества труда. Особенно неблагоприятно шум действует на орган слуха, вызывая поражение слухового нерва с постепенным развитием тугоухости. Как правило, оба уха страдают в одинаковой степени. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет.

    25 Классификация производственного шума и вибрации.

    Шум классифицируется по частоте, спектральным и временным характеристикам, природе его возникновения.

    Классификация производственного шума приведена в таблице 37.

    По характеру спектра шумы подразделяются на широкополосные (с непрерывным спектром шириной более одной октавы) и тональные, в спектре которого имеются дискретные тона.

    В практических оценках шума пользуются стандартным рядом из 8 октавных полос, среднегеометрическое значение которых составляет 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

    По спек тральному составу шумы подразделяются на низкочастотные (максимум звуковой энергии приходится на частоты ниже 400 Гц); средне-частотные (максимум звуковой энергии на частотах от 400 до 1000 Гц) и высокочастотные (максимум звуковой энергии на частотах выше 1000 Гц).

    По временным характеристикам шумы подразделяются на постоянные (уровень звука за 8-ми часовой рабочий день изменяется во времени менее чем на 5 дБ) и непостоянные (уровни которого за 8-ми часовой рабочий день изменяются более чем на 5 дБА). К непостоянному шуму относится колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерывистый шум (уровень звука остается постоянным в течение интервала длительностью 1 сек. и более); импульсный шум, состоящий из одного или нескольких звуковых сигналов длительностью менее 1 сек.

    По среде распространения р азличают шум воздушный и структурный.

    Воздушный шум излучается в окружающее пространство и распространяется в воздушной среде при движении транспортных средств на открытых участках, эстакадах и мостах, а также от звуковых сигнальных устройств, стационарного оборудования, при производстве работ по ремонту и содержанию путей и дорог, перегрузочных работах, техническом обслуживании и ремонте подвижного состава на территории транспортных предприятий.

    Структурный шум возбуждается динамическими силами в точке контакта колеса с дорогой или рельсом при движении. Он распространяется по верхнему строению пути, несущим конструкциям дорожного полотна и передается через грунт близлежащим строениям. Особенно сильно структурный шум проявляется при движении транспорта в тоннелях, под землей.

    Воздействие вибрации на человека классифицируется:

    по способу передачи вибрации на человека;

    по источнику возникновения;

    по направлению действия вибрации;

    по характеру спектра;

    по частотному составу;

    по временной характеристике вибрации .

    По способу передачи на человека различают:

    общую вибрацию , передающуюся через опорные поверхности на тело сидящего или стоящего человека;

    локальную вибрацию , передающуюся через руки человека.

    Примечание. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

    По направлению действия вибрацию подразделяют в соответствии с направлением осей ортогональной системы координат.

    Для общей вибрации направление осей X о , Y о , Z о и их связь с телом человека следующая: ось X о – горизонтальная от спины к груди; ось Y о – горизонтальная от правого плеча к левому); Z л – вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.

    Для локальной вибрации направление осей X л , Y л , Z л и их связь с рукой человека следующая: ось X л – совпадает или параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.); ось Y л – перпендикулярна ладони, а ось Z л – лежит в плоскости, образованной осью X л и направлением подачи или приложения силы, и направлена вдоль оси предплечья.

    По источнику возникновения вибрацию различают:

    локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

    локальную вибрацию , передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей, шпалоподбоек;

    общую вибрацию 1 категории транспортную вибрацию ;

    общую вибрацию 2 категории транспортно-технологическую вибрацию ;

    общую вибрацию 3 категории технологическую вибрацию .

    на постоянных рабочих местах производственных помещений предприятий;

    на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;

    на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;

    общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии Метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и меха-нических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

    общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.

    По характеру спектра вибрации различают:

    узкополосную вибрацию, у которой контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

    широкополосную вибрацию – с непрерывным спектром шириной более одной октавы.

    По частотному составу вибрации различают:

    низкочастотную вибрацию (с преобладанием максимальных уровней в октавных полосах частот 1÷4 Гц для общих вибраций, 8÷16 Гц – для локальных вибраций);

    среднечастотную вибрацию (8÷16 Гц – для общей вибрации, 31,5÷63 Гц – для локальной вибрации);

    высокочастотную вибрацию (31,5÷63 Гц – для общей вибрации, 125÷1000 Гц – для локальной вибрации).

    По временной характеристике вибрации различают:

    постоянную вибрацию , для которой величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

    непостоянную вибрацию , для которой величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

    колеблющуюся во времени вибрацию , для которой величина нормируемых параметров непрерывно изменяется во времени;

    прерывистую вибрацию , когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

    импульсную вибрацию , состоящую из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

    Шумом называют любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и разряжения частиц этой среды - звуковые волны.

    Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

    Звуковое давление измеряется в Паскалях (1 Па = 1 Н/м 2). Ухо человека ощущает звуковое давление от 2-10 -5 до 2-10 2 Н/м 2 .

    Звуковые волны являются носителями энергии. Звуковая энергия, которая приходится на 1 м 2 площади поверхности, расположенной перпендикулярно к распространяющимся звуковым волнам, называется силой звука и выражается в Вт/м 2 . Так как звуковая волна представляет собой колебательный процесс, то он характеризуется такими понятиями, как период колебания (Т) - время, в течение которого совершается одно полное колебание, и частота колебаний (Гц) - число полных колебаний за 1 с. Совокупность частот дает спектр шума.

    Шумы содержат звуки разных частот и различаются между собой распределением уровней по отдельным частотам и характером изменения общего уровня во времени. Для гигиенической оценки шума используют звуковой диапазон частот от 45 до 11 000 Гц, включающий 9 октавных полос со среднегеометрическими частотами в 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц.

    Орган слуха различает не разность, а кратность изменения звуковых давлений, поэтому интенсивность звука принято оценивать не абсолютной величиной звукового давления, а его уровнем, т.е. отношением создаваемого давления к давлению, принятому за единицу

    сравнения. В диапазоне от порога слышимости до болевого порога отношение звуковых давлений изменяется в миллион раз, поэтому для уменьшения шкалы измерения звуковое давление выражают через его уровень в логарифмических единицах - децибелах (дБ).

    Ноль децибел соответствует звуковому давлению 2-10 -5 Па, что приблизительно соответствует порогу слышимости тона с частотой 1000 Гц.

    Шум классифицируют по следующим признакам:

    В зависимости от характера спектра выделяют следующие шумы:

    широкополосные, с непрерывным спектром шириной более одной октавы;

    тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в третьоктавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

    По временным характеристикам различают шумы:

    постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

    непостоянные, уровень шума которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА. Непостоянные шумы можно подразделить на следующие виды:

    - колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

    - прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ-А и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

    - импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характе- ристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

    11.1. источники ШУМА

    Шум является одним из наиболее распространенных неблагоприятных факторов производственной среды, воздействие которого на работающих сопровождается развитием у них преждевременного утомления, снижением производительности труда, ростом общей и профессиональной заболеваемости, а также травматизма.

    В настоящее время трудно назвать производство, на котором не встречаются повышенные уровни шума на рабочих местах. К наиболее шумным относятся горнорудная и угольная, машино- строительная, металлургическая, нефтехимическая, лесная и цел- люлозно-бумажная, радиотехническая, легкая и пищевая, мясомолочная промышленности и др.

    Так, в цехах холодной высадки шум достигает 101-105 дБА, в гвоздильных цехах - 104-110 дБА, в оплеточных - 97-100 дБА, в отделениях полировки швов - 115-117 дБА. На рабочих местах токарей, фрезеровщиков, мотористов, кузнецов-штамповщиков уровень шума колеблется в пределах от 80 до 115 дБА.

    На заводах железобетонных конструкций шум достигает 105- 120 дБА. Шум является одной из ведущих профессиональных вредностей в деревообрабатывающей и лесозаготовительной промышленностях. Так, на рабочем месте рамщика и обрезчика уровень шума колеблется от 93 до 100 дБА с максимумом звуковой энергии в области средних и высоких частот. В этих же пределах колеблется шум в столярных цехах, а лесозаготовительные работы (валка, трелевка леса) сопровождаются уровнем шума от 85 до 108 дБА за счет работы трелевочных лебедок, тракторов и других механизмов.

    Подавляющее большинство производственных процессов в прядильных и ткацких цехах также сопровождается образованием шума, источником которого является бойковый механизм ткацкого станка, удары погонялки челнока. Наиболее высокий уровень шума наблюдается в ткацких цехах - 94-110 дБА.

    Изучение условий труда на современных швейных фабриках показало, что уровень шума на рабочих местах швей-мотористок составляет 90-95 дБА с максимумом звуковой энергии на высоких частотах.

    Наиболее шумными операциями в машиностроении, в том числе, авиастроении, автомобилестроении, вагоностроении и др. следует считать обрубные и клепальные работы с использованием пневматических инструментов, режимные испытания двигателей и их агрегатов различных систем, стендовые испытания на вибропрочность изделий, барабанную готовку, шлифовку и полировку деталей, штампопрессовую заготовку.

    Для нефтехимической отрасли характерными являются высокочастотные шумы различных уровней за счет сброса сжатого воздуха из замкнутого технологического цикла химических производств или

    от оборудования, работающего на сжатом воздухе, например, сборочных станков и вулканизационных линий шинных заводов.

    Вместе с тем в машиностроении, как ни в одной другой отрасли, наибольший объем работ приходится на станочную металлообработ- ку, где занято около 50% всех рабочих отрасли.

    Металлургическую промышленность в целом можно отнести к отрасли с выраженным шумовым фактором. Так, интенсивный шум характерен для плавильных, прокатных и трубопрокатных производств. Из производств, относящихся к этой отрасли, шумными условиями характеризуются метизные заводы, оснащенные холодновысадочными автоматами.

    К наиболее шумным процессам следует отнести шум от открытой воздушной струи (обдув), вырывающейся из отверстий малого диаметра, шум от газовых горелок и шум, образующийся при напылении металлов на различные поверхности. Спектры от всех этих источников очень схожие, типично высокочастотные, без заметного спада энергии до 8-10 кГц.

    В лесной и целлюлозно-бумажной отраслях наиболее шумными являются деревообрабатывающие цеха.

    Промышленность строительных материалов включает ряд шумных производств: машины и механизмы по дроблению и размолу сырья и производству сборного железобетона.

    В горнорудной и угольной промышленностях наиболее шумными являются операции механизированной добычи полезных ископа- емых как с использованием ручных машин (пневмоперфораторы, отбойные молотки), так и с помощью современных стационарных и самоходных машин (комбайны, буровые станки и пр.).

    Радиотехническая промышленность в целом сравнительно менее шумная. Лишь подготовительные и заготовительные цеха ее имеют оборудование, характерное для машиностроительной промышленности, но в значительно меньшем количестве.

    В легкой промышленности как по шумности, так и по числу занятых рабочих наиболее неблагоприятными являются прядильные и ткацкие производства.

    Пищевая промышленность - наименее шумная из всех. Характерные для нее шумы генерируют поточные агрегаты кондитерских и табачных фабрик. Однако отдельные машины этих производств создают значительный шум, например, мельницы зерен какао, некоторые сортировочные машины.

    В каждой отрасли промышленности имеются цеха или отдельные компрессорные станции, снабжающие производство сжатым воздухом или перекачивающие жидкости или газообразные продукты. Последние имеют большое распространение в газовой промышленности как большие самостоятельные хозяйства. Компрессорные установки создают интенсивный шум.

    Примеры шумов, характерных для различных отраслей промышленности, в абсолютном большинстве случаев имеют общую форму спектров: все они широкополосные, с некоторым спадом звуковой энергии в области низких (до 250 Гц) и высоких (выше 4000 Гц) частот с уровнями 85-120 дБА. Исключением являются шумы аэродинамического происхождения, где уровни звукового давления растут от низких к высоким частотам, а также низкочастотные шумы, которых в промышленности по сравнению с описанными выше значительно меньше.

    Все описанные шумы характеризуют наиболее шумные производства и участки, где в основном преобладает физический труд. Вместе с тем широко распространены и шумы менее интенсивные (60-80 дБА), которые, однако, гигиенически значимы при работах, связанных с нервной нагрузкой, например, на пультах управления, при машинной обработке информации и других работах, получающих все большее распространение.

    Шум является также наиболее характерным неблагоприятным фактором производственной среды на рабочих местах пассажирских, транспортных самолетов и вертолетов; подвижного состава железнодорожного транспорта; морских, речных, рыбопромысловых и других судов; автобусов, грузовых, легковых и специальных автомобилей; сельскохозяйственных машин и оборудования; строительнодорожных, мелиоративных и других машин.

    Уровни шума в кабинах современных самолетов колеблются в широком диапазоне - 69-85 дБА (магистральные самолеты для авиалиний со средней и большой дальностью полета). В кабинах автомобилей средней грузоподъемности при различных режимах и условиях эксплуатации уровни звука составляют 80-102 дБА, в кабинах большегрузных автомобилей - до 101 дБА, в легковых автомобилях - 75-85 дБА.

    Таким образом, для гигиенической оценки шума важно знать не только его физические параметры, но и характер трудовой деятель- ности человека-оператора, и, прежде всего, степень его физической или нервной нагрузки.

    11.2. биологическое действие шума

    Большой вклад в изучение проблемы шума внесла профессор Е.Ц. Андреева-Галанина. Она показала, что шум является обще- биологическим раздражителем и оказывает влияние не только на слуховой анализатор, но, в первую очередь, действует на структуры головного мозга, вызывая сдвиги в различных системах организма. Проявления шумового воздействия на организм человека могут быть условно подразделены на специфические изменения, наступающие в органе слуха, и неспецифические, возникающие в других органах и системах.

    Ауральные эффекты. Изменения звукового анализатора под влиянием шума составляют специфическую реакцию организма на акустическое воздействие.

    Общепризнано, что ведущим признаком неблагоприятного влияния шума на организм человека является медленно прогрессирующее понижение слуха по типу кохлеарного неврита (при этом, как правило, страдают оба уха в одинаковой степени).

    Профессиональное снижение слуха относится к сенсоневральной (перцепционной) тугоухости. Под этим термином подразумевают нарушение слуха звуковоспринимающего характера.

    Снижение слуха под влиянием достаточно интенсивных и длительно действующих шумов связано с дегенеративными измене- ниями как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути - спиральном ганглии, а также в волокнах кохлеарного нерва. Однако единого мнения о патогенезе стойких и необратимых изменений в рецепторном отделе анализатора не существует.

    Профессиональная тугоухость развивается обычно после более или менее длительного периода работы в шуме. Сроки ее возникновения зависят от интенсивности и частотно-временных параметров шума, длительности его воздействия и индивидуальной чувствительности органа слуха к шуму.

    Жалобы на головную боль, повышенную утомляемость, шум в ушах, которые могут возникать в первые годы работы в условиях шума, не являются специфическими для поражения слухового анализатора, а скорее характеризуют реакцию ЦНС на действие шумового фактора. Ощущение понижения слуха возникает обычно значительно позже появления первых аудиологических признаков поражения слухового анализатора.

    С целью обнаружения наиболее ранних признаков действия шума на организм и, в частности, на звуковой анализатор, наиболее широко используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума.

    Кроме того, этот показатель применяется для прогнозирования потерь слуха на основании соотношения между постоянными сме- щениями порогов (потерями) слуха (ПСП) от шума, действующего в течение всего времени работы в шуме, и временными смещениями порогов (ВСП) за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом. Например, у ткачей временные смещения порогов слуха на частоте 4000 Гц за дневную экспозицию шумом численно равны постоянным потерям слуха на этой частоте за 10 лет работы в этом же шуме. Исходя из этого, можно прогнозировать возникающие потери слуха, определив лишь сдвиг порога за дневную экспозицию шумом.

    Шум, сопровождающийся вибрацией, более вреден для органа слуха, чем изолированный.

    Экстраауральное влияние шума. Представление о шумовой болезни сложилось в 1960-70 гг. на основании работ по влиянию шума на сердечно-сосудистую, нервную и др. системы. В настоящее время ее заменила концепция экстраауральных эффектов как неспецифических проявлений действия шума.

    Рабочие, подвергающиеся воздействию шума, предъявляют жалобы на головные боли различной интенсивности, нередко с локализацией в области лба (чаще они возникают к концу работы и после нее), головокружение, связанное с переменой положения тела, зависящее от влияния шума на вестибулярный аппарат, снижение памяти, сонливость, повышенную утомляемость, эмоциональную неустойчивость, нарушение сна (прерывистый сон, бессонница, реже сонливость), боли в области сердца, снижение аппетита, повышенную потливость и др. Частота жалоб и степень их выраженности зависят от стажа работы, интенсивности шума и его характера.

    Шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде укорочения интервала Q-T, удлинения интервала P-Q, увеличения длительности и деформации зубцов Р и S, смещения интервала T-S, изменение вольтажа зубца Т.

    Наиболее неблагоприятным с точки зрения развития гипертензивных состояний является широкополосный шум с преобладанием высокочастотных составляющих и уровнем свыше 90 дБА, особенно импульсный шум. Широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении развивающихся вегетативных реакций адаптации не наблюдается.

    По данным эпидемиологического изучения распространенности основных сердечно-сосудистых заболеваний и некоторых факторов риска (избыточная масса, отягощенный анамнез и др.) у женщин, работающих в условиях воздействия постоянного производственного шума в диапазоне от 90 до 110 дБА, показано, что шум, как отдельно взятый фактор (без учета общих факторов риска), может увеличивать частоту артериальной гипертонии (АГ) у женщин в возрасте до 39 лет (при стаже меньше 19 лет) лишь на 1,1%, а у женщин старше 40 лет - на 1,9%. Однако при сочетании шума хотя бы с одним из «общих» факторов риска можно ожидать учащения АГ уже на 15%.

    При воздействии интенсивного шума 95 дБА и выше может иметь место нарушение витаминного, углеводного, белкового, холестерино- вого и водно-солевого обменов.

    Несмотря на то что шум оказывает влияние на организм в целом, основные изменения отмечаются со стороны органа слуха, цент- ральной нервной и сердечно-сосудистой систем, причем изменения нервной системы могут предшествовать нарушениям в органе слуха.

    Шум является одним из наиболее сильных стрессорных производственных факторов. В результате воздействия шума высокой интенсивности одновременно возникают изменения как в нейроэндокринной, так и в иммунной системах. При этом происходит стимуляция передней доли гипофиза и увеличение секреции надпочечниками стероидных гормонов, а как следствие этого - развитие приобретенного (вторичного) иммунодефицита с инволюцией лимфоидных органов и значительными изменениями содержания и функционального состояния Т- и В-лимфоцитов в крови и костном мозге. Возникающие дефекты иммунной системы касаются, в основном, трех основных биологических эффектов:

    Снижение антиинфекционного иммунитета;

    Создание благоприятных условий для развития аутоиммунных и аллергических процессов;

    Снижение противоопухолевого иммунитета.

    Доказана зависимость между заболеваемостью и величиной потерь слуха на речевых частотах 500-2000 Гц, свидетельствующая о том, что одновременно со снижением слуха наступают изменения, способствующие снижению резистентности организма. При увеличении производственного шума на 10 дБА показатели общей заболеваемости работающих (как в случаях, так и в днях) возрастают в 1,2-1,3 раза.

    Анализ динамики специфических и неспецифических нарушений с возрастанием стажа работы при шумовом воздействии на примере ткачей показал, что с увеличением стажа у ткачей формируется полиморфный симптомокомплекс, включающий патологические изменения органа слуха в сочетании с вегетососудистой дисфункцией. При этом темп прироста потерь слуха в 3,5 раза выше, чем прирост функциональных нарушений нервной системы. При стаже до 5 лет преобладают преходящие вегетососудистые нарушения, при стаже свыше 10 лет - потери слуха. Выявлена также взаимосвязь частоты вегетососудистой дисфункции и величины потери слуха, проявляющаяся в их росте при снижении слуха до 10дБ и в стабилизации при прогрессировании тугоухости.

    Установлено, что в производствах с уровнями шума до 90-95 дБА вегетативно-сосудистые расстройства появляются раньше и пре- валируют над частотой кохлеарных невритов. Максимальное их развитие наблюдается при 10-летнем стаже работы в условиях шума. Только при уровнях шума, превышающих 95 дБА, к 15 годам работы в «шумной» профессии экстраауральные эффекты стабилизируются, и начинают преобладать явления тугоухости.

    Сравнение частоты потерь слуха и нервно-сосудистых нарушений в зависимости от уровня шума показало, что темп роста потерь слуха почти в 3 раза выше темпа роста нервно-сосудистых нарушений (соответственно около 1,5 и 0,5% на 1 дБА), то есть с увеличением уровня шума на 1 дБА потери слуха будут возрастать на 1,5%, а нервно-сосудистые нарушения - на 0,5%. При уровнях 85 дБА и выше на каждый децибел шума нервно-сосудистые нарушения наступают на полгода раньше, чем при более низких уровнях.

    На фоне происходящей интеллектуализации труда, роста удельного веса операторских профессий отмечается повышение значения шумов средних уровней (ниже 80 дБА). Указанные уровни не вызывают потерь слуха, но, как правило, оказывают мешающее, раздражающее и утомляющее действия, которые суммируются с

    таковым от напряженного труда и при возрастании стажа работы в профессии могут привести к развитию экстраауральных эффектов, проявляющихся в общесоматических нарушениях и заболеваниях. В связи с этим был обоснован биологический эквивалент действия на организм шума и нервно-напряженного труда, равный 10 дБА шума на одну категорию напряженности трудового процесса (Суворов Г.А. и др., 1981). Этот принцип положен в основу действующих санитарных норм по шуму, дифференцированных с учетом напряженности и тяжести трудового процесса.

    В настоящее время большое внимание уделяется оценке профессиональных рисков нарушения здоровья работающих, в том числе обусловленных неблагоприятным воздействием производственного шума.

    В соответствии со стандартом ИСО 1999.2 «Акустика. Определение профессионального воздействия шума и оценка нарушений слуха, вызванного шумом» можно оценивать риск нарушений слуха в зависимости от экспозиции и прогнозировать вероятность возникновения профзаболеваний. На основе математической модели стандарта ИСО определены риски развития профессиональной тугоухости в процентах с учетом отечественных критериев профессиональной тугоухости (табл. 11.1 ). В России степень профессиональной тугоухости оценивается по средней величине потерь слуха на трех речевых частотах (0,5-1-2 кГц); величины более 10, 20, 30 дБ соответствуют 1-й, II-й, III-й степени снижения слуха.

    Учитывая, что снижение слуха I-й степени с довольно большой вероятностью может развиться и без шумового воздействия в результате возрастных изменений, представляется нецелесообразным использовать I-ую степень снижения слуха для оценки безопасного стажа работы. В связи с этим в таблице представлены вычисленные значения рабочего стажа, в течение которого могут развиться потери слуха II-й и III-й степени в зависимости от уровня шума на рабочих местах. Данные даются для разных вероятностей (в %).

    В табл. 11.1 приведены данные для мужчин. У женщин из-за более медленного, чем у мужчин, нарастания возрастных изменений слуха данные слегка отличаются: для стажа более 20 лет у женщин безо- пасный стаж на 1 год больше, чем у мужчин, а для стажа более 40 лет - на 2 года.

    Таблица 11.1. Стаж работы до развития потерь слуха, превышающих

    критериальные значения, в зависимости от уровня шума на рабочем месте (при 8-часовом воздействии)

    Примечание. прочерк означает, что стаж работы составляет более 45 лет.

    Вместе с тем следует отметить, что стандарт не учитывает характер трудовой деятельности, как это предусмотрено в санитарных нормах по шуму, где предельно допустимые уровни шума дифференцированы по категориям тяжести и напряженности труда и тем самым охватывают неспецифическое действие шума, что важно для сохранения здоровья и работоспособности лиц операторских профессий.

    11.3. нормирование шума на рабочих местах

    Профилактика неблагоприятного влияния шума на организм работающих основана на его гигиеническом нормировании, целью которого является обоснование допустимых уровней и комплекса гигиенических требований, обеспечивающих предупреждение функциональных расстройств или заболеваний. В гигиенической практике в качестве критерия нормирования используют предельно допустимые уровни (ПДУ) для рабочих мест, допускающие ухудшение и изменение внешних показателей деятельности (эффективности

    и производительности) при обязательном возврате к прежней системе гомеостатического регулирования исходного функционального состояния с учетом адаптационных изменений.

    Нормирование шума проводится по комплексу показателей с учетом их гигиенической значимости. Действие шума на организм оценивают по обратимым и необратимым, специфическим и неспецифическим реакциям, снижению работоспособности или дискомфорта. Для сохранения здоровья, работоспособности и самочувствия человека оптимальное гигиеническое нормирование должно учитывать вид трудовой деятельности, в частности, физический и нервноэмоциональный компоненты труда.

    Воздействие шумового фактора на человека состоит из двух составляющих: нагрузки на орган слуха как систему, воспринимаю- щую звуковую энергию, - ауральный эффект, и воздействие на центральные звенья звукового анализатора как систему приема информации - экстраауральный эффект. Для оценки первой составляющей есть специфический критерий - «утомление органа слуха», выражающийся в смещении порогов восприятия тонов, которое пропорционально величине звукового давления и времени экспозиции. Вторая составляющая получила название неспецифического влияния, кото- рое можно объективно оценить по интегральным физиологическим показателям.

    Шум может рассматриваться как фактор, участвующий в эфферентном синтезе. На этой стадии в нервной системе происходит сопоставление всех возможных эфферентных влияний (обстановочных, обратных и поисковых) с тем, чтобы выработать наиболее адекватную ответную реакцию. Действие сильного производственного шума является таким фактором внешней среды, который по своей природе тоже влияет на эфферентную систему, т.е. воздействует на процесс формирования рефлекторной реакции в стадии эфферентного синтеза, но как обстановочный фактор. При этом результат воз- действия обстановочного и пускового влияний зависит от их силы.

    В случаях установки на деятельность обстановочная информация должна являться элементом стереотипа и, следовательно, не вызывать неблагоприятных изменений в организме. Вместе с тем привыкание к шуму в физиологическом смысле не наблюдается, выраженность утомления и частота неспецифических нарушений нарастают с увеличением стажа работы в условиях шума. Следовательно, механизм действия шума нельзя ограничивать фактором участия его в

    обстановочной афферентации. В обоих случаях (шум и напряжение) речь идет о нагрузке на функциональные системы высшей нервной деятельности, и, следовательно, генез утомления при таком воздействии будет носить сходный характер.

    Критерием нормирования по оптимальному уровню для многих факторов, в том числе для шума, можно рассматривать такое состоя- ние физиологических функций, при котором данный уровень шума не вносит своей доли в их напряжение, и последнее целиком определяется выполняемой работой.

    Напряженность труда складывается из элементов, входящих в биологическую систему рефлекторной деятельности. Анализ информации, объем оперативной памяти, эмоциональное напряжение, функциональное напряжение анализаторов - все эти элементы оказываются загруженными в процессе трудовой деятельности, и естественно, что их активная нагрузка вызывает развитие утомления.

    Как и в любом случае, ответ на воздействие состоит из компонентов специфического и неспецифического характеров. Какова доля каждого из этих элементов в процессе утомления - вопрос нерешенный. Однако нет никаких сомнений в том, что воздействие шума и напряженности труда нельзя рассматривать одно без учета другого. В связи с этим эффекты, опосредованные через нервную систему (утомление, снижение работоспособности), как для шума, так и для напряженности труда имеют качественное сходство. Производственные и экспериментальные исследования с использованием социально-гигиенических, физиологических и клинических методов и показателей подтвердили указанные теоретические положения. На примере изучения разных профессий была установлена величина физиолого-гигиенического эквивалента шума и напряжен- ности нервно-эмоционального труда, которая находилась в пределах 7-13 дБА, т.е. в среднем 10 дБА на одну категорию напряженности. Следовательно, оценка напряженности трудового процесса оператора является необходимой для полноценной гигиенической оценки шумового фактора на рабочих местах.

    Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 11.2.

    Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с критериями Руководства 2.2.2006-05.

    Таблица 11.2. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

    Примечание.

    Для тонального и импульсного шумов ПДУ на 5 дБА меньше значений, указанных в таблице;

    Для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ на 5 дБА меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений табл. 11.1 (поправка для тонального и импульсного шумов при этом не учитывается), в противном случае - на 5 дБА меньше значений, указанных в таблице;

    Дополнительно для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

    Поскольку целью дифференцированного нормирования шума является оптимизация условий труда, встречающиеся сочетания напряженного и очень напряженного с тяжелым и очень тяжелым физическим трудом не нормируются исходя из необходимости их ликвидации как недопустимых. Однако для практического использования новых дифференцированных норм как при проектировании предприятий, так и при текущем контроле за уровнями шума на действующих предприятиях серьезной проблемой является приведение в соответствие категорий тяжести и напряженности труда с видами трудовой деятельности и рабочих помещений.

    Импульсный шум и его оценка. Понятие импульсного шума не является строго определенным. Так, в действующих санитарных нормах к импульсному шуму относят шумы, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА, измеренные по характеристикам «импульс» и «медленно», различаются не менее чем на 7 дБ.

    Одним из важных факторов, определяющих различие реакций на постоянный и импульсный шумы, является пиковый уровень. В соответствии с концепцией «критического уровня» шумы с уровнями выше определенного, даже очень кратковременные, могут вызывать прямую травматизацию органа слуха, что подтверждается морфологическими данными. Многие авторы указывают разные значения критического уровня: от 100-105 дБА до 145 дБА. Такие уровни шума встречаются на производстве, например, в кузнечных цехах шум от молотов достигает 146 и даже 160 дБА.

    По-видимому, опасность импульсного шума определяется не только высокими эквивалентными уровнями, но и дополнительным вкладом временных характеристик, вероятно, за счет травмирующего эффекта высоких пиковых уровней. Исследования распределения уровней импульсного шума показали, что, несмотря на малое суммарное время действия пиков с уровнями выше 110 дБА, их вклад в общую дозу может достигать 50%, и это значение 110 дБА было рекомендовано как дополнительный критерий при оценке непостоянных шумов к ПДУ по действующим санитарным нормам.

    Приведенные нормы устанавливают ПДУ для импульсного шума на 5 дБ ниже, чем для постоянных шумов (т.е. вносят поправку минус 5 дБА по эквивалентному уровню), и дополнительно ограничивают максимальный уровень звука 125 дБА «импульс», но не регламентируют пиковые значения. Тем самым действующие нормы

    ориентируются на громкостные эффекты шума, поскольку характеристика «импульс» с t = 40 мс адекватна верхним отделам звукового анализатора, а не возможному травматическому действию его пиков, являющемуся общепризнанным в настоящее время.

    Шумовое воздействие на работающих, как правило, является непостоянным по уровню шума и (или) времени его действия. В связи с этим для оценки непостоянных шумов введено понятие эквивалентного уровня звука. С эквивалентным уровнем связана доза шума, которая отражает количество переданной энергии и поэтому может служить мерой шумовой нагрузки.

    Наличие в действующих санитарных нормах шума на рабочих местах, в помещениях жилых и общественных зданий и на территории жилых застроек в качестве нормируемого параметра эквивалентного уровня и отсутствие такового в качестве дозы шума объясняются рядом факторов. Во-первых, отсутствием в стране отечественных дозиметров; во-вторых, при нормировании шума для жилых помещений и для некоторых профессий (работников, у которых орган слуха является рабочим органом) энергетическая концепция требует поправок, вносимых в измерительные приборы, для выражения шума не в уровнях звукового давления, а в величинах субъективной громкости.

    Учитывая появление в последние годы нового направления в гигиенической науке по установлению степени профессионального риска от различных факторов производственной среды, в том числе и от шума, следует учитывать в перспективе величину дозы шума с различными категориями риска не столько по специфическому влиянию (слуховому), сколько по неспецифическим проявлениям (нарушениям) со стороны других органов и систем организма.

    До настоящего времени влияние шума на человека изучалось изолированно: в частности, промышленного шума - на рабочих различных производств, служащих административно-управленческого аппарата; городского и жилищно-бытового шума - на население различных категорий в условиях проживания. Эти исследования позволяли обосновать нормативы для постоянного и непостоянного, производственного и бытового шумов в различных местах и условиях пребывания человека.

    Однако для гигиенической оценки влияния шумов на человека в производственных и внепроизводственных условиях целесообразно учитывать суммарное шумовое воздействие на организм, что

    возможно на основе концепции суточной дозы шума с учетом видов жизнедеятельности человека (работа, отдых, сон), исходя из возможности кумуляции их эффектов.

    11.4. профилактика неблагоприятного действия шума

    Мероприятия по борьбе с шумом могут быть техническими, архитектурно-планировочными, организационными и медико-профи- лактическими.

    Технические средства борьбы с шумом:

    Устранение причин возникновения шума или снижение его в источнике;

    Ослабление шума на путях передачи;

    Непосредственная защита работающего или группы рабочих от воздействия шума.

    Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные. Большое значение имеет снижение шума в источнике. Этого можно добиться усовершенствованием конструкции или схемы установки, производящей шум, изменением режима ее работы, оборудованием источника шума дополнительными звукоизолирующими устройствами или ограждениями, расположенными по возможности ближе к источнику (в пределах его ближнего поля). Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, который может закрывать отдельный шумный узел машины (например, коробку передач) или весь агрегат в целом. Кожухи из листового металла с внутренней облицовкой звукопоглощающим материалом могут снижать шум на 20-30 дБ. Увеличение звукоизоляции кожуха достигается за счет нанесения на его поверхность вибродемпфирующей мастики, обеспечивающей снижение уровней вибрации кожуха на резонансных частотах и быстрое затухание звуковых волн.

    Для ослабления аэродинамического шума, создаваемого компрессорами, вентиляционными установками, системами пневмотранспорта и др., применяются глушители активного и реактивного типов. Наиболее шумное оборудование размещают в звукоизолирующих камерах. При больших габаритах машин или значительной зоне обслуживания оборудуют специальные кабины для операторов.

    Акустическая отделка помещений с шумным оборудованием может обеспечить снижение шума в зоне отраженного звукового поля на 10-12 дБ и в зоне прямого звука до 4-5 дБ в октавных полосах частот. Применение звукопоглощающих облицовок для потолка и стен приводит к изменению спектра шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

    В многоэтажных промышленных зданиях особенно важна защита помещений от структурного шума (распространяющегося по конструкциям здания). Его источником может быть производственное оборудование, которое имеет жесткую связь с ограждающими конструкциями. Ослабление передачи структурного шума достигается виброизоляцией и вибропоглощением.

    Хорошей защитой от ударного шума в зданиях является устройство «плавающих» полов. Архитектурно-планировочные решения во многих случаях предопределяют акустический режим производственных помещений, облегчая или затрудняя решение задач по их акустическому благоустройству.

    Шумовой режим производственных помещений обусловлен размерами, формой, плотностью и видами расстановки машин и обору- дования, наличием звукопоглощающего фона и т.д. Планировочные мероприятия должны быть направлены на локализацию звука и уменьшение его распространения. Помещения с источниками высокого уровня шума по возможности следует группировать в одной зоне здания, примыкающей к складским и вспомогательным помещениям, и отделять коридорами пли подсобными помещениями.

    Учитывая, что с помощью технических средств не всегда удается снижать уровни шума на рабочих местах до нормативных значений, необходимо применять средства индивидуальной защиты органа слуха от шума (антифоны, заглушки). Эффективность средств индивидуальной защиты может быть обеспечена правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

    В комплексе мероприятий по защите человека от неблагоприятного действия шума определенное место занимают медицинские средства профилактики. Важнейшее значение имеет проведение предварительных и периодических медицинских осмотров.

    Противопоказаниями к приему на работу, сопровождаемую шумовым воздействием, служат:

    Стойкое понижение слуха (хотя бы на одно ухо) любой этиологии;

    Отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом;

    Нарушение функции вестибулярного аппарата любой этиологии, в том числе, болезнь Меньера.

    Принимая во внимание значение индивидуальной чувствительности организма к шуму, исключительно важным является дис- пансерное наблюдение за рабочими первого года работы в условиях шума.

    Одним из направлений индивидуальной профилактики шумовой патологии является повышение сопротивляемости организма рабочих к неблагоприятному действию шума. С этой целью рабочим шумных профессий рекомендуется ежедневный прием витаминов группы В в количестве 2 мг и витамина С в количестве 50 мг (продолжительность курса 2 недели с перерывом в неделю). Следует также рекомендовать введение регламентированных дополнительных перерывов с учетом уровня шума, его спектра и наличия средств индивидуальной защиты.