Обсерватория. Основные типы галактик и их отличительные особенности

Впервые классификацию галактик предложил Э. Хаббл. По этой классификации галактики объединяются в пять основных типов: эллиптические (E ), линзообразные (SO ), обычные спиральные (S ), пересеченные спиральные (SB ) и неправильные (Ir ).

Каждый тип галактик подразделяется на несколько подтипов, или подклассов.

Эллиптические галактики сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. Они имеют вид эллипсов различного сжатия, подразделены на восемь подклассов.

Отсутствие в этих галактиках газа и пыли и голубовато-белых массивных звезд указывает на то, что в них не идет процесс звездообразования.

Каждая спиральная галактика имеет центральное сгущение и несколько спиральных ветвей, или рукавов. У обычных спиральных галактик типа S ветви отходят непосредственно от центрального сгущения, а у пересеченных спиральных галактик типа SB - от перемычки, пересекающей центральное сгущение. Отсюда возник символ SB , обозначающий спираль (S ) и перемычку, или бар (B ) (англ. Bar - полоса, -перемычка). В зависимости от развития ветвей и их размеров относительно центрального сгущения галактики подразделяются на подклассы Sa , Sb и Sc (соответственно, на SВа , SBb и SBc ). У галактик Sa и SBа основное число звезд сосредоточено в центральном сгущении, а спиральные ветви слабо выражены. У галактик Sb и SBb ветви достаточно развиты. В галактиках SB и SBc основное число звезд содержится в сильно развитых и часто разбросанных ветвях, а центральное сгущение имеет небольшие размеры. Так, галактика М31 в созвездии Андромеды принадлежит к типу Sb а галактика МЗЗ в созвездии Треугольника - к типу . Наша Галактика похожа на Туманность Андромеды н тоже относится к тину Sb .

Спиральные галактики имеют рукава голубоватых цветов, так как в них присутствует много молодых гигантских массивных звезд спектральных классов О и В. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей.

Цвет сгущений спиральных галактик - красновато-жёлтый, свидетельствующий о том, что они состоят в основном из звезд спектральных классов G, K, и M.

Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узкой области в виде диска. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов спектральных классов О и В говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.

Промежуточными между E -галактиками и S -галактиками являются линзообразные галактики типа SO . У них центральное сгущение сильно сжато и похоже на линзу, а ветви отсутствуют.

Неправильные галактики получили обозначение Ir (англ. irregular - неправильные, беспорядочные) за отсутствие правильной структуры. Характерными представителями таких галактик является Большое Магелланово Облако и Малое Магелланово Облако. Они находятся в южном полушарии неба вблизи Млечного Пути, хорошо видны невооруженным глазом в виде туманных пятен.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Теория дискообразности галактик И. Канта, ее развитие

2. Виды галактик и их строение

2.1 Спиральные

2.2 Эллиптические

2.3 Неправильные

3. Современные представления о галактиках

Заключение

Список использованной литературы

Введение

От наивной древней картины мира, принимавшей за действительность кажущуюся одинаковую удаленность всех звезд и располагавшую их всех на поверхности хрустальной сферы, мы должны перейти к познанию истинной пространственной структуры грандиозной звездной системы.

Первое, что мы стремимся установить,-- это общие контуры, общие очертания нашей звездной системы, хотя бы в самых грубых чертах. Это удалось сделать еще до того, как стало известно расстояние до ближайшей звезды. На первых порах совершенно правильно приняли для этой цели, что светимость всех звезд одинакова и что различие в их видимом блеске зависит исключительно от их расстояния до нас. Мы знаем теперь, что в действительности светимости звезд различаются прямо-таки чудовищно, но мы знаем также и то, что очень ярких звезд очень мало и что из очень слабых звезд видны лишь те, которые к нам совсем близки.

1. Теория дискообразности галактик И. Канта, ее развитие

Философ И.Кант занимался главным образом естественно научными проблемами и выдвинул ряд важных гипотез, в том числе "небулярную" космогоническую гипотезу, согласно которой возникновение и эволюция солнечной системы выводится из существования "первоначальной туманности". В это же время философ высказал предположение о существовании большой вселенной галактик вне нашей галактики.

В 1747 году, не защитив магистерской диссертации, Кант впервые покидает Кенигсберг. В этот период Кант написал рукопись по астрономии "Космогония или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона". Статья была написана на конкурсную тему, предложенную Прусской академией наук, но молодой ученый не решился принять участие в конкурсе. Статья была опубликована только 1754 году после возвращения Канта в Кенигсберг. Несколько позднее, в конце лета 1754 года, Кант публикует вторую статью, посвященную также вопросам космогонии, - "Вопрос о том, стареет ли Земля с физической точки зрения". Эти две статьи были как бы прелюдией к космогоническому трактату, который был вскоре написан. Его окончательное название гласило "Всеобщая естественная история и теория неба, или попытка истолковать строение и механистическое происхождение всего мироздания, исходя из принципов Ньютона". Трактат вышел анонимно в 1755 году, и вскоре в одном из гамбургских изданий появилась одобрительная рецензия. Работа представляет собой своеобразную попытку сочетать пытливость натуралиста с привычными с детства догматами церкви. Приступая к изложению космогонической системы Кант озабочен одним: как согласовать ее с верой в бога. Философ убежден, что противоречия между его гипотезой и традиционным религиозными (христианским) верованием нет. Однако, очевидно некоторое сходство его взглядов с идеями древних материалистов - Демокрита и Эпикура. Как и эти философы, Кант полагал, что первоначальным состоянием природы было всеобщее рассеяние первичного вещества, атомов. Он показал, как под воздействием чисто механистических причин из первоначального хаоса материальных частиц могла образоваться наша солнечная система. Таким образом, философ отрицал за богом роль "зодчего вселенной". Однако, он видел в нем все же творца того первоначально рассеянного вещества, из которого (по законам механики) возникло нынешнее мироздание. Относительно Галактики Кант утверждал, что она имеет четкую форму диска.

Дальнейшее развитие этой теории мы видим в следующем. Допустим, вы стоите на высоком холме над равниной, на которой разбросаны купами старые и молодые деревья. Они различны по высоте, высоту каждого из них вы не знаете. Но, глядя на них с холма, вы по их кажущейся величине довольно правильно можете судить о расстоянии до каждой купы деревьев. Такой путь изучения звездной Вселенной предложил Вильям Гершель. До него ограничивались наблюдением положения звезд на небе и изучением поверхности Луны и планет, а также увлекались изучением движения членов Солнечной системы.

Для выяснения контуров Вселенной Гершель стал подсчитывать число звезд разного блеска, видимых в поле зрения его телескопа в различных участках неба,-- в Млечном Пути и в стороне от него. Он обнаружил, что чем слабее звезды, тем быстрее возрастает их число по мере приближения к Млечному Пути. Сам же Млечный Путь, как открыл еще Галилей, состоит из бесчисленного множества слабых звезд, сливающихся в сплошную сияющую массу, которая как кольцо опоясывает все небо.

Из этих подсчетов Гершелю стало ясно, что дальше всего наша звездная система тянется во все стороны от нас по направлению к Млечному Пути в плоскости, проходящей через его среднюю линию. Так как Млечный Путь опоясывает все небо, деля его почти пополам, то, очевидно, наша Солнечная система находится вблизи этой плоскости (вблизи галактической плоскости, как ее называют).

Однако Гершель принимал, что он своим гигантским телескопом проник до границ нашей звездной системы, состоящей из звезд, расположенных в пространстве будто бы равномерно.

Основатель Пулковской обсерватории В. Я. Струве в 1847 г. пересмотрел расчеты Гершеля и, изучив распределение звезд, доказал ошибочность подобных выводов. Струве установил, что в пространстве звезды расположены не равномерно, а сгущаются к плоскости Млечного Пути, что наше Солнце вовсе не занимает центральное положение в этой звездной системе и что наибольшие телескопы Гершеля далеко еще не достигли ее границ, а потому и о форме ее говорить преждевременно. Гершель считал, что он как бы сидит со своим телескопом в центре правильно расположенной рощи, из которой обозревает все ее опушки, а Струве доказал, что Гершель сидел где-то в огромном лесу, полном чащ и разрежений, откуда опушки леса далеко еще не видны.

Чем дальше от плоскости Млечного Пути, тем меньше там видно слабых звезд и тем на меньшее расстояние в этих направлениях тянется звездная система. В общем наша звездная система, названная Галактикой, занимает пространство, напоминающее линзу или чечевицу. Она сплющена, толще всего в середине и утончается к краям. Если бы мы могли видеть ее «сверху» или «снизу», она имела бы, грубо говоря, вид круга (не кольца!). «Сбоку» же она выглядела бы как веретено. Но каковы размеры этого «веретена»? Однородно ли расположение звезд в нем?

Ответ дает уже простое рассматривание Млечного Пути, который весь состоит как бы из нагромождения звездных облаков. Одни облака ярче, в них больше звезд (как, например, в созвездиях Стрельца и Лебедя), другие же беднее звездами.

Видимая клочковатость Млечного Пути создается также и неравномерным распределением облаков космической пыли, темными туманностями разной плотности, поглощающими свет звезд, находящихся за ними. Но и с учетом этого наша звездная Вселенная неоднородна. Галактика состоит из звездных облаков. Солнечная система находится в одном из них, называемом «Местной системой». Самые мощные облака звезд находятся в направлении созвездия Стрельца; там Млечный Путь наиболее ярок. Он наименее ярок в противоположной части неба.

Из этого нетрудно вывести заключение, что Солнечная система не находится в центре Галактики, который от нас виден в направлении созвездия Стрельца. Значит, Млечный Путь -- это картина, видимая нами, находящимися внутри Галактики, вблизи ее плоскости, но вдали от ее центра.

В середине Галактики находится ее ядро, которое по аналогии с ядрами других звездных систем должно иметь вид немного сплюснутого эллипсоида вращения. Мы находимся от него несколько далее 25 000 световых лет. В ядре Галактики нет горячих сверхгигантов и возбуждаемых ими к свечению диффузных газовых туманностей. Нет там и пыли, но есть в нем нейтральный водород, который, по неясной еще причине, растекается оттуда в плоскости Галактики со скоростью около 50 км/сек. Ядро, вероятно, окружено быстро вращающимся кольцом нейтрального водорода. Основное излучение ядра создается, по-видимому, оранжевыми звездами-гигантами (не сверхгигантами) спектрального класса К и множеством звезд карликов класса М. По отдельности они все не видны, и этот вывод основан на анализе суммарного цвета и спектра ядра. В общих грубых чертах форма Галактики сходна с чечевицей или с тонкой линзой, в середине которой находится более толстое и яркое ядро. Это ядро должно было бы казаться очень ярким, если бы его не скрадывало, не затмевало поглощение света в массах космической пыли.

2. Виды галактик и их строение

Многообразны формы галактик.

Большинство галактик относят к нескольким основным типам (по характерным внешним признакам, а мелкие различия галактик помогают подразделить эти типы на отдельные подтипы).

2 .1 Спиральные галактики

спиральный эллиптический галактика звезда

В 1845 г. английский астроном лорд Росс (Уильям Парсонс) с помощью телескопа со 180-сантиметровым металлическим зеркалом обнаружил целый класс «спиральных туманностей», самым ярким примером которых явилась туманность в созвездии Гончих Псов (М 51 по каталогу III. Мессье). Природа этих туманностей была установлена лишь в первой половине XX столетия. В то время интенсивно проводились исследования по определению размеров нашей Галактики -- Млечного Пути -- и расстояний до некоторых туманностей, которые удалось разложить на звёзды. Выводы были противоречивы как в оценках расстоянии до туманностей, так и в определении масштабов Галактики. Одни исследователи выносили звёздные туманности далеко за пределы нашей Галактики и называли их «островными вселенными» другие (и таких было большинство), наоборот, включали эти туманности в состав Млечного Пути.

Всё встало на свои места, когда в 20-х гг. в ближайших спиральных туманностях были обнаружены цефеиды, позволившие оценить расстояния до них.

Цефеиды - звезды переменной светимости, получившие такое название в честь первой такого типа обнаруженной звезде в созвездии Цефея. Яркость цефеид периодически меняется, причем, чем реже вспыхивает звезда, тем большей светимости она достигает в максимуме блеска. Периоды цефеид разные - от часов до месяцев. Вымеряв период пульсации звезды и ее яркость в максимуме, можно определить расстояние к ней.

Уточнение шкалы расстояний цефеид в 1952 г. удвоило все межгалактические расстояния. При новой шкале размеры ближайших спиральных туманностей стали сопоставимы с размерами Млечного Пути, а иногда и превышали их. Тем самым были получены последние доказательства того, что спиральные туманности - это огромные звёздные системы, сравнимые с нашей Галактикой и удаленные от неё на миллионы световых лет. С тех пор их и стали называть галактиками.

Спиральные галактики по внешнему виду напоминают чечевицу или двояковыпуклую линзу. На галактическом диске заметен спиральный узор из 2-х и более (до 10) закрученных в одну сторону ветвей или рукавов, выходящих из центра галактики. В спиральных рукавах сосредоточено много молодых ярких звезд и нагреваемых ими светящихся газовых облаков. Диск погружен в разреженное слабосветящееся сфероидальное облако звезд - гало. К этому классу принадлежат половина всех наблюдаемых галактик. Обозначаются - буквой S. Звезды и газ в них обращаются вокруг центра галактики, причем с разной угловой скоростью на разных расстояниях от центра.

Простой взгляд на фотографию спиральной галактики вызывает восхищение и удивление: каким образом может возникнуть такая система звезд? Какая сила собирает и удерживает звезды в спиральных ветвях? Почему самые яркие, массивные, а значит, короткоживущие звезды находятся в спиральных ветвях, а между ветвями - в основном слабые, долго прожившие звезды? Почему вид галактики напоминает два блюдца, приложенные краями друг к другу? Почему в центре галактик, наблюдаемых с ребра, видно шарообразное «вздутие» (балдж), образуемое моломассивными желтыми и красными звездами? И еще множество подобных вопросов можно задать, если вникать в глубины сотворения мира и вселенной. И чем больше ответов получают ученые - тем больше вопросов постает перед ними. Так было и так будет. Но можно попробовать ответить на некоторые из них, используя те материалы, которыми мы обладаем.

Плоская, дискообразная форма объясняется вращением. Во время образования галактики центробежные силы препятствовали сжатию протогалактического облака или системы облаков газа в направлении, перпендикулярном оси вращения. В результате газ концентрировался к некоторой плоскости -- так образовались вращающиеся диски спиральных галактик. Диск вращался не как единое твёрдое тело (например, колесо): период обращения звёзд по краям диска намного больше, чем во внутренних частях.

Немало усилий пришлось приложить астрономам, чтобы понять причину других наблюдаемых свойств спиральных галактик. Заметный вклад в исследование их природы висела отечественная наука. Вот как представляют себе природу спиральных ветвей галактик в наши дни.

Все звёзды, населяющие галактику, гравитационно взаимодействуют, в результате чего создаётся общее гравитационное поле галактики. Известно несколько причин, по которым при вращении массивного диска возникают регулярные уплотнения вещества, распространяющиеся подобно волнам на поверхности воды. В галактиках они имеют форму спиралей, что связано с характером вращения диска. В спиральных ветвях наблюдается повышение плотности, как звёзд, так и межзвёздного вещества -- пыли и газа. Повышенная плотность газа ускоряет образование и последующее сжатие газовых облаков и тем самым стимулирует рождение новых звёзд. Поэтому спиральные ветви являются местом интенсивного звездообразования.

Спиральные ветви -- это волны плотности, бегущие по вращающемуся диску. Поэтому через некоторое время звезда, родившаяся в спирали, оказывается вне её. У самых ярких и массивных звёзд очень короткий срок жизни, они сгорают, не успев покинуть спиральную ветвь. Менее массивные звёзды живут долго и доживают свой век в межспиральном пространстве диска.

Маломассивные жёлтые и красные звёзды, составляющие балдж намного старше звёзд, концентрирующихся в спиральных ветвях. Эти звёзды родились ещё до того, как сформировался галактический диск. Возникнув в центре протогалактического облака, они уже не могли быть вовлечены в сжатие к плоскости галактики и потому образуют шарообразную структуру.

Балдж и диск галактики погружены в массивное гало. Некоторые исследователи предполагают, что основная масса гало заключена не в звёздах, а в несветящемся (скрытом) веществе, состоящем либо из тел с массой, промежуточной между массами звёзд и планет, либо из элементарных частиц, существование которых предсказывают теоретики, но которые ещё предстоит открыть. Проблема природы этого вещества -- скрытой массы -- сейчас занимает умы многих учёных, и её решение может дать ключ к природе вещества во Вселенной в целом.

На фотографии поразительной по красоте галактики М 51, называемой Водоворотом в созвездии Гончих псов, видна на конце одной из спиральных ветвей небольшая галактика-спутник. Она обращается вокруг материнской галактики. Удалось построить компьютерную модель образования этой системы. Предполагается, что маленькая галактика, пролетая вблизи большой, привела к сильным гравитационным (приливным) возмущениям её диска. В результате в диске большой галактики создаётся волна плотности спиральной формы. Звёзды, рождающиеся в спиральных ветвях, делают эти ветви яркими и чёткими.

2. 2 Эллиптические галактики

Эллиптические галактики составляют 25% от общего числа галактик высокой светимости. Их понято обозначать буквой Е (elliptical), к которым добавляется цифра от 0 до 6, соответствующая степени уплощения системы (Е0 - "шаровые" галактики, Е6 - наиболее "сплюснутые"). Цвет у эллиптических галактик красноватый, так как они состоят преимущественно из старых звезд.

Холодного газа в таких системах почти нет, но наиболее массивные из них заполнены очень разреженным горячим газом, температурой более миллиона градусов. Излучение спектра этих галактик показывает, что звезды в них движутся с почти одинаковой вероятностью во всех направлениях, а вращаются они медленно. Плотность звезд в единице объема увеличивается к центру и плавно спадает от центра к краю.

Отсутствуют бело-голубые гиганты исверхгиганты. Нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой -- большим или меньшим сжатием. Хабблпредложил показателем сжатия считать величину, которую можно вычислить, зная большую и малую ось её эллипса. Если галактика имеет форму шара, то её величина сжатия равна нулю, так как большая и малая оси эллипса равны. Если большая ось существенно больше малой, то иной класс, максимальный класс в этой системе -- 10. Записываются эти данные так: E0, Е7, где E -- это класс(эллиптическая), цифра -- подкласс. Кроме того, эллиптические галактики могут сильно отличаться друг от друга по размеру. Образование новых звезд практически не идет последние 10 млрд. лет.

Линзовидные галактики - это промежуточный тип между спиральными и эллиптическими. У них есть гало и диск, но нет спиральныхрукавов. Такие галактики обозначаются S0.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной -- около 13 %.

Ближайшая к нам эллиптическая галактика -- карликовая галактика в созвездии Скульптора (ESO 351-30, подкласс -- dE0 или dSph, радиус -- 1505 световых лет)

2.3 Неправильные галактики

Неправильные галактики -- это галактики, не вписывающиеся в последовательность Хаббла. Они не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Существует два больших типа неправильных галактик:

§ Неправильные галактики первого типа (Irr I ) представляют собой неправильные галактики, имеющие намеки на структуру, которых, однако, не достаточно чтобы отнести их к последовательности Хаббла. Существует два подтипа таких галактик -- обнаруживающих подобие спиральной структуры (Sm ), и с отсутствием таковой (Im ).

§ Неправильные галактики второго типа (Irr II ) -- это галактики, не имеющие никаких особенностей в своей структуре, позволяющих отнести их к последовательности Хаббла.

Третий подтип неправильных галактик -- так называемые карликовые неправильные галактики, обозначаемые как dI или dIrrs . Этот тип галактик в настоящее время считается важным звеном в понимании общей эволюции галактик. Вызвано это тем, что они обнаруживают тенденцию низкого содержания металлов и экстремально высокого содержания газа и поэтому подразумеваются схожими с самыми ранними галактиками, заполнявшими Вселенную. Этот тип галактик может представлять местную (и поэтому наиболее современную) версию тусклых голубых галактик, обнаруженных в ходе миссии Hubble Ultra Deep Field.

Некоторые неправильные галактики являются маленькими спиральными галактиками, разрушенными приливными силами больших компаньонов.

В прошлом считалось, что Большое и Малое Магеллановы Облака относятся к неправильным галактикам. Однако позже было обнаружено, что они имеют спиральную структуру с баром. Поэтому эти галактики были переквалифицированы в SBm, четвертый тип спиральных галактик с баром.

3. Современные представления о галактиках

Галактики стали предметом космогонических исследований с 20-х годов ХХ века, когда была надежно установлена их действительная природа и оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие от нас на очень больших расстояниях от нас. В основе всей современной космологии лежит одна фундаментальная идея - восходящая к Ньютону идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремиться создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: "блинов" - протоскоплений. Границами этих слоев уплотнения служили ударные волны, на фронтах которых первоначально невращательное, безвихревое движение вещества приобретало завихренность. Распад слоев на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы - галактики. Те из них, которые обладали быстрым вращением, приобретали из-за этого двухкомпонентную структуру - в них формировались гало более или менее сферической формы и диск, в котором возникали спиральные рукава, где и до сих пор продолжается рождение звезд Протогалактики, у которых вращение было медленнее или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной - возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие ячеек или пчелиных сот; их удалось распознать в последние годы.

Последующие наблюдения показали, что описанная классификация недостаточна, чтобы систематизировать все многообразие форм и свойств галактик. Так, были обнаружены галактики, занимающие в некотором смысле промежуточное положение между спиральными и эллиптическими галактиками (обозначаются Sо). Эти галактики имеют огромное центральное сгущение и окружающий его плоский диск, но спиральные ветви отсутствуют. В 60-х годах ХХ века были открыты многочисленные пальцеобразные и дисковидные галактики со всеми градациями обилия горячих звезд и пыли. Еще в 30-х годах ХХ века были открыты эллиптические карликовые галактики в созвездиях Печи и Скульптора с крайне низкой поверхностной яркостью, настолько малой, что эти, одни из ближайших к нам, галактик даже в центральной своей части с трудом видны на фоне неба. С другой стороны, в начале 60-х годов ХХ века было открыто множество далеких компактных галактик, из которых наиболее далекие по своему виду неотличимы от звезд даже в сильнейшие телескопы. От звезд они отличаются спектром, в котором видны яркие линии излучения с огромными красными смещениями, соответствующими таким большим расстояниям, на которых даже самые яркие одиночные звезды не могут быть видны. В отличие от обычных далеких галактик в которые, из-за сочетания истинного распределения энергии в их спектре и красного смещения выглядят красноватыми, наиболее компактные галактики (называющиеся также квазизвёздными галактиками) имеют голубоватый цвет. Как правило, эти объекты в сотни раз ярче обычных сверхгиганских галактик, но есть и более слабые. У многих галактик обнаружено радиоизлучение нетепловой природы, возникающее, согласно теории русского астронома И.С. Шкловского, при торможении в магнитном поле электронов и более тяжелых заряженных частиц, движущихся со скоростями, близкими к скорости света (так называемое синхотронное излучение). Такие скорости частицы получают в результате грандиозных взрывов внутри галактик.

Компактные далекие галактики, обладающие мощным нетепловым радиоизлучением, называются N-галактиками.

Звездообразные источники с таким радиоизлучением, называются квазарами (квазизвёздными радиоисточниками), а галактики обладающие мощным радиоизлучением и имеющие заметные угловые размеры, - радиогалактиками. Все эти объекты чрезвычайно далеки от нас, что затрудняет их изучение. Радиогалактики, имеющие особенно мощное нетепловое радиоизлучение, обладают преимущественно эллиптической формой, встречаются и спиральные.

Радиогалактики - это галактики, у которых ядра находятся в процессе распада. Выброшенные плотные части, продолжают дробиться, возможно, образуют новые галактики - сестры, или спутники галактик меньшей массы. При этом скорости разлета осколков могут достигать огромных значений. Исследования показали, что многие группы и даже скопления галактик распадаются: их члены неограниченно удаляются друг от друга, как если бы они все были порождены взрывом.

Галактики - сверхгиганты имеют светимости, в 10 раз превышающие светимость Солнца, квазары в среднем еще в 100 раз ярче; слабейшая же из известных галактик - карликов сравнимы с обычными шаровыми звездными скоплениями в нашей галактике. Их светимость составляет около 10 светимости солнца.

Размеры галактик весьма разнообразны и колеблются от десятков парсек до десятков тысяч парсек.

Пространство между галактиками, особенно внутри скоплений галактик, по-видимому, содержит иногда космическую пыль. Радиотелескопы не обнаруживают в них ощутимого количества нейтрального водорода, но космические лучи, пронизывают его насквозь так же, как и в электромагнитное излучение.

Галактика состоит из множества звезд различных типов, а также звездных скоплений и ассоциаций, газовых и пылевых туманностей и отдельных атомов и частиц, рассеянных в межзвездном пространстве. Большая часть их занимает объем линзообразной формы поперечником около 30 и толщиной около 4 килопарсек (соответственно около 100 тысяч и 12 тысяч световых лет). Меньшая часть заполняет почти сферический объем с радиусом около 15 килопарсек (около 50 тысяч световых лет).

Все компоненты галактики связаны в единую динамическую систему, вращающуюся вокруг малой оси симметрии. Земному наблюдателю, находящемуся внутри галактики, она представляется в виде Млечного Пути (отсюда и ее название - "Галактика") и всего множества отдельных звезд, видимых на небе.

Звезды и межзвездная газо - пылевая материя заполняют объем галактики неравномерно: наиболее сосредоточены они около плоскости, перпендикулярной оси вращения галактики и составляющейся плоскостью ее симметрии (так называемой галактической плоскостью). Вблизи линии пересечения этой плоскости с небесной сферой (галактического экватора) и виден Млечный Путь, средняя линия которого представляет собой почти большой круг, так как Солнечная система находится недалеко от этой плоскости. Млечный Путь представляет собой скопление огромного количества звезд, сливающихся в широкую белесую полосу; однако, звезды, проектирующиеся на небе рядом, удалены друг от друга в пространстве на огромные расстояния, исключающие их столкновения, несмотря на то, что они движутся с большими скоростями (десятки и сотни км/сек) в направлении полюсов галактики (ее северный полюс находится в созвездии Волос Вероники). Общее количество звезд в галактике оценивается в 100 миллиардов.

Межзвездное вещество рассеяно в пространстве также не равномерно, концентрируясь преимущественно вблизи галактической плоскости в виде глобул, отдельных облаков и туманностей (от 5 до 20 - 30 парсек в поперечнике), их комплексов или аморфных диффузных образований. Особенно мощные, относительно близкие к нам темные туманности представляются невооруженному глазу в виде темных прогалин неправильных форм на фоне полосы Млечного Пути; дефицит звезд в них является результатом поглощения света этими несветящимися пылевыми облаками. Многие межзвездные облака освещены близкими к ним звездами большой светимости и представляются в виде светлых туманностей, так как светятся либо отраженным светом (если состоят из космических пылинок) либо в результате возбуждения атомов и последующего испускания ими энергии (если туманности газовые).

Заключение

Наши дни с полным основанием называют золотым веком астрофизики - замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Солнечная система стала последнее время предметом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце и о галактиках. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут "заглянуть" на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретится на пути к звездам.

Список использованной литературы

1. Зельманова А.Л. «Метагалактика и Вселенная». М., 2000.

2. О системах галактики / М. Б. Сизов.--М.: Прометей, 2009.--16 с.

3. Происхождение и эволюция Земли и других планет Солнечной системы / А. А. Маракушев.--М.: Наука,--204 с.

4. Физическая модель Вселенной / Б. П. Иванов.--СПб.: Политехника, 2000.--312 с.

5. Эволюция солнечной системы: Пер. с англ. / Х. Альвен, Г. Аррениус.--М.: Мир,--511 с.

Размещено на Allbest.ru

Подобные документы

    Галактика - большая система из звезд, межзвездного газа, пыли, темной материи и энергии. Классификация галактик Э. Хаббла. Эллиптические, линзообразные, спиральные, пересеченные спиральные галактики. Неправильные галактики - галактики неправильного вида.

    презентация , добавлен 13.12.2010

    Понятие, классификация и спиральные рукава галактик. Характеристика и описание квазаров. Строение, внешний вид и звездный состав Нашей Галактики. Сущность эффекта красного смещения в спектрах галактик. Понятие, свойства, структура и возраст Метагалактики.

    реферат , добавлен 26.01.2010

    Положение Солнца в Галактике Млечный путь. Типология галактик по внешнему виду (эллиптические, спиральные, неправильные), предложенная Хабблом. Скопления и сверхскопления Галактик. Другие Галактики - островные вселенные (в созвездии Андромеды, Вероники).

    реферат , добавлен 03.10.2016

    Образование Вселенной. Строение Галактики. Виды Галактик. Земля - планета Солнечной системы. Строение Земли. Расширение Метагалактики. Космическая распространенность химических элементов. Зволюция Вселенной. Формирование звезд и галактик.

    реферат , добавлен 02.12.2006

    Формирование галактик. Неустойчивость, сжатие. Наблюдая эволюцию галактик. Типы галактик. Перерождение галактик. Фрагментация протогалактической туманности. Изображение эллиптической галактики. Большое и Малое Магеллановы Облака.

    курсовая работа , добавлен 24.04.2006

    Понятие светимости, ее особенности, история и методика изучения, современное состояние. Определение степени светимости звезд. Сильные и слабые по светимости звезды, критерии их оценивания. Спектр звезды и его определение с помощью теории ионизации газов.

    реферат , добавлен 12.04.2009

    Происхождение и развитие галактик и звезд. Межзвездная пыль в галактическом пространстве. Причины появления и процесс образования новых звезд. Современные представления о процессах развития и происхождения галактик. Существование двойных галактик.

    презентация , добавлен 20.04.2012

    Карта звездного неба. Ближайшие звезды. Ярчайшие звезды. Крупнейшие звезды нашей Галактики. Спектральная классификация. Звездные ассоциации. Эволюция звезд. Диаграммы Герцшпрунга – Рессела шаровых скоплений.

    реферат , добавлен 31.01.2003

    Теория дискообразности галактик И. Канта, ее развитие. Гипотеза квазаров - ядерообразующих галактик. Современные представления о галактиках. Состав галактики. Возможности превращения вещества безграничны. Расширение Метагалактики.

    реферат , добавлен 06.10.2006

    Формирование галактик. Неустойчивость, сжатие. Наблюдая эволюцию галактик. Типы галактик. Перерождение галактик. Наша Галактика - это еще не вся Вселенная. Физика и логика эфирной Вселенной. Проблемы современной астрофизики.

Галактики во Вселенной не похожи друг на друга. Некоторые из них ровные и круглые, другие имеют форму уплощенных разметавшихся спиралей, а у некоторых не наблюдается почти никакой структуры. Астрономы, следуя пионерской работе Эдвина Хаббла, опубликованной в 20-х годах, подразделяют галактики по их форме на три основных типа: эллиптические, спиральные и неправильные, обозначаемые соответственно Е, S и Irr.

Эллиптические галактики характеризуются в целом эллиптической формой и не имеют никакой другой структуры, кроме общего падения яркости по мере удаления от центра. Падение яркости описывается простым математическим законом, который открыл Хаббл. На языке астрономов это звучит так: эллиптические галактики имеют концентрические эллиптические изофоты, т. е. если соединить одной линией все точки изображения галактики с одинаковой яркостью и построить такие линии для разных значений яркости (аналогично линиям постоянной высоты на топографических картах), то мы получим ряд вложенных друг в друга эллипсов примерно одинаковой формы и с общим центром.

Подтипы эллиптических галактик обозначаются буквой Е, за которой следует число n, определяемое по формуле

где а и b — это соответственно большая и малая полуоси какой-либо изофоты галактики. Таким образом, эллиптическая галактика круглой формы будет отнесена к типу Е0, а сильно сплюснутая может быть классифицирована как Е6 Проще всего выглядят эллиптические галактики: они ровные, однородные по цвету и симметричные. Их почти совершенное строение наводит на мысль об их существенной простоте. И действительно, параметры эллиптических галактик оказалось легче измерить и подыскать под них теоретические модели, чем сделать это для более сложных родственников этих объектов.

Рассмотрим, для примера, строение типичной эллиптической галактики M87. В ее центре находится яркое ядро. окруженное размытым сиянием, яркость которого падает по мере удаления от центра. Как и у всех эллиптических галактик, падение яркости описывается простой математической формулой. Форма контура галактики тоже остается почти одинаковой на всех уровнях яркости. Все изофоты представляют собой почти идеальные эллипсы, центрированные в точности на ядро галактики. Направления больших осей и отношения большой оси к малой почти одинаковы у всех эллипсов.

Фундаментальная простота эллиптических галактик согласуется с предположением о том, что они управляются небольшим числом сил. Орбиты звезд гладкие и хорошо перемешаны и ничто, кроме гравитации, не влияет на их расположение, и никакое непрерывное звездообразование не разрушило их правильности. Когда Хаббл впервые обратил внимание на эти факты, он показал, что строение эллиптической галактики мало отличается от строения простой газовой среды, формируемой лишь гравитационными силами и состоящей из одинаковых частиц примерно одинаковой температуры. Чтобы построить такой объект из звезд, надо лишь взять много похожих звезд, расположить их рядом друг с другом в пространстве, позволить тяготению поработать с ними и долго-долго подождать, пока движения всех звезд не станут похожими. Не следует придавать звездам систематических движений вроде общего вращения, но надо удостовериться в том, что звезды выбраны тихие и благонравные, которые не будут извергаться, выбрасывать вещество или иным способом нарушать скучную монотонность неизменного звездного царства. Но нет необходимости с самого начала распределять их в идеальном шаровом объеме. Можно, например, «сделать» из них ящик прямоугольной формы и просто подождать некоторое время. Звезды сами в конце концов расположатся в виде сфероида. Тяготение действует сферически симметричным образом и, если ваша галактика управляется только гравитацией, то она выровняется, потеряет острые углы и станет симпатичной эллиптической галактикой.

Настоящие эллиптические галактики, разумелся, не являются совершенными сферами. Например, изофоты M87 — это скорее эллипсы, чем окружности, и отношения их осей слегка различаются на разных расстояниях от центра — во внешних частях изофоты менее круглые. Их ориентация тоже немного меняется. Все эти несовершенства говорят нам, что простая модель эллиптических галактик не совсем правильна. Предыстория или особые обстоятельства, наверное, оказали заметное влияние на орбиты звезд. Может быть, дело во вращении или причиной является приливное действие соседних галактик, или же мы наблюдаем проявления особых начальных условий, столь сильные, что тяготению не хватило времени для полного их устранения.

В отличие от эллиптических галактик, для спиральных характерно наличие диска и балджа (утолщения). Спиральные рукава уступают диску и балджу по количеству содержащихся в них звезд, хотя и являются важными и выдающимися частями галактики. (Так же, как глаза на лице человека — это небольшая часть тела, но они привлекают наше внимание и много говорят о внутреннем мире человека.)

Диск спиральной галактики довольно плоский. Видимые с ребра галактики говорят о том, что толщина типичного диска составляет около 1/10 его диаметра. В нашей собственной Галактике, где мы можем вести подсчет звезд в диске и измерять его толщину, оказалось, что звездное население быстро редеет и на высоте 3000 световых лет над плоскостью галактики становится весьма разреженным. Это в особенности справедливо для самых молодых звезд и сырья (газа и пыли), находящегося в ожидании формирования будущих звезд. У спиральных галактик хорошо заметно плоское спиральное распределение яркости вокруг утолщенного ядра. Идеальные спиральные галактики имеют две спиральные ветви (рукава). исходящие либо прямо из ядра, либо из двух концов бара (перемычки), в центре которого расположено ядро. Этот признак позволил разделить спиральные галактики на два основных подтипа: нормальные спиральные галактики (S) и пересеченные спиральные галактики (SB). Нормальных спиральных галактик во много раз больше, чем пересеченных. Дальнейшее разделение спиральных галактик на подтипы проводится по следующим трем критериям: 1) относительной величине ядра по сравнению с размерами всей галактики: 2) по тому, насколько сильно или слабо закручены спиральные ветви и 3) фрагментарности спиральных ветвей.

К типу Sa (или SBa) относят галактики с очень обширной ядерной областью и сильно закрученными спиральными (почти круговыми) ветвями — непрерывными и гладкими, а не фрагментарными. Галактики Sb и SBb имеют относительно небольшую ядерную область при не очень сильно закрученных спиральных ветвях, которые разрешаются на отдельные яркие фрагменты. Галактики типа Sc (и соответствующие им пересеченные галактики) характеризуются сильно фрагментированными обрывочными спиральными рукавами. У галактик SBc даже бар разделяется на отдельные фрагменты.

У всех спиральных галактик ядро представляет собой яркую область, обладающую многими признаками эллиптической галактики. Закон падения яркости, открытый Хабблом для эллиптических галактик, оказался справедливым и для центральных ядерных областей спиральных галактик и поэтому эти области иногда называют «эллиптическим компонентом».

У некоторых видимых с ребра спиральных галактик заметны мощные тончайшие прослойки пыли, пересекающие диск в самой его середине, в то время как самые старые звезды диска образуют гораздо более толстый слой.

Во второй половине 40-х годов ХХ века У. Бааде (США) установил, что клочковатость спиральных ветвей и их голубизна растут с повышением содержания в них горячих голубых звезд, их скоплений и диффузных туманностей. Центральные части спиральных галактик желтее, чем ветви и содержит старые звезды (население второго типа, по Бааде, или население сферической составляющей), тогда как плоские спиральные ветви состоят из молодых звезд (население первого типа, или население плоской составляющей)

Данные измерений распределения яркости в дисках спиральных галактик обнаруживают очень важное сходство — это обстоятельство хорошо задокументировано, но до сих пор не получило удовлетворительного объяснения. Яркость весьма регулярным образом падает по мере удаления от центра в соответствии с универсальной математической зависимостью, которая, однако, отличается от аналогичной зависимости для эллиптических галактик.

Наблюдаемые свойства галактических дисков находят естественное объяснение в созданных на ЭВМ моделях быстро вращающихся звездных систем. Рассмотрим описанную выше эллиптическую галактику. Если ее протогалактическому газовому облаку придать быстрое вращение еще до образования большинства звезд, то облако приобретет плоскую форму, и распределение звезд будет напоминать диск спиральной галактики. Таким образом, оказывается, что основное структурное отличие эллиптических галактик от спиральных состоит в скорости исходного вращения.

Тогда откуда же появляется балдж? Если быстро вращающееся протогалактическое облако порождает диск, а медленно вращающееся или совсем не вращающееся превращается в эллиптическую галактику, то что же делают в центрах спиральных галактик эти толстые эллипсоидальные балджи? Они обладают большинством структурных свойств эллиптических галактик: правильными изофотами, наличием старых звезд, существенной толщиной и ровно падающим распределением яркости. Ответ следует, по-видимому, искать в том обстоятельстве, что газ ведет себя совсем не так, как звезды. Газовое облако может довольно легко избавиться от энергии — просто нагреваясь и излучая ее. При этом вращающееся газовое облако станет плоским и превратится в диск. Однако если в некоторые момент времени газ начинает конденсироваться в звезды, то ситуация меняется. Звезды не сталкиваются, как атомы в газе. Их размеры слишком малы по сравнению с расстояниями между ними. Так как звезды не нагреваются столкновениями, то они не рассеивают эффективным образом свою энергию и поэтому не коллапсируют в плоскость. Поэтому, если звезды начинают образовываться — а это происходит сначала в центральных областях, где плотность самая высокая, то они останутся на месте в большом толстом центральном балдже.

Например, в Млечном Пути первыми должны были образоваться звезды в центральном балдже, которые сейчас являются старейшими. Оставшийся газ сколлапсировал в плоскость, где медленно образовывались и вращались вместе с газом другие звезды. Этот тонкий плоский диск (хотя этот диск далеко не всегда плоский: см. рис. галактики ESO 510) стал местом большей части последующих активных событий в нашей Галактике: звезды, гигантские молекулярные облака, облака возбужденного газа и крупномасштабные спиральные узоры — все это развивалось здесь, в запутанной структуре, бросающей сейчас вызов нашим теоретическим моделям.

Спиральные галактики не выглядели бы особенно интересными без своей спиральной структуры — без нее они бы, разумеется, не были спиральными Галактиками, но все обстоит еще хитрее. Если спиральная галактика образуется потому, что вращение заставляет газ коллапсировать на плоскость, то спиральная форма рукавов кажется естественным результатом — вроде узора, образуемого сливками, которые наливают при помешивании в чашку кофе, или вроде воды, уходящей через сток. Эти ситуации не являются строгими аналогами галактики, но хорошо иллюстрируют закономерность: где есть вращение, там обычно бывает и спиральная структура. Поэтому на протяжении многих лет астрономов особенно не беспокоила спиральная форма многих галактик — она казалась совершенно естественной.

Первая серьезная трудность возникла, когда кому-то пришло в голову задать вопрос: как долго существует в галактике спиральный рукав? Известны периоды вращения галактик, типичные значения которых для звезд, расположенных на расстоянии от ядра, эквивалентном расстоянию Солнца до центра Галактики, составляют несколько сотен миллионов лет. Известны возрасты ближайших галактик — около 10 миллиардов лет. Если спиральная структура возникает из-за того, что внутренняя часть галактики вращается со скоростью, отличной от скорости внешней части, то рукава должны постепенно закрутиться в спиральный узор. Однако для галактики с возрастом, характерным для окружающих нас галактик, число оборотов узора должно быть очень большим — примерно равным возрасту, деленному на средний период вращения — около 100. У реальных спиральных галактик — по крайней мере у тех, что имеют четкие непрерывные спиральные ветви, наблюдается закрутка спирального узора лишь на один-два оборота. Встает вопрос: «замораживаются» ли спиральные рукава каким-то образом, что позволяет им сохраниться? Или же они закручиваются до исчезновения, чтобы смениться новыми? Или же есть для них возможность не участвовать в общем вращении звезд и газа, что позволяет им вращаться медленнее?

Проблема не в том, что мы не можем придумать, как создать спиральную структуру: любая «капля», вращающаяся, как галактика с различными периодами вращения на различных расстояниях от центра, создает спиральный узор. Проблема в том, как галактика приобретает спиральную форму, которая сохраняется. В настоящее время существует три типа ответов, и мы еще не знаем наверняка, какой же из них правильный. Возможно, что все являются правильными в том или ином случае, и спиральная структура даже одной индивидуальной галактики может иметь смешанное происхождение.

По-видимому, самым аккуратным и элегантным для спиральных галактик является объяснение, известное под названием теории волн плотности. После развития шведским астрономом Бертилом Линдбладом многих связанных с ней теоретических идей, теория волн плотности была полностью разработана и успешно применена в 60-х годах к галактикам Ц. Ц. Лином и его студентами в Массачусетсском технологическом институте. Они показали, используя математический анализ устойчивости плоского звездного диска, что отклонение от регулярной формы в начальном распределении газа может стать устойчивым и постепенно превратиться в двухрукавный спиральный узор, вращающийся значительно медленнее звезд. Входя в рукав, звезды на время замедляются, что приводит к повышенной плотности в рукаве, а потом продолжают движение за фронтом волны. На границе фронта должна возникать ударная волна в газе, которая может вызвать процесс звездообразования, и поэтому в некоторых галактиках наблюдается концентрация активных газовых облаков и новообразованных звезд в рукавах. Форма спиральных рукавов в рамках этой гипотезы очень похожа на форму реальных спиральных рукавов в небольшом количестве галактик с «совершенной» спиральной структурой — таких, как М81. Однако она не подходит для описания более распространенного типа галактике чрезвычайно несовершенными рукавами — фрагментарными, размытыми и нечеткими.

Теория, лучше всего применимая в случае таких галактик опирается на действие весьма простых искажений любой структуры, вызываемых дифференциальным вращением галактики. Вместо наличия постоянно существующего набора рукавов эта гипотеза предсказывает непрерывное рождение и распад спиральных сегментов. Многие первооткрыватели в этой области считали, что такой метод может работать, нужно было лишь найти способ восстановления рукавов. В 1965 г. был создан компьютерный фильм, изображавший весь процесс в действии. В этом фильме в качестве модели использовалась галактика М31 в предположении случайного (стохастического) процесса возникновения областей звездообразования. При рождении такие области проявляют себя как яркие участки повышенной активности. Вперед дифференциальное вращение вытягивает их в длинные узкие сегменты спиральной формы, и эти области постепенно тускнеют по мере того, как расходуется сконцентрированный в них газ. Само собой, результатом является не совершенный двухрукавный спиральный узор, а скорее набор спиральных фрагментов, покрывающих галактику и придающих ей некоторое подобие спиральной формы, но с рукавами, которые нельзя проследить на протяжении более чем несколько десятков градусов.

Созданные в компьютерном фильме системы по форме напоминают многие спиральные галактики и поэтому вероятно, что в таких объектах преобладают стохастические процессы наподобие упомянутого выше. Это особенно верно для некоторых видов идеальных областей звездообразования, содержащих последовательность участков на разной стадии активности: спереди находится гигантское молекулярное облако, которое собирается конденсироваться в звездное скопление, за ним — газовое облако, освещенное и потерявшее часть газа из-за наличия в нем только что образовавшихся звезд, а за облаком — стареющее и медленно распадающееся звездное скопление, относительно свободное от газа. Эта последовательность областей имеет примерно линейную форму и будет вытянута дифференциальным вращением в сегмент спирального рукава. Результатом является спиральная галактика, образованная разрозненными фрагментами спиральных рукавов. Следовательно, стохастическая теория, кажется, в состоянии объяснить форму как раз тех галактик, которые не могут быть описаны теорией волн плотности. Таким образом, нам, может быть, не нужны другие идеи — нужно всего лишь терпение в проведении подробных измерений, необходимых для сравнения свойств спиральных рукавов с различными версиями каждой из теорий.

Существует, однако, еще одна возможность. Любое возмущение диска может приводить к скоплению газа, что будет проявляться в виде спиральных рукавов или спиральных сегментов . Возмущение может исходить извне или же изнутри — из собственного ядра галактики. Одна из возможностей первого типа состоит в том, что межзвездный газ может втекать в галактику, образуя спиральные рукава. Эта гипотеза не очень привлекательна, так как газ будет преимущественно со стороны полюсов, где нет достаточного количества другого газа для столкновения, и известно очень мало случаев, когда спиральные рукава не лежат в плоскости диска. Более привлекательным внешним агентом может быть приливное воздействие других галактик при близких прохождениях. Приливы, порождаемые близкими прохождениями, почти столкновениями — воздействуют на звезды и газ и могут исказить форму галактики в достаточной степени для возникновения неправильных образований, которые в ходе вращения приобретут спиральную форму. Это красивая идея, но ее недостаток — в необходимости близкого прохождения другой галактики. К сожалению, расстояния между галактиками слишком велики, чтобы этот механизм мог быть эффективным в большинстве случаев. Однако в том, что касается прохождений галактик вблизи друг друга, нас могут ожидать сюрпризы. Недавние определения темпов звездообразования показывают. что в близко расположенных друг к другу галактиках темп звездообразования аномально велик — особенно в ядрах. Может быть, окажется, что приливные эффекты включаются гораздо легче, чем мы сейчас думаем.

Нет убедительных свидетельств в пользу возникновения спиральных рукавов в результате активности в ядрах галактик, но в этих таинственных и бурных областях происходит достаточно событий, чтобы появилась подобная гипотеза. В радиогалактиках и квазарах — наблюдаются очень высокоэнергетические процессы в ядрах галактик, многие из которых выбрасывают огромные потоки газа даже за видимые пределы галактики. Возможно, активность этого типа может каким-то образом приводить к образованию спиральных рукавов, но в настоящее время эта гипотеза весьма расплывчата и не подкрепляется разумной физической моделью.

У многих спиральных галактик есть еще одна замечательная структурная особенность, обычно некоторым образом связанная со спиральными рукавами: большая концентрация звезд в форме бруска (бара), пересекающая ядро и простирающаяся симметричным образом в обе стороны. Данные измерений скоростей в них показывают, что бары вращаются вокруг ядра как твердые тела, хотя, разумеется, они на самом деле состоят из отдельных звезд и газа. Бары, встречающиеся в галактиках SO или Sa, более ровные и состоят исключительно из звезд, в то время как бары в галактиках типов Sb, Sc и Irr часто содержат много газа и пыли. Все еще идут споры о движениях газа в этих барах. Некоторые данные свидетельствуют о том, что газ течет наружу вдоль бара, а по другим данным, он течет внутрь. В любом случае, существование баров не удивляет астрономов, изучающих динамику галактик. Численные модели показывают, что неустойчивости в диске вращающейся галактики могут проявляться в форме бара, напоминающего наблюдаемые.

К неправильным галактикам Хаббл отнес все объекты, которые не удавалось причислить ни к эллиптическим, ни к спиральным.

Большинство неправильных галактик очень похожи друг на друга. Они чрезвычайно фрагментарны и в них можно различить отдельные наиболее яркие звезды и области горячего излучающего газа.

Некоторые неправильные галактики имеют хорошо заметный бар и у многих из них можно различить обрывки структуры, напоминающей фрагменты спиральных рукавов.

Характеристики неправильных галактик не являются совершенно иррегулярными. У них много общих черт, служащих указанием на причины хаотичности их видимой формы. Все эти галактики богаты газом и почти все содержат много молодых звезд и облаков светящегося ионизованного газа, часто исключительно больших и ярких. Ни одна из галактик не имеет центрального балджа или какого-нибудь реального ядра. Распределение яркости неправильных галактик в среднем падает при переходе от центра наружу по такому же математическому закону, как в спиральных галактиках. Многие из них имеют в центральных областях структуры типа бара — особенно хорошим примером является Большое Магелланово Облако

Неправильная форма у галактики может быть в следствии

того, что она не успела принять правильной формы из-за малой плотности в ней материи или из-за молодого возраста. Есть и другая версия: галактика может стать неправильной в следствии искажения формы в результате взаимодействия с другой галактикой.

Оба таких случая встречаются среди неправильных галактик, может быть, с этим связано разделение неправильных галактик на два подтипа.

Подтип I1 характеризуется сравнительно высокой поверхностной яркостью и сложностью неправильной структуры. Французский астроном Вокулер в некоторых галактиках этого подтипа обнаружил признаки разрушенной спиральной структуры. Кроме того, Вокулер заметил, что галактики этого подтипа часто встречаются парами. Существование одиночных галактик так же возможно. Объясняется это тем, что встреча с другой галактикой могла иметь место в прошлом, теперь галактики разошлись, но для того, чтобы принять снова правильную форму им требуется длительное время.

Другой подтип I2 отличается очень низкой поверхностной яркостью. Эта черта выделяет их среди галактик всех других типов. Галактики этого подтипа отличаются так же отсутствием ярко выраженной структурности.

Если галактика имеет очень низкую поверхностную яркость при обычных линейных размерах, то это означает, что в ней очень мала звёздная плотность, и, следовательно, очень малая плотность материи.

Важным намеком на то, как образуются неправильные галактики, являются результаты сравнения их светимостей со светимостями спиральных галактик. Почти все они значительно слабее даже наименее ярких спиральных галактик. Спиральная галактика М33, представляющая примерно нижнюю границу диапазона светимостей спиральных галактик, все еще ярче Большого Магелланова Облака — одной из ярчайших не правильных галактик. Итак, отсутствие спиральных рукавов у неправильных галактик, по-видимому, связано с их малостью. Возможно, это связано также с величиной углового момента галактики и интенсивностью турбулентных движений в ней. Плоскости неправильных галактик относительно толще, чем у спиральных; это позволяет предполагать, что вращение звезд и газа столь медленное, что спиральные рукава не возникают. С другой стороны, если вращение было бы слишком медленным, то галактика не сплющилась бы до плоскости — неважно, толстой или тонкой — и образовалась бы массивная карликовая эллиптическая галактика.

На самом деле мы не можем с уверенностью сказать, какова связь карликовых эллиптических и карликовых неправильных галактик. Согласно традиционным представлениям, звезды в эллиптических галактиках очень старые (их возраст 10 и более миллиардов лет), в то время как неправильные галактики содержат как старые, так и молодые звезды. Однако существуют некоторые свидетельства в пользу того, что в некоторых карликовых эллиптических галактиках — например, в карликовой галактике в созвездии Киля — еще 2-3 миллиарда лет назад происходил активный процесс звездообразования, и во время этих эпизодов они могли выглядеть, как карликовые неправильные галактики. Это важный вывод, так как динамические объяснения различий галактик этих двух типов придется отвергнуть в случае, если они могут свободно переходить из одного типа в другой и обратно.

Имеются также галактики, для которых характерно отсутствие ядра — утолщения, наблюдаемого в центральной части.

Такие галактики называют иглообразными .

В начале 60-х годов ХХ века было открыто множество далеких компактных галактик, из которых наиболее далекие по своему виду неотличимы от звезд даже в сильнейшие телескопы. От звезд они отличаются спектром, в котором видны яркие линии излучения с огромными красными смещениями, соответствующими таким большим расстояниям, на которых даже самые яркие одиночные звезды не могут быть видны. В отличие от обычных далеких галактик, которые, из-за сочетания истинного распределения энергии в их спектре и красного смещения выглядят красноватыми, наиболее компактные галактики (называющиеся также квазозвездными галактиками) имеют голубоватый цвет. Как правило, эти объекты в сотни раз ярче обычных сверхгигантских галактик, но есть и более слабые

У многих галактик обнаружено радиоизлучение нетепловой природы, возникающее, согласно теории русского астронома И.С.Шкловского, при торможении в магнитном поле электронов и более тяжелых заряженных частиц, движущихся со скоростями, близкими к скорости света (так называемое синхотронное излучение). Такие скорости частицы получают в результате грандиозных взрывов внутри галактик.

Компактные далекие галактики, обладающие мощным нетепловым радиоизлучением, называются N-галактиками (или Активными Галактиками).

Звездообразные источники с таким радиоизлучением, называются квазарами (квазозвездными радиоисточниками), а галактики обладающие мощным радиоизлучением и имеющие заметные угловые размеры, — радиогалактиками . Радиогалактики, имеющие особенно мощное нетепловое радиоизлучение, обладают преимущественно эллиптической формой, но встречаются и спиральные.

Большой интерес представляют так называемые галактики Сейферта. В спектрах их небольших ядер имеется много очень широких ярких полос, свидетельствующих о мощных выбросах газа из их центра со скоростями, достигающими несколько тысяч км/сек. Ученые предполагают, что в центрах галактик Сейферта находятся сверхмассивные чёрные дыры, которые выбрасывают большое количество гравитационной энергии. Часть энергии в нагретой плазме высвобождается в виде гамма-излучения.

Близкие к нам радиогалактики изучены полнее, в частности методами оптической астрономии. В некоторых из них обнаружены пока еще не объясненные до конца особенности

При изучении неправильной галактики М82 в созвездии Большой Медведицы американские астрономы А.Сандж и Ц.Линдс в 1963 году пришли к заключению, что в ее центре около 1,5 миллионов лет назад произошел грандиозный взрыв, в результате которого во все стороны со скоростью около 1000 км/сек были выброшены струи горячего водорода.

Сопротивление межзвездной среды помешало распространению струй газа в экваториальной плоскости, и они потекли преимущественно в двух противоположенных направлениях вдоль оси вращения галактики. Этот взрыв, по-видимому, породил и множество электронов со скоростями, близкими к скорости света, которые явились причиной нетеплового радиоизлучения.

Таким образом, радиогалактики — это галактики, у которых ядра находятся в процессе распада. Выброшенные плотные части, продолжают дробиться, возможно, образуют новые галактики — сестры, или спутники галактик меньшей массы. При этом скорости разлета осколков могут достигать огромных значений. Исследования показали, что многие группы и даже скопления галактик распадаются: их члены неограниченно удаляются друг от друга, как если бы они все были порождены взрывом.

Хотя мы и продвигаемся вперед, еще многое надо узнать о строении галактик. Мы можем достичь большего, чем просто описывать различия, мы можем для многих из них дать объяснения. Однако число нерешенных проблем достаточно велико и астрономам придется творчески обдумывать их на протяжении многих лет.

Всего существует три главных типа галактик: спиральная, эллиптическая и неправильная. К первым относятся, например, Млечный Путь и Андромеда. В центре расположены объекты и черная дыра, вокруг которых вращается ореол звезд и темная материя. Из ядра ответвляются рукава. Спиральная форма образуется из-за того, что галактика не прекращает вращения. Многие представители обладают лишь одним рукавом, но у некоторых их можно насчитать три и больше.

Таблица характеристик основных видов галактик

Спиральные бывают с перемычкой и без. В первом типе центр пересекается плотным баром звезд. А у вторых подобного формирования не наблюдается.

В эллиптических галактиках проживают самые древние звезды и нет достаточного количества пыли и газа, чтобы создать молодые. Могут напоминать по форме круг, овал или же спиральный тип, но без рукавов.

Примерно четверть галактик представляют группу неправильных. Они меньше, чем спиральные и отображают порой причудливые формы. Их можно объяснить появлением новых звезд или же гравитационным контактом с соседней галактикой. Среди неправильных числятся .

Есть также много галактических подтипов: сейфертовские (спирали с быстрым движением), яркие эллиптические супергиганты (поглощают других), кольцевые (без ядра) и прочие.

ГАЛАКТИКИ, «внегалактические туманности» или «островные Вселенные»,― это гигантские звездные системы, содержащие также межзвездный газ и пыль. Солнечная система входит в нашу Галактику – Млечный Путь. Все космическое пространство до пределов, куда могут проникнуть мощнейшие телескопы, заполнено галактиками. Астрономы насчитывают их не менее миллиарда. Ближайшая галактика находится от нас на расстоянии около 1 млн. св. лет (10 19 км), а до самых удаленных галактик, зарегистрированных телескопами, – миллиарды световых лет. Исследование галактик – одна из самых грандиозных задач астрономии.

Историческая справка. Ярчайшие и ближайшие к нам внешние галактики – Магеллановы Облака – видны невооруженным глазом на южном полушарии неба и были известны арабам еще в 11 в., равно как и ярчайшая галактика северного полушария – Большая туманность в Андромеде. С переоткрытия этой туманности в 1612 при помощи телескопа немецким астрономом С.Мариусом (1570–1624) началось научное изучение галактик, туманностей и звездных скоплений. Немало туманностей было обнаружено различными астрономами в 17 и 18 вв.; тогда их считали облаками светящегося газа.

Представление о звездных системах за пределом Галактики впервые обсуждали философы и астрономы 18 в.: Э.Сведенборг (1688–1772) в Швеции, Т.Райт (1711–1786) в Англии, И.Кант (1724–1804) в Пруссии, И.Ламберт (1728–1777) в Эльзасе и В.Гершель (1738–1822) в Англии. Однако лишь в первой четверти 20 в. существование «островных Вселенных» было однозначно доказано в основном благодаря работам американских астрономов Г.Кертиса (1872–1942) и Э.Хаббла (1889–1953). Они доказали, что расстояния до наиболее ярких, а значит, ближайших «белых туманностей» значительно превосходят размер нашей Галактики. За период с 1924 по 1936 Хаббл продвинул границу исследования галактик от ближайших систем до предела возможностей 2,5-метрового телескопа обсерватории Маунт-Вилсон, т.е. до нескольких сотен миллионов световых лет.

В 1929 Хаббл открыл зависимость между расстоянием до галактики и скоростью ее движения. Эта зависимость, закон Хаббла, стала наблюдательной основой современной космологии. После окончания Второй мировой войны началось активное изучение галактик с помощью новых крупных телескопов с электронными усилителями света, автоматических измерительных машин и компьютеров. Обнаружение радиоизлучения нашей и других галактик дало новую возможность для изучения Вселенной и привело к открытию радиогалактик, квазаров и других проявлений активности в ядрах галактик. Внеатмосферные наблюдения с борта геофизических ракет и спутников позволили обнаружить рентгеновское излучение из ядер активных галактик и скоплений галактик.

Рис. 1. Классификация галактик по Хабблу

Первый каталог «туманностей» был опубликован в 1782 французским астрономом Ш.Мессье (1730–1817). В этот список попали как звездные скопления и газовые туманности нашей Галактики, так и внегалактические объекты. Номера объектов по каталогу Мессье используются до сих пор; например, Мессье 31 (М 31) – это знаменитая Туманность Андромеды, ближайшая крупная галактика, наблюдаемая в созвездии Андромеды.

Систематический обзор неба, начатый В.Гершелем в 1783, привел его к открытию нескольких тысяч туманностей на северном небе. Эта работа была продолжена его сыном Дж.Гершелем (1792–1871), который провел наблюдения в Южном полушарии на мысе Доброй Надежды (1834–1838) и опубликовал в 1864 Общий каталог 5 тыс. туманностей и звездных скоплений. Во второй половине 19 в. к этим объектам добавились вновь открытые, и Й.Дрейер (1852–1926) в 1888 опубликовал Новый общий каталог (New General Catalogue – NGC ), включающий 7814 объектов. С публикацией в 1895 и 1908 двух дополнительных Индекс-каталогов (IC) число обнаруженных туманностей и звездных скоплений превысило 13 тыс. Обозначение по каталогам NGC и IC с тех пор стало общепринятым. Так, Туманность Андромеды обозначают либо М 31, либо NGC 224. Отдельный список 1249 галактик ярче 13-й звездной величины, основанный на фотографическом обзоре неба, составили Х.Шепли и А.Эймс из Гарвардской обсерватории в 1932.

Эта работа была существенно расширена первым (1964), вторым (1976) и третьим (1991) изданиями Реферативного каталога ярких галактик Ж. де Вокулера с сотрудниками. Более обширные, но менее детальные каталоги, основанные на просмотре фотографических пластинок обзора неба были опубликованы в 1960-х годах Ф.Цвикки (1898–1974) в США и Б.А.Воронцовым-Вельяминовым (1904–1994) в СССР. Они содержат ок. 30 тыс. галактик до 15-й звездной величины. Недавно был закончен подобный обзор южного неба с помощью 1-метровой камеры Шмидта Европейской южной обсерватории в Чили и британской 1,2-метровой камеры Шмидта в Австралии.

Галактик слабее 15-й звездной величины слишком много, чтобы составлять их список. В 1967 опубликованы результаты подсчета галактик ярче 19-й звездной величины (к северу от склонения 20), проделанного Ч.Шейном и К.Виртаненом по пластинкам 50-см астрографа Ликской обсерватории. Таких галактик оказалось ок. 2 млн., не считая тех, которые скрыты от нас широкой пылевой полосой Млечного Пути. А еще в 1936 Хаббл на обсерватории Маунт-Вилсон подсчитал количество галактик до 21-й звездной величины в нескольких небольших площадках, распределенных равномерно по небесной сфере (севернее склонения 30). По этим данным на всем небе более 20 млн. галактик ярче 21-й звездной величины.

Классификация. Встречаются галактики различных форм, размеров и светимостей; некоторые из них изолированные, но большинство имеет соседей или спутников, оказывающих на них гравитационное влияние. Как правило, галактики спокойны, но нередко встречаются и активные. В 1925 Хаббл предложил классификацию галактик, основанную на их внешнем виде. Позже ее уточняли Хаббл и Шепли, затем Сэндидж и наконец Вокулер. Все галактики в ней делятся на 4 типа: эллиптические, линзовидные, спиральные и неправильные.

Эллиптические (E ) галактики имеют на фотографиях форму эллипсов без резких границ и четких деталей. Их яркость возрастает к центру. Это вращающиеся эллипсоиды, состоящие из старых звезд; их видимая форма зависит от ориентации к лучу зрения наблюдателя. При наблюдении с ребра отношение длин короткой и длинной осей эллипса достигает  5/10 (обозначается E5 ).

Рис. 2. Эллиптическая галактика ESO 325-G004

Линзовидные (L или S 0) галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Наблюдаемые с ребра линзовидные галактики выглядят более сжатыми, чем эллиптические: отношение их осей достигает 2/10.

Рис. 2. Галактика Веретено (NGC 5866), линзообразная галактика в созвездии Дракон.

Спиральные (S ) галактики также состоят из двух компонентов – сфероидального и плоского, но с более или менее развитой спиральной структурой в диске. Вдоль последовательности подтипов Sa , Sb , Sc , Sd (от «ранних» спиралей к «поздним») спиральные рукава становятся толще, сложнее и менее закручены, а сфероид (центральная конденсация, или балдж ) уменьшается. У спиральных галактик, наблюдаемых с ребра, спиральные рукава не видны, но тип галактики можно установить по относительной яркости балджа и диска.

Рис. 2. Пример спиральной галактики, Галактика «Вертушка» (Pinwheel) (объект списка Мессье 101 или NGC 5457)

Неправильные (I ) галактики бывают двух основных видов: магелланового типа, т.е. типа Магеллановых Облаков, продолжающие последовательность спиралей от Sm до Im , и немагелланового типа I 0, имеющие хаотические темные пылевые полосы поверх сфероидальной или дисковой структуры типа линзовидной или ранней спиральной.

Рис. 2. NGC 1427A, пример неправильной галактики.

Типы L и S распадаются на два семейства и два вида в зависимости от наличия или отсутствия проходящей через центр и пересекающей диск линейной структуры (бар ), а также центральносимметричного кольца.

Рис. 2. Компьютерная модель галактики Млечный путь.

Рис. 1. NGC 1300, пример спиральной галактики с перемычкой.

Рис. 1. ТРЕХМЕРНАЯ КЛАССИФИКАЦИЯ ГАЛАКТИК . Основные типы: E, L, S, I располагаются последовательно от E до Im ; семейства обычных A и пересеченных B ; вида s и r . Круглые диаграммы внизу – сечение главной конфигурации в области спиральных и линзовидных галактик.

Рис. 2. ОСНОВНЫЕ СЕМЕЙСТВА И ВИДЫ СПИРАЛЕЙ на сечении главной конфигурации в области Sb .

Существуют и другие схемы классификации галактик, основанные на более тонких морфологических деталях, но пока еще не развита объективная классификация, основанная на фотометрических, кинематических и радиоизмерениях.

Состав . Два структурных компонента – сфероид и диск – отражают различие в звездном населении галактик, открытое в 1944 немецким астрономом В.Бааде (1893–1960).

Население I , присутствующее в неправильных галактиках и в рукавах спиралей, содержит голубые гиганты и сверхгиганты спектральных классов O и B, красные сверхгиганты классов K и M, а также межзвездные газ и пыль с яркими областями ионизованного водорода. В нем присутствуют и маломассивные звезды главной последовательности, которые видны вблизи Солнца, но неразличимы в далеких галактиках.

Население II , присутствующее в эллиптических и линзовидных галактиках, а также в центральных областях спиралей и в шаровых скоплениях, содержит красные гиганты от класса G5 до K5, субгиганты и, вероятно, субкарлики; в нем встречаются планетарные туманности и наблюдаются вспышки новых (рис. 3). На рис. 4 показана связь между спектральными классами (или цветом) звезд и их светимостью у различных населений.

Рис. 3. ЗВЕЗДНЫЕ НАСЕЛЕНИЯ . На фотографии спиральной галактики Туманности Андромеды видно, что в ее диске сосредоточены голубые гиганты и сверхгиганты Населения I, а центральная часть состоит из красных звезд Населения II. Видны также спутники Туманности Андромеды: галактика NGC 205 (внизу ) и М 32 (вверху слева ). Самые яркие звезды на этом фото принадлежат нашей Галактике.

Рис. 4. ДИАГРАММА ГЕРЦШПРУНГА – РЕССЕЛА , на которой видна связь между спектральным классом (или цветом) и светимостью у звезд разного типа. I: молодые звезды Населения I, типичные для спиральных рукавов. II: состарившиеся звезды Населения I; III: старые звезды Населения II, типичные для шаровых скоплений и эллиптических галактик.

Первоначально считалось, что эллиптические галактики содержат только Население II, а неправильные – только Население I. Однако выяснилось, что обычно галактики содержат смесь двух звездных населений в разных пропорциях. Детальный анализ населений возможен только для нескольких близких галактик, но измерения цвета и спектра далеких систем показывают, что различие их звездных населений может быть значительнее, чем думал Бааде.

Расстояние . Измерение расстояний до далеких галактик основано на абсолютной шкале расстояний до звезд нашей Галактики. Ее устанавливают несколькими методами. Наиболее фундаментальный – метод тригонометрических параллаксов, действующий до расстояний в 300 св. лет. Остальные методы косвенные и статистические; они основаны на изучении собственных движений, лучевых скоростей, блеска, цвета и спектра звезд. На их основе определяют абсолютные величины Новых и переменных типа RR Лиры и Цефея, которые становятся первичными индикаторами расстояния до ближайших галактик, где они видны. Шаровые скопления, ярчайшие звезды и эмиссионные туманности этих галактик становятся вторичными индикаторами и дают возможность определять расстояния до более далеких галактик. Наконец, в качестве третичных индикаторов используются диаметры и светимости самих галактик. В качестве меры расстояния астрономы обычно используют разность между видимой звездной величиной объекта m и его абсолютной звездной величиной M ; эту величину (m – M ) называют «видимым модулем расстояния». Чтобы узнать истинное расстояние, его необходимо исправить с учетом поглощения света межзвездной пылью. При этом ошибка обычно достигает 10–20%.

Внегалактическая шкала расстояний время от времени пересматривается, а значит, меняются и прочие параметры галактик, зависящие от расстояния. В табл. 1 приведены наиболее точные на сегодня расстояния до ближайших групп галактик. До более далеких галактик, удаленных на миллиарды световых лет, расстояния оцениваются с невысокой точностью по их красному смещению (см. ниже : Природа красного смещения).

Таблица 1. РАССТОЯНИЯ ДО БЛИЖАЙШИХ ГАЛАКТИК,ИХ ГРУПП И СКОПЛЕНИЙ

Галактика или группа

Видимый модуль расстояния (m – M )

Расстояние, млн. св. лет

Большое Магелланово Облако

Малое Магелланово Облако

Группа Андромеды (М 31)

Группа Скульптора

Группа Б. Медведицы (М 81)

Скопление в Деве

Скопление в Печи

Светимость. Измерение поверхностной яркости галактики дает полную светимость ее звезд на единицу площади. Изменение поверхностной светимости с расстоянием от центра характеризует структуру галактики. Эллиптические системы, как наиболее правильные и симметричные, изучены подробнее других; в целом они описываются единым законом светимости (рис. 5,а ):

Рис. 5. РАСПРЕДЕЛЕНИЕ СВЕТИМОСТИ У ГАЛАКТИК . а – эллиптические галактики (изображен логарифм поверхностной яркости в зависимости от корня четвертой степени из приведенного радиуса (r/r e) 1/4 , где r – расстояние от центра, а r e – эффективный радиус, внутри которого заключена половина полной светимости галактики); б – линзовидная галактика NGC 1553; в – три нормальные спиральные галактики (внешняя часть у каждой из линий прямая, что указывает на экспоненциальную зависимость светимости от расстояния).

Данные о линзовидных системах не так полны. Их профили светимости (рис. 5,б ) отличаются от профилей эллиптических галактик и имеют три основных участка: ядро, линзу и оболочку. Эти системы выглядят как промежуточные между эллиптическими и спиральными.

Спирали очень разнообразны, структура их сложна, и нет единого закона для распределения их светимости. Впрочем, похоже, что у простых спиралей вдали от ядра поверхностная светимость диска спадает к периферии экспоненциально. Измерения показывают, что светимость спиральных рукавов не так велика, как это кажется при рассматривании фотографий галактик. Рукава добавляют не более 20% к светимости диска в голубых лучах и значительно меньше в красных. Вклад в светимость от балджа уменьшается от Sa к Sd (рис. 5,в ).

Измерив видимую звездную величину галактики m и определив ее модуль расстояния (m – M ), вычисляют абсолютную величину M . У самых ярких галактик, исключая квазары, M  22, т.е. их светимость почти в 100 млрд. раз больше, чем у Солнца. А у самых маленьких галактик M 10, т.е. светимость ок. 10 6 солнечной. Распределение числа галактик по M , называемое «функцией светимости», – важная характеристика галактического населения Вселенной, но аккуратно определить ее нелегко.

Для галактик, отобранных до некоторой предельной видимой величины, функция светимости каждого типа в отдельности от E до Sc почти гауссова (колоколообразная) со средней абсолютной величиной в голубых лучах M m = 18,5 и дисперсией  0,8 (рис. 6). Но галактики поздних типов от Sd до Im и эллиптические карлики слабее.

У полной выборки галактик в заданном объеме пространства, например в скоплении, функция светимости круто растет с уменьшением светимости, т.е. количество карликовых галактик во много раз превосходит количество гигантских

Рис. 6. ФУНКЦИЯ СВЕТИМОСТИ ГАЛАКТИК . а – выборка ярче некоторой предельной видимой величины; б – полная выборка в определенном большом объеме пространства. Обратите внимание на подавляющее количество карликовых систем с M B < -16.

Размер . Поскольку звездная плотность и светимость у галактик постепенно спадают наружу, вопрос об их размере фактически упирается в возможности телескопа, в его способность выделить слабое свечение внешних областей галактики на фоне свечения ночного неба. Современная техника позволяет регистрировать области галактик с яркостью менее 1% от яркости неба; это примерно в миллион раз ниже яркости ядер галактик. По этой изофоте (линии одинаковой яркости) диаметры галактик составляют от нескольких тысяч световых лет у карликовых систем до сотен тысяч – у гигантских. Как правило, диаметры галактик хорошо коррелируют с их абсолютной светимостью.

Спектральный класс и цвет. Первая спектрограмма галактики – Туманности Андромеды, полученная в Потсдамской обсерватории в 1899 Ю.Шейнером (1858–1913), своими линиями поглощения напоминает спектр Солнца. Массовое исследование спектров галактик началось с создания «быстрых» спектрографов с низкой дисперсией (200–400 /мм); позже применение электронных усилителей яркости изображения позволило повысить дисперсию до 20–100/мм. Наблюдения Моргана на Йеркской обсерватории показали, что, несмотря на сложный звездный состав галактик, их спектры обычно близки к спектрам звезд определенного класса отA до K , причем есть заметная корреляция между спектром и морфологическим типом галактики. Как правило, спектр класса A имеют неправильные галактики Im и спирали Sm и Sd . Спектры класса A–F у спиралей Sd и Sc . Переход от Sc к Sb сопровождается изменением спектра от F к F–G , а спирали Sb и Sa , линзовидные и эллиптические системы имеют спектры G и K . Правда, позже выяснилось, что излучение галактик спектрального класса A в действительности состоит из смеси света звезд-гигантов спектральных классов B и K .

Кроме линий поглощения, у многих галактик видны линии излучения, как у эмиссионных туманностей Млечного Пути. Обычно это линии водорода бальмеровской серии, например, H на 6563 , дублеты ионизованных азота (N II) на6548 и 6583 и серы (S II) на 6717 и 6731, ионизованного кислорода (O II) на 3726 и 3729 и дважды ионизованного кислорода (O III) на 4959 и 5007. Интенсивность эмиссионных линий обычно коррелирует с количеством газа и звезд-сверхгигантов в дисках галактик: эти линии отсутствуют или очень слабы у эллиптических и линзовидных галактик, но усиливаются у спиральных и неправильных – от Sa к Im . К тому же интенсивность эмиссионных линий элементов тяжелее водорода (N, O, S) и, вероятно, относительное содержание этих элементов уменьшаются от ядра к периферии дисковых галактик. У некоторых галактик необычайно сильны эмиссионные линии в ядрах. В 1943 К.Сейферт открыл особый тип галактик с очень широкими линиями водорода в ядрах, указывающими на их высокую активность. Светимость этих ядер и их спектры меняются со временем. В целом ядра сейфертовских галактик похожи на квазары, хотя не так мощны.

Вдоль морфологической последовательности галактик изменяется интегральный показатель их цвета (B – V ), т.е. разность между звездной величиной галактики в голубых B и желтых V лучах. Средний показатель цвета основных типов галактик таков:

В этой шкале 0,0 соответствует белому цвету, 0,5 – желтоватому, 1,0 – красноватому.

При детальной фотометрии обычно выясняется, что цвет галактики меняется от ядра к краю, что указывает на изменение звездного состава. Большинство галактик голубее во внешних областях, чем в ядре; у спиралей это проявляется гораздо заметнее, чем у эллиптических, поскольку в их дисках много молодых голубых звезд. Неправильные галактики, обычно лишенные ядра, нередко бывают в центре голубее, чем на краю.

Вращение и масса. Вращение галактики вокруг оси, проходящей через центр, приводит к изменению длины волны линий в ее спектре: линии от приближающихся к нам областей галактики смещаются в фиолетовую часть спектра, а от удаляющихся – в красную (рис. 7). По формуле Доплера, относительное изменение длины волны линии составляет / = V r /c , где c – скорость света, а V r – лучевая скорость, т.е. компонента скорости источника вдоль луча зрения. Периоды обращения звезд вокруг центров галактик составляют сотни миллионов лет, а скорости их орбитального движения достигают 300 км/с. Обычно скорость вращения диска достигает максимального значения (V M ) на некотором расстоянии от центра (r M ), а затем уменьшается (рис. 8). У нашей Галактики V M = 230 км/с на расстоянии r M = 40 тыс. св. лет от центра:

Рис. 7. СПЕКТРАЛЬНЫЕ ЛИНИИ ГАЛАКТИКИ , вращающейся вокруг оси N , при ориентации щели спектрографа вдоль оси ab . Линия от удаляющегося края галактики (b ) отклонена в красную сторону (R), а от приближающегося края (a ) – в ультрафиолетовую (UV).

Рис. 8. КРИВАЯ ВРАЩЕНИЯ ГАЛАКТИКИ . Скорость вращения V r достигает максимального значения V M на расстоянии R M от центра галактики, а затем медленно уменьшается.

Линии поглощения и линии излучения в спектрах галактик имеют одинаковую форму, следовательно, звезды и газ в диске вращаются с одинаковой скоростью в одном направлении. Когда по расположению темных пылевых полос в диске удается понять, какой край галактики расположен к нам ближе, мы можем выяснить направление закрученности спиральных рукавов: во всех изученных галактиках они отстающие, т.е., удаляясь от центра, рукав загибается в сторону, обратную направлению вращения.

Анализ кривой вращения позволяет определить массу галактики. В простейшем случае, приравняв силу гравитации к центробежной силе, получим массу галактики внутри орбиты звезды: M = rV r 2 /G , где G – постоянная тяготения. Анализ движения периферийных звезд позволяет оценить полную массу. У нашей Галактики масса ок. 210 11 солнечных масс, у Туманности Андромеды 410 11 , у Большого Магелланова Облака – 1510 9 . Массы дисковых галактик приблизительно пропорциональны их светимости (L ), поэтому отношение M/L у них почти одинаковое и для светимости в голубых лучах равное M/L  5 в единицах массы и светимости Солнца.

Массу сфероидальной галактики можно оценить таким же образом, взяв вместо скорости вращения диска скорость хаотического движения звезд в галактике ( v ), которую измеряют по ширине спектральных линий и называют дисперсией скоростей: M R v 2 /G , где R – радиус галактики (теорема вириала). Дисперсия скоростей звезд у эллиптических галактик обычно от 50 до 300 км/с, а массы от 10 9 солнечных масс у карликовых систем до 10 12 у гигантских.

Радиоизлучение Млечного Пути было открыто К.Янским в 1931. Первую радиокарту Млечного Пути получил Г.Ребер в 1945. Это излучение приходит в широком диапазоне длин волн или частот  = c /, от нескольких мегагерц (  100 м) до десятков гигагерц (  1 см), и называется «непрерывным». За него ответственны несколько физических процессов, важнейший из которых – синхротронное излучение межзвездных электронов, движущихся почти со скоростью света в слабом межзвездном магнитном поле. В 1950 непрерывное излучение на волне 1,9 м было обнаружено Р.Брауном и К.Хазардом (Джодрелл-Бэнк, Англия) от Туманности Андромеды, а затем и от многих других галактик. Нормальные галактики, как наша или М 31, – слабые источники радиоволн. Они излучают в радиодиапазоне едва ли одну миллионную часть своей оптической мощности. Но у некоторых необычных галактик это излучение гораздо сильнее. У ближайших «радиогалактик» Дева А (M 87), Кентавр А (NGC 5128) и Персей А (NGC 1275) радиосветимость составляет 10 –4 10 –3 от оптической. А у редких объектов, таких, как радиогалактика Лебедь А, это отношение близко к единице. Лишь через несколько лет после открытия этого мощного радиоисточника удалось отыскать слабую галактику, связанную с ним. Множество слабых радиоисточников, вероятно, связанных с далекими галактиками, до сих пор не отождествлено с оптическими объектами.