Хромосомное определение пола кратко. Лекция (2ч.). Тема: Генетика пола. Механизм хромосомного определения пола. Патология по половым хромосомам

ПОЛ – это совокупность признаков и свойств организма, обеспечивающих его участие в воспроизводстве потомства и передача наследственной информации за счет образования гамет.

Самец и самка имеют закономерное различие, касающееся одной пары хромосом. Они называются ГЕТЕРОХРОМОСОМАМИ (половыми хромосомами). Остальные пары – АУТОСОМАМИ.

Пол, имеющий одинаковые половые хромосомы (ХХ) и образующий один тип гамет называется ГОМОГАМЕТНЫМ. Пол с разными половыми хромосомами, образующий два типа гамет, называется ГЕТЕРОГАМЕТНЫМ. Гетерогаметный пол бывает двух типов:

1. ХО (нет У хромосомы) – тип Protenor

2. ХУ – тип Lygaeus

Гетерогаметным может быть женский (птицы, пресмыкающиеся, бабочки) и мужской пол.

СИНГАМНОЕ определение пола происходит в момент слияния гамет в процессе оплодотворения, характерно для организмов с гетерогаметным мужским полом (человек, животные, большинство растений).

Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку:

ПРОГАМНОЕ определение пола происходит в процессе созревания яйцеклеток при овогенезе, характерно для организмов с гетерогаметным женским полом (птицы, пресмыкающиеся, бабочки). Пол будущего потомка зависит от типа яйцеклетки: если яйцеклетка содержит Х-хромосому, то из нее после оплодотворения развивается самец, если яйцеклетка содержит У-хромосому, то из нее после оплодотворения развивается самка.

ЭПИГАМНОЕ определение пола является нехромосомным и происходит после оплодотворения в процессе индивидуального развития организма под влиянием условий внешней среды, характерно для организмов, у которых отсутствуют половые хромосомы и гены, отвечающие за половые признаки, распределены по всему генотипу (некоторые животные, морской червьBonellia ).

ЦИТОГЕНЕТИЧЕСКИЙ МЕТОД определения пола заключается в исследовании наличия полового хроматина (тельца Барра) в неделящихся соматических клетках слизистой оболочки щеки (буккальный соскоб) или на мазках крови в ядрах нейтрофиллоцитов ("барабанные палочки"). Он присутствует только у женщин (в норме).

Наследование, сцеплеНноЕ с полом

Признаки, определяемые генами, находящимися в половых хромосомах, называются ПРИЗНАКАМИ, СЦЕПЛЕННЫМИ С ПОЛОМ . Это явление было открыто Морганом у дрозофилы.

У человека с У-хромосомой связано несколько аномалий, которые передаются только по мужской линии: рыбья кожа (ихтиоз), синдактилия (перепончатые пальцы), гипертрихоз (оволоснение ушной раковины). В Х-хромосоме локализуются гены, обуславливающие развитие около 200 признаков.

ДОМИНАНТНЫЕ: гипофосфатемический рахит (аномалия костей, не лечащаяся витамином "D"), гипоплазия эмали (потемнение эмали зубов).

РЕЦЕССИВНЫЕ: дальтонизм, гемофилия, подагра, дистрофия Дюшена, отсутствие потовых желез и др.

Признаки, сцепленные с Х-хромосомой по рецессиву, передаются от матерей к сыновьям, а от отцов к дочерям. Такой тип передачи получил название крест-накрест иликрисс-кросс .

Признаки, сцепленные с У-хромосомой, передаются от отца к сыну и проявляются у самцов. Такой тип передачи называется ГОЛАНДРИЧЕСКОЕ НАСЛЕДОВАНИЕ .

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом. 22 пары хромосом одинаковы, их называют аутосомами. 23--я пара хромосом -- половые хромосомы. В женском кариотипе одинаковые половые хромосомы - XX. В мужском организме половые хромосомы - XY. Y-хромосома мала и содержит мало генов. Пол наследуется как менделирующий признак. Сочетание половых хромосом в зиготе определяет пол будущего организма. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Организм, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным.

Сперматозоиды дают гаметы двух видов: половина содержит 22 аутосомы + Х-половую хромосому, и половина содержит 22 аутосомы + Y-половую хромосому. Организм, образующий разные гаметы, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y--хромосому - мужской. Теоретически вероятность рождения мальчика и девочки равна 1:1 или 50%:50%. Однако, рождается больше мальчиков, но т.к. мужской организм имеет всего одну Х-хромосому, и все гены (доминантные и рецессивные) проявляют свое действие, то мужской организм менее жизнеспособен.

Такое определение пола характерно для человека и млекопитающих.

У некоторых насекомых (кузнечики, тараканы) нет Y-хромосомы. Самец имеет одну Х-хромосому, а самка две XX. У пчел самки имеют 2п набор хромосом (32 хромосомы), а самцы - п (16) хромосом. Самки развиваются из оплодотворенных яиц, а самцы из неоплодотворенных. У птиц и бабочек самки гетерогаметны и имеют ZW половые хромосомы, а самцы гомогаметны и имеют ZZ половые хромосомы.

У некоторых организмов пол зависит от факторов внешней среды. Например, у морского червя боннелии личинки бесполы. Если личинка попадает на ротовую лопасть самки, из нее развиваются микроскопические самцы, и наоборот, из личинки образуются самки, если она не контактировала с самкой.

У женщин в соматических клетках, кроме аутосом, присутствуют две половые ХХ-хромосомы. Одна из них выявляется, образуя глыбку хроматина, заметную в интерфазных ядрах при обработке красителями. Это Х-хроматин или тельце Барра. Эта хромосома спирализована и неактивна. Вторая хромосома сохраняет свою активность. В клетках мужского и женского организмов содержится по одной активной Х-хромосоме.

Тельце Барра в клетках мужчин не выявляется. Если при мейозе произойдет не расхождение хромосом, то в одну яйцеклетку попадут две ХХ-хромосомы. При оплодотворении такой яйцеклетки сперматозоидом, зигота будет иметь большее число хромосом. Клетки, содержащие больше двух Х-хромосом, имеют большее число телец Барра, потому что активна всегда только одна Х-хромосома.

Например, XXX (трисомия по X--хромосоме) по фенотипу девочка. У нее в ядрах соматических клеток выявляются два тельца Барра (симптомы в вопросе 27).

XXY - синдром Клайнфельтера - по фенотипу мальчик. У него выявляется тельце Барра (симптомы в вопросе 27).

ХО - моносомия по Х-хромосоме - синдром Шерешевского-Тернера. Это девочка, тельце Барра отсутствует (симптомы в вопросе 27).

YO -- не жизнеспособен.

Признаки, гены которых находятся в половых хромосомах, наследуются сцепленно с полом. Наследование признаков, гены которых находятся в Х и Y--хромосомах, называют наследованием, сцепленным с полом. Распределение генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при оплодотворении.

В Y--хромосоме есть гены, определяющие развитие мужского пола, необходимые для дифференцировки семенников. В X-хромосоме таких генов нет, но есть много других генов. Y--хромосома очень мала и не содержит многих генов, которые есть в Х-хромосоме.

У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находится в гемизиготном состоянии, т.е. не имеют аллельной пары. В мужских организмах любой рецессивный ген, локализованный в одном из негомологичных участков X--хромосомы, проявляется в фенотипе.

Y--хромосома содержит некоторое количество генов, гомологичных генам X--хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др.

У человека известны рецессивные сцепленные с полом признаки, такие как гемофилия, дальтонизм, мышечная дистрофия и др.

У женщин две ХХ-хромосомы. Рецессивный признак проявляется в том случае, если гены, отвечающие за него, находятся в двух Х-хромосомах. Если организм гетерозиготен по этим генам, то признак не проявится. В мужском организме одна X--хромосома. Если в ней ген Н или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет данных генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.

Если гены находятся в Y--хромосоме (голандрическое наследование), то признаки, ими обусловленные, передаются от отца к сыну. Например, так наследуется волосатость ушей. Y-хромосома у человека контролирует дифференцировку семенников. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. В этом заключается одна из причин повышенной смертности мужских особей по сравнению с женскими.

Признаки, проявление которых различно у представителей разных полов, или эти признаки проявляющиеся у одного пола, называются ограниченными полом.

Эти признаки могут определяться генами, расположенными как в аутосомах, так и половых хромосомах, но возможность их развития зависит от пола организма. Например, тембры голоса баритон и бас характерны только для мужчин.

Проявление признаков, ограниченных полом, связано с реализацией генотипа в условиях среды целостного организма. Гены, ответственные за развитие вторичных половых признаков, в норме работают только у одного из полов, у другого они присутствуют, но "молчат". Функциональную активность целого ряда генов определяет гормональная деятельность организма. Например, у быков есть гены, контролирующие продукцию молока и его качественные особенности (жирность, содержание белка и др.), но у быков они "молчат", а функционируют только у коров. Потенциальная способность быка давать высокомолочное потомство делает его ценным производителем молочного стада.

Гены, степень проявления которых определяется уровнем половых гормонов, называются генами, зависимыми от пола. Эти гены могут находиться не только в половых хромосомах, но и в любых аутосомах.

Например, ген, определяющий облысение, типичное для мужчин, локализован в аутосоме, и его проявление зависит от мужских половых гормонов. У мужчин этот ген действует как доминантный, а у женщин как рецессивный. Если у женщин этот ген в гетерозиготном состоянии, то признак не проявляется. Даже в гомозиготном состоянии у женщин этот признак слабее выражен, чем у мужчин.

Тема: Генетика пола.

1. Механизм хромосомного определения пола.

2. Патология по половым хромосомам.

3. Наследование признаков, сцепленных с полом.


Половое размножение свойственно как растениям, так и животным и обусловлено формированием гамет - мужских и женских гаплоидных клеток, которые, соединяясь в процессе оплодотворения, дают начало диплоидным клеткам - зиготам. При скрещивании в результате процесса расщепления и комбинации генов в потомстве возможно выявление новых приспособительных сочетаний признаков. За счет полового размножения под контролем естественного отбора в наследственном фонде вида накапливаются сочетания генов, способствующие выживанию вида в данных условиях.

У диплоидных организмов наследственно обусловлена способность к формированию признаков и свойств как женского, так и мужского пола, но одна из этих тенденций преобладает, в то время как другая подавляется и проявляется только при условиях, исключающих возможность проявления основной тенденции. Так, у старых самок жаб после отмирания женских половых желез начинается вторичное развитие зачаточных мужских половых желез и самки приобретают способность функционировать в качестве самцов, но потомство, возникающее от скрещивания их с нормальными самками, состоит только из самок. В этом случае выявление подавленной мужской половой тенденции происходит после разрушения женских половых желез, сформировавшихся под влиянием основной половой тенденции.

Пол организма зависит от взаимодействия наследственной основы, полученной им от родителей, с условиями внешней среды, в которой происходит его развитие. Определение пола осуществляется у разных живых организмов на различных ступенях индивидуального развития.

1. Механизм хромосомного определения пола. Определение пола может происходить на разных фазах цикла размножения. Пол зиготы может предопределяться еще в процессе созревания женских гамет - яйцеклеток. Такое определение пола называют програмным. Оно обнаружено у коловраток, или у первичных кольчецов. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза становятся различными по размеру еще до оплодотворения. Например, в яйцевой капсуле первичных кольчецов содержатся два сорта яиц - крупные и мелкие. Из крупных после оплодотворения развиваются только самки, из мелких - только самцы!

Если определение пола нового организма обеспечивается при оплодотворении в результате соответствующего сочетания гамет, то есть при образовании зиготы, то такой тип детерминации пола называют сингамным . Сингамное определение пола типично для млекопитающих, птиц, рыб, двукрылых насекомых, двудомных растений.

Позднее цитологи, изучая мейоз у некоторых насекомых, обнаружили явление неравного распределения хромосом. Так, у самцов клопа наблюдали в одних сперматоцитах второго порядка семь хромосом, а в других - шесть, следовательно, одна хромосома оказалась непарной. Непарную хромосому назвали Х -хромосомой, а все остальные хромосомы в клетке - аутосомами. В соматических клетках самца клопа насчитывается 13 хромосом, одна из которых является Х -хромосомой. В соматических клетках самок клопа насчитывается 14 хромосом, из которых две Х -хромосомы (такие же, как у самца) и 12 аутосом. Все ооциты у самок этого вида имеют 7 хромосом. Таким образом, у клопа все яйцеклетки имеют Х +6 аутосом, а сперматозоиды оказываются двух сортов, одна часть имеет набор хромосом Х + 6, а другая 0 + 6.

Впоследствии были обнаружены организмы, у которых в сперматогониях одна из пар хромосом представлена неодинаковыми по размеру или форме хромосомами. Одна такая хромосома была сходна с парными хромосомами женского пола, за ней сохранилось название «Х -хромосома», другая - иной формы или размера - была названа Y -хромосомой. Например, в соматических клетках коровы содержатся 60 хромосом, из которых 58 являются аутосомами и две - половыми Х -хромосомами. Соматические клетки быка также содержат 60 хромо­сом, среди которых 58 аутосом и одна пара половых хромосом: Х и Y .

Таким образом, у особей женского пола многих видов животных все хромосомы парные, и в гаметогенезе в результате редукционного деления у них образуется только один сорт гамет; в гаметогенезе у мужского пола образуются два сорта гамет - либо X и 0, либо X и Y - при равном числе остальных хромосом - аутосом. Соотношение различных сортов мужских гамет в обоих случаях будет равно 1:1, так как это определяется мейозом.

Пол, образующий гаметы одного сорта по половым хромосомам (X и X ), назвали гомогаметным ; образующий два сорта гамет (X и 0 или X и Y ), - гетерогаметным .

В случае, когда яйцеклетки содержат, кроме аутосом, Х -хромосому, при соединении со спермием, несущим также Х -хромосому, образуется зигота с парными хромосомами XX , то есть женского пола. Если же такая яйцеклетка соединится со спермием, несущим Y -хромосому, то образуется зигота с набором половых хромосом XY , то есть мужского пола.

Исследования показали, что гетерогаметность по мужскому полу присуща млекопитающим, рыбам, двукрылым насекомым, а также двудомным растениям. В то же время у бабочек, птиц, рептилий гетерогаметным полом является женский, а гомогаметным - мужской.

Балансовая теория определения пола. Исследования на дрозофиле показали, что простой на первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х -хромосома направляет развитие особи в сторону женского пола, однако Y -хромосома у плодовой мушки никак не влияет на пол. Например, можно получить особей типа Х0 , то есть имеющих одну лишь Х -хромосому, но лишенных Y -хромосомы. Такие особи представляют собой типичных самцов, но они совершенно стерильны. Следовательно, наличие Y –хромосомы обеспечивает плодовитость самцов, но не влияет на определение пола как таковое; в данном случае роль Y -хромосомы сводится к тому, что она служит партнером Х -хромосомы в мейозе.

О том, что Y -хромосома не оказывает никакого влияния на развитие пола у дрозофил, свидетельствует следующий факт. Можно получить мух с набором половых хромосом ХХ Y ; такие мухи будут настоящими плодовитыми самками, несмотря на наличие Y -хромосомы. Было установлено, что пол определяется генами женского пола, расположенными в Х -хромосоме, и генами мужского пола, расположенными в аутосомах.

В 1919 г. К. Бриджес нашел триплоидных самок дрозофил, которые были плодовиты. От скрещивания триплоидных мух с нормальными получается весьма разнообразное потомство, среди которого могут быть мухи с нормальным комплексом хромосом (XY +2A и ХХ +2 A ) и могут встретиться особи с комплексом хромосом ЗХ +2 A или 2Х + З A . Особей, имеющих комплекс хромосом ЗХ +2A , называют сверхсамками; они отличаются от нормальных самок стерильностью и аномальными крыльями и глазами. Мухи типа 2Х A представляют собой интерсексов , то есть нечто промежуточное между самцами и самками. Могут возникнуть также особи с комплексом хромосом Х Y A ; их называют сверхсамцами .

На основании опытов Бриджес пришел к выводу, что пол определяет не присутствие двух Х -хромосом или Х Y , а соотношение числа половых хромосом и числа наборов аутосом. Это следует из того, что все особи с балансом хромосом (или половым индексом) Х : A = 1 представляют собой самок, соотношение Х :2A = 0,5 определяет самцов; баланс хромосом в соотношении от 1 до 0,5 определяет промежуточное развитие пола, то есть интерсексуальность. Соотношение ЗХ :2A = 1,5 ведет к развитию сверхсамок. Напротив, увеличение количества наборов аутосом на одну Х -хромосому Х + Y A =0,33 определяет развитие сверхсамцов. В табл. 1 показаны различные половые типы дрозофил и соответствующие им половые индексы.

У дрозофилы и у некоторых других насекомых иногда развиваются так называемые гинандроморфы, у которых одни участки тела женского, а другие - мужского типов (рис. 22). Иногда одна сторона тела особи несет мужские признаки, а другая - женские. Причины такой мозаичности легко объяснить. В начале своего развития животное обладает двумя Х -хромосомами и начинает развиваться как самка, однако при первом дроблении оплодотворенного яйца по тем или иным причинам происходит утрата одной из Х -хромосом. В результате образуются клетки, содержащие только одну Х -хромосому. Если эти клетки продолжают делиться, то формируются ткани, характеризующиеся чисто мужскими признаками. Из клеток же, содержащих обе Х -хромосомы, развиваются ткани, обладающие женскими признаками.

У всех насекомых, принадлежащих к отряду перепончатокрылых (к которому принадлежит и медоносная пчела), пол определяется иным путем. В этой группе, а также у некоторых других насекомых самки диплоидны, тогда как самцы первично гаплоидны. Иными словами, самцы имеют вдвое Меньше хромосом, чем самки. Хромосомный комплекс самок нормальный, то есть у них имеется по паре хромосом каждого типа, однако гаплоидность присуща лишь клеткам так называемого зародышевого пути - клеткам, из которых развиваются гаметы. Во всех других частях тела самцов, например в кишечнике, мышцах и сосудистой системе, число хромосом вторично удваивается, становясь диплоидным. В результате самцы имеют нормальные размеры тела и жизнеспособны. У самцов в мейозе не происходит редукции числа хромосом, и поэтому половые клетки самцов имеют такое же число хромосом, как и клетки зародышевого пути. Поскольку клетки зародышевого пути уже несут половинный набор хромосом, вторичная редукция была бы просто излишней. У самок, напротив, мейоз протекает нормально, то есть сопровождается редукцией хромосом. Первичная гаплоидность самцов связана с тем, что они развиваются из неоплодотворенных яиц, которые содержат половинное число хромосом. У других организмов такие яйца обычно неспособны к развитию, но у перепончатокрылых развитие неоплодотворенных яиц представляет собой, как это ни удивительно, обычное явление.

У медоносной пчелы известны самки двух типов: многочисленные стерильные рабочие пчелы и одна плодовитая пчелиная матка. Различия между рабочими пчелами и матками обусловлены кормлением во время их роста. Непосредственная причина стерильности рабочих пчел заключается, по-видимому, в отсутствии некоторых витаминов Рабочие пчелы, как и матки, диплоидны. Те и другие содержат в своих соматических клетках по 32 хромосомы.

Самцы - трутни - развиваются из неоплодотворенных яиц, и их клетки вначале содержат 16 хромосом. Неоплодотворенные яйца откладываются в специальные ячейки сот, которые крупнее тех ячеек, где воспитываются рабочие пчелы. При спаривании матки с трутнем сперма попадает в специальный семяприемник, где она и хранится. Таким образом, пчелиная матка обладает фантастической способностью: откладывая яйца, пропускать часть их через резервуар с семенем так, что они остаются неоплодотворенными, а в других случаях обеспечивать оплодотворение яиц. В большие ячейки сот, приготовленные для трутней, матка безошибочно откладывает только неоплодотворенные яйца. Оплодотворенные же яйца, из которых должны развиваться рабочие пчелы или, возможно, новая матка.

2. Патология по половым хромосомам. У ряда животных различных видов обнаружена патология по половым хромосомам, часто аналогичная таковой у человека. Основной причиной таких аномалий является нерасхождение половых хромосом в процессе митоза дробящейся зиготы и нерасхождение половых хромосом в бластомеры на ранних этапах развития особи. Нерасхождение половых хромосом при мейозе и митозе сопровождается появлением в фенотипе особей аномалий, затрагивающих морфологические и физиологические системы. Существенно снижается или полностью утрачивается воспроизводительная функция, нарушается общее развитие, проявляется патология нервной и гормональной систем, меняется габитус тела.

Если речь идет о двух Х -хромосомах самки млекопитающих, то в результате нерасхождения возникают женские гаметы, одна из которых имеет две X -хромосомы, а вторая ни одной, тогда как в норме каждая из них должна нести по одной Х -xpoмосоме и обладать одинаковой возможностью определения пола. Если обозначить эти гаметы через XX и 0 , то в результате их соединения с нормальными мужскими гаметами (половина которых несет Х -, а другая половина Y -хромосому) возникнут анеуплоидные зиготы, как это и представлено на рис. 24. Возникающие в данном случае четыре типа зигот и количество хромосом в них представляют собой четыре типа аномалий. При рассмотренных аномалиях число аутосом не отклоняется от нормы.

Синдром Тернера (ХО ) наблюдается у женских особей. Эта аномалия описана у домашней мыши и козы. Синдром Клайнфельтера (XXY ) наблюдается у мужских особей.


Такой тип половых хромосом описан у собак, котов с черепаховой окраской шерсти, свиней. Во всех случаях особи, обладающие этим синдромом, имели ряд физиологических и анатомических аномалий и были бесплодны.

Зиготы типа Y О не были обнаружены. Возможно, что такие зиготы нежизнеспособны.

Особи с набором XXX - самки, внешне почти ничем не отличаются от нормальных, и некоторые из них даже плодовиты.

В первое время при исследовании интерсексов и гермафродитов серьезные трудности возникли при определении генетического пола аномальных особей. Не зная, была ли зигота первоначально мужской или женской, трудно было установить, какие отклонения от нормы произошли в ней в процессе развития. Эта проблема была разрешена М. Барром, который начал свои исследования в 1949 г. и в дальнейшем установил, что нормальные соматические клетки мужских и женских особей характеризуются наличием или отсутствием в них небольшого хроматинового тельца, обнаруживаемого при слабом окрашивании. Эти включения получили название полового хроматина, телец Барра или ядерного хроматина. Обычно для анализа используют клетки препаратов, приготовленных из мазков слизистой оболочки рта.

Поиски полового хроматина у интерсексов показали, что у особей, страдающих синдромом Тернера (ХО), как и у нормальных мужских особей, он отсутствует. Страдающие синдромом Клайнфельтера (ХХУ), имеют, как у нормальных женских особей, одно тельце Барра, а у тех редких индивидов, у которых встречаются три или четыре Х-хромосомы, число телец Барра всегда на единицу меньше числа Х-хромосом. В соответствии с этим у нормальных мужских особей не должно быть телец Барра, а нормальные женские особи должны иметь одно такое тельце. Если наблюдается какое-либо отклонение от этого правила, то оно указывает на некое нарушение численности Х-хромосом, и число телец Барра дает нам ключ к выяснению природы подобного отклонения.

Тельца Барра образуются из Х-хромосомы в результате ее инактивации на стадии гаструляции. Хроматин этих хромосом неадекватен, поэтому присутствие в женском организме двух Х-хромосом не удваивает дозу гена, а соответствует генетической дозе одной Х-хромосомы, так как другая Х-хромосома инактивирована. Таким образом, все лишние Х-хромосомы инактивируются на ранней стадии развития и каждая из них превращается в хроматиновое тельце.

Проблема регулирования пола. Регулирование пола имеет важное практическое значение. Так, в яичном птицеводстве желательно получать больше курочек, а в мясном птицеводстве - петушков. У тутового шелкопряда самцы дают на 25-30% больше шелка, чем самки, поэтому их преимущество очевидно. В мясном скотоводстве желательно получать больше бычков и т. д.

В результате исследований установлено, что типичное для многих видов соотношение полов 1:1 нарушается под влиянием различных факторов, действующих на разных этапах онтогенеза особи.

Известно, что в благоприятных для размножения тли условиях божьи коровки откладывают, как правило, яйца с набором хромосом женского типа (XX ). Благодаря этому быстро увеличивается поголовье самок божьих коровок, а затем резко возрастает численность популяции. Когда большое количество тли уничтожено, соотношение самцов и самок божьих коровок вновь становится близким 1:1.

Исследования Г. В. Паршутина, В. И. Михайлова и др. (1967) показали, что избыток аминокислот в рационе кур приводит к существенному изменению в соотношении полов. Установлено, что метионин и глицин содействуют формированию курочек, а аспарагин - петушков.

Длительное время с животными разных видов проводят опыты, цель которых - получить особей желательного пола. Разработано несколько методов направленного регулирования соотношения полов. Один из них состоит в изменении рН среды женских половых путей, что может способствовать преимущественному участию в оплодотворении яйцеклетки спермиев, несущих ту или иную половую хромосому. Другой метод основан на разделении спермы на две фракции путем электрофореза. Предполагают, что при этом спермин с разными половыми хромосомами отойдут к разным полюсам. Впервые такой опыт был проведен на кроликах В. Н. Шредер (1943). Оказалось, что при температуре среды, в которой проводился электрофорез, 25ºС в случае использования для осеменения животных спермы, накопившейся на аноде, получали в приплоде 75% самцов и 25% самок, а при использовании спермы, собравшейся на катоде,-20% самцов и 80% самок. При снижении температуры до 10°С результаты были обратными: осеменяя крольчих «анодной» спермой, получали 17% самцов и 83% самок, а при использовании «катодной» - 83% самцов и 17% самок. Однако следует отметить, что многократное повторение этих опытов не дало стабильных и ожидаемых результатов.

Иную методику для направленного регулирования соотношения полов применял в опытах с тутовым шелкопрядом В. Л. Астауров. Он подвергал бабочку тутового шелкопряда воздействию высокой температуры и рентгеновских лучей, что приводило к партеногенетическому размножению шелкопряда, при котором можно было получать только самцов (андрогенез) или только самок (гиногенез). Увеличение числа коконов самцов имеет практическое значение, так как выход шелковой нити из них больше, чем из коконов самок. Подвергая самку шелкопряда воздействию высокой температуры в период мейоза, задерживали редукционное деление ооцитов, в результате чего формирующиеся яйцеклетки самки становились не гаплоидными как это должно быть при нормальных условиях, а диплоидными. Диплоидные яйцеклетки не требуют оплодотворения, поэтому яйца, отложенные самкой, подвергнутой температурной обработке, развивались партеногенетически и из всех яиц образовывались только самки.

Для получения самцов самок шелкопряда подвергали действию рентгеновских лучей, что приводило к разрушению ядер яйцеклеток. Облученных самок спаривали с нормальными самцами, в их безъядерные яйца проникало несколько спермиев, привнося в зиготу свои Х-хромосомы. В результате зигота имела две Х -хромосомы, и в этом случае развивались только самцы с ХХ -половыми хромосомами, типичными для мужского пола бабочек.

В дальнейшем В. А. Струнниковым и Л. М. Гуламовой в СССР и В. Тадзимой в Японии была разработана методика разделения яиц (грены) тутового шелкопряда по полу. Схема наследования сцепленных с полом признаков окраски яиц у шелкопряда приведена на рис. 25.

На соотношение полов у потомства оказывает влияние возраст спариваемых особей, так как он обусловливает определенные физиологические изменения в организме родителей и в их гаметах. Так, при спаривании одновозрастных хряков и свиноматок было получено следующее количество особей женского пола (%):

от животных в возрасте до года -45,7;

двухлетних - 50,8;

трехлетних - 50,4;

четырехлетних - 49,2;

пятилетних- 37,5

и от шестилетних и старше - 41,1.

Следовательно, с возрастом родителей заметно снижается рождение самок, их было мало получено и от годовалых животных. При спаривании кур шестимесячного возраста выход самок был низким (27- 33%), в потомстве же десятимесячных родителей он составил 47,5%, а двенадцатимесячных - 49,7%.

Таким образом, установлено, что на соотношение полов при рождении млекопитающих и птицы оказывают влияние разнообразные факторы: возрастной подбор родительских пар, качество половых клеток самцов и самок, физиологическое состояние родителей, уровень их основного обмена и характер рациона.

Из этого видно, что пол животного обусловлен не только генетически, поэтому при создании соответствующих условий, обеспечивающих благоприятное формирование гамет, зигот и зародышей, появляется возможность изменять численность рождения особей того или иного пола в желательном для практики животноводства направлении. Однако эта проблема еще требует тщательной разработки.

3. Наследование признаков, сцепленных с полом. Половые хромосомы, так же как и аутосомы, несут в себе гены, контролирующие те или иные признаки. Признаки, которые обусловлены генами, расположенными в половых хромосомах, называют сцепленными с полом.

При изучении менделевских закономерностей наследования признаков подчеркивалось, что направление скрещивания, то есть то, от какого пола привносятся доминантные или рецессивные признаки, не имеет значения для расщепления по данным признакам в потомстве гибрида. Это правильно для всех случаев, когда гены находятся в аутосомах, одинаково представленных у обоих полов.

В том же случае, когда гены находятся в половых хромосомах характер наследования и расщепления обусловлен поведением половых хромосом в мейозе и их сочетанием при оплодотворении. В процессе исследований установлено, что У -хромосома гетерогаметного пола в отличие от Х -хромосомы почти не содержит генов, то есть наследственно инертна, поэтому гены, находящиеся в Х -хромосоме, за некоторым исключением, не имеют своих аллельных партнеров в У -хромосоме. Следовательно, признаки, гены которых находятся в половых хромосомах, должны наследоваться своеобразно: их распределение должно соответствовать поведению половых хромосом в мейозе. В силу этого рецессивные гены в Х -хромосоме гетерогаметного пола могут проявляться, так как им не противостоят доминантные аллели в У -хромосоме.

Явление сцепленного с полом наследования было впервые открыто Т. Морганом в опытах на дрозофиле.

У плодовой мушки нормальный цвет глаз темно-красный но встречаются и белоглазые формы. Гены, определяющие красный или белый цвет глаз, локализованы в Х-хромосоме и, следовательно, сцеплены с полом. Красный цвет глаз (А) доминирует над белым (а). При скрещивании гомозиготной красноглазой самки с белоглазым самцом (X A X A XX a Y ) все потомство оказывается красноглазым. В F 2 происходит расщепление в соотношении 3 красноглазых к 1 белоглазой, но при этом оказывается, что белоглазыми бывают только самцы (рис. 26).

В случае реципрокного скрещивания, когда самка, гомозиготная по гену белых глаз, скрещивается с красноглазым самцом (X a X a xX A Y ), расщепление наблюдается в первом же поколении в соотношении белоглазых к красноглазым 1: 1 (рис. 27). При этом белоглазыми оказываются только самцы, а все самки - красноглазыми. В F 2 появляются мухи с обоими признаками в соотношении 1: 1 как среди самок, так и среди самцов.

Описанный тип наследования окраски глаз у дрозофилы оказался закономерным для всех организмов в отношении признаков, которые определяются генами, находящимися в Х -хромосомах. Половые хромосомы гомогаметного материнского организма передаются как сыновьям, так и дочерям, а единственная Х -хромосома гетерогаметного мужского пола - дочерям, следовательно, при определенном направлении скрещивания признаки, определяемые генами, находящимися в Х - хромосоме, наследуются крест-накрест, то есть от матери к сыновьям, а от отца к дочерям.

Рассмотрим, как осуществляется наследование признаков, сцепленных с полом, в том случае, когда гетерогаметным полом является женский. Так, например, у кур самки несут XY , а самцы - ХХ -хромосомы. Если верна теория сцепленного с полом наследования, то, очевидно, в этом случае все гены Х -хромосомы будут находиться в гемизиготном состоянии не у самцов, а у самок.


На рис. 28 приведена схема наследования поперечнополосатой окраски у кур. Здесь отмечается сходная, но обратная в смысле признаков родителей особенность: если носителем рецессивного признака была самка, а доминирующего - самец, то во втором поколении все самцы приобретают поперечнополосатый рисунок оперения; среди же самок происходит расщепление на поперечнополосатых и черных в соотношении 1:1. Если доминирующий признак был у матери, а рецессивный - у Отца, то во втором поколении расщепление по окраске пера 1 . 1 наблюдается среди самок и самцов.

С полом сцеплена рецессивная золотистая окраска кур породы род-айланд (X S X S у петухов и X S Y у курочек). При скрещивании петухов род-айланд с курами породы Суссекс, несущими доминантный ген S, как и в опытах на дрозофиле и курах породы плимутрок, происходит передача признака пигментации от матери к сыну и от отца к дочери, то есть все петушки будут серебристыми, а курочки - с золотистыми перьями.

Сцепленное с полом наследование обнаружено и у других видов животных. Так, у собак обнаружено заболевание гемофилией. Явление гемофилии заключается в утрате кровью нормальной способности к свертыванию. Симптомы гемофилии обычно проявляются впервые у щенят в возрасте от шести недель до трех месяцев. В число обычных симптомов входят: хромота (вследствие кровоизлияний в суставы), сильная подкожная


припухлость и в конечном итоге паралич одной или нескольких конечностей. Небольшие царапины могут оказаться для щенят-гемофиликов смертельными.

Гемофилия у собак обусловлена, как и у человека, сцепленным с Х -хромосомой рецессивным геном. Щенята-гемофилики редко доживают до половой зрелости, поэтому обычно гемофилики рождаются от скрещивания гетерозиготной самки с нормальным самцом. Если обозначить ген, обусловливающий гемофилию, буквой h , а его доминантный аллель - Н , то поведение этих генов и выщепление гемофиликов, наблюдаемое при таком типе скрещивания, можно понять из схемы, представленной на рис. 29.

Из схемы видно, что в пометах от самок, являющихся носителями гемофилии, половина самцов нормальны, а половина - гемофилики (h ), но действие его не проявляется, так как у них имеется еще доминантный аллель Н. У остальных сестер ген h отсутствует.

У свиней обнаружен факт сцепленного с полом доминантного признака «вывороченные конечности» с полулетальным действием.

Передача через половые хромосомы признаков, сцепленных с Х- и У -хромосомами, указывает на то, что на особь мужского пола большее влияние оказывает наследственность матери и ее предков, передавших Х-хромосому, которая является носителем генов для ряда признаков. Наследственность же отца, передавшего сыну У -хромосому, генетически малоактивна.

От признаков, сцепленных с полом, следует отличать признаки, ограниченные полом, которые развиваются только у особей одного пола, например молочная продуктивность коров, яйценоскость кур и т.д. Гены подобных признаков могут быть локализованы в любой паре хромосом, самцы и самки в одинаковой степени передают их как дочерям, так и сыновьям,

В практике животноводства ограниченные полом признаки могут подвергаться селекции как по линии самцов, так и через самок. Например, повышение молочности, многоплодия, яйценоскости осуществляется путем селекции обоих родителей, хотя эти признаки проявляются в фенотипе только одного из них.

Контрольные вопросы:

1. Опишите механизмы определения пола.

2. В чем различия между половыми хромосомами и аутосомами?

3. Каков состав хромосом у самок-интерсексов плодовой мушки и как возникают подобные особи?

4. Назовите причину фримартинизма.

5. Как вы понимаете бисексуальность организмов?

6. Каковы причины возникновения патологии по половым хромосомам?

7. Приведите примеры регуляции, пола.

8. Приведите примеры практического использования сцепленного с полом наследования,

Генетика пола

Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. В клетках организма человека хромосомы составляют парные диплоидные наборы. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков и различается по одной паре хромосом (половые хромосомы). Одинаковые хромосомы этой пары назвали X (икс) -хромосомой, непарную, отсутствующую у другого пола - У (игрек) -хромосомой; остальные, по которым нет различий, - аутосомами (А).

Клетки женщины содержат две одинаковые половые хромосомы, которые обозначаются XX, у мужчин они представлены двумя непарными хромосомами X и Y. Таким образом, набор хромосом мужчины и женщины отличается только одной хромосомой: хромосомный набор женщины содержит 44 аутосомы + XX, мужчины - 44 аутосомы + XY.

Во время деления и созревания половых клеток у человека образуются гаметы с гаплоидным числом хромосом: яйцеклетки, как правило, содержат 22 + Х-хромосомы. Таким образом, у женщин образуется только один тип гамет (гаметы с Х-хромосомой). У мужчин гаметы содержат 22 + X или 22 + Y хромосом, и образуется два типа гамет (гамета с Х-хромосомой и гамета с Y-хромосомой). Если при оплодотворении в яйцеклетку попадает сперматозоид с Х-хромосомой, формируется зародыш женского пола, а с Y-хромосомой - мужского пола.

Следовательно, определение пола человека зависит от наличия в мужских половых клетках - сперматозоидах, оплодотворяющих яйцеклетку, X- или Y-хромосом.

Существует четыре основных типа хромосомного определения пола:

1. Мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У – хромосому например, человек, млекопитающие, двукрылые, жуки, клопы (Слайд 4).

2. Мужской пол гетерогаметен; 50% гамет несут Х-, 50%– не имеют половой хромосомы, например, кузнечики, кенгуру (Слайд 7).

3. Женский пол гетерогаметен; 50% гамет несут Х- , 50% гамет– У– хромосому, например, птицы, пресмыкающиеся, хвостатые амфибии, шелкопряд (Слайд 7).

4. Женский пол гетерогаметен; 50% гамет несут Х- , 50% не имеют половой хромосомы, например, моль.

Наследование признаков, гены которых локализованы в половых хромосомах, называют наследованием, сцепленным с полом.

26. Генотип как целостная система. Взаимодействие генов, множественное действие генов.

Генотип как целостная система

Свойства генов. На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещивании может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности. На самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, один ген часто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, в онтогенезе действуют не отдельные гены, а весь генотип как целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.

Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:

    Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.

    Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.

    Ген может действовать градуально, т. е. усиливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена).

    Один ген может влиять на развитие разных признаков - это множественное, или плейотропное, действие гена.

    Разные гены могут оказывать одинаковое действие на развитие одного и того же признака (часто количественных признаков) - это множественные гены, или полигены.

    Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно - через синтезированные под их контролем продукты своих реакций.

    Действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или воздействием различных факторов внешней среды.

Взаимодействия аллельных генов. Явление, когда за один признак отвечает несколько генов (аллелей), называется взаимодействием генов. Если это аллели одного и того же гена, то такие взаимодействия называются аллельными, а в случае аллелей разных генов -неаллельными.

Выделяют следующие основные типы аллельных взаимодействий: доминирование, неполное доминирование, сверхдоминирование и кодоминирование.

Доминирование -тип взаимодействия двух аллелей одного гена, когда один из них полностью исключает проявление действия другого. Такое явление возможно при следующих условиях: 1) доминантный аллель в гетерозиготном состоянии обеспечивает синтез продуктов, достаточный для проявления признака такого же качества, как и в состоянии доминантной гомозиготы у родительской формы; 2) рецессивный аллель совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.

Примерами такого взаимодействия аллельных генов может служить доминирование пурпурной окраски цветков гороха над белой, гладкой формы семян над морщинистой, темных волос над светлыми, карих глаз над голубыми у человека и т. д.

Неполное доминирование, или промежуточный характер наследования, наблюдается в том случае, когда фенотип гибрида (гетерозиготы) отличается от фенотипа обеих родительских гомозигот, т. е. выражение признака оказывается промежуточным, с большим или меньшим уклонением в сторону одного или другого родителя. Механизм этого явления состоит в том, что рецессивный аллель неактивен, а степень активности доминантного аллеля недостаточна для того, чтобы обеспечить нужный уровень проявления доминантного признака.

Примером неполного доминирования является наследование окраски цветков у растений ночной красавицы (рис. 3.5). Как видно из схемы, гомозиготные растения имеют либо красные (АА), либо белые (аа) цветки, а гетерозиготные (Аа) - розовые. При скрещивании растения с красными цветками и растения с белыми цветками в F 1 , у всех растений цветки розовые, т. е. наблюдается промежуточный характер наследования. При скрещивании гибридов с розовой окраской цветков в F 2 имеет место совпадение расщепления по фенотипу и генотипу, так как доминантная гомозигота (АА) отличается от гетерозиготы (Аа). Так, в рассматриваемом примере с растениями ночной красавицы расщепление в F 2 по окраске цветков обычно следующее - 1 красная (АА): 2 розовые (Аа): 1 белая (аа).

Рис. 3. 5. Наследование окраски цветков при неполном доминировании у ночной красавицы.

Неполное доминирование оказалось широко распространенным явлением. Оно наблюдается в наследовании курчавости волос у человека, масти крупного рогатого скота, окраски оперения у кур, многих других морфологических и физиологических признаков у растений, животных и человека.

Сверхдоминирование - более сильное проявление признака у гетерозиготной особи (Аа), чем у любой из гомозигот (АА и аа). Предполагается, что это явление лежит в основе гетерозиса (см. § 3.7).

Кодаминирвание - участие обоих аллелей в определении признака у гетерозиготной особи. Ярким и хорошо изученным примером кодоминирования может служить наследование IV группы крови у человека (группа АВ).

Эритроциты людей этой группы имеют два типа антигенов: антиген А (детерминируемый геном /\ имеющимся в одной из хромосом) и антиген В (детерминируемый геном / а, локализованным в другой гомологичной хромосоме). Только в этом случае проявляют свое действие оба аллеля - 1 А гомозиготном состоянии контролирует II группу крови, группу А) и I B (в гомозиготном состоянии контролирует III группу крови, группу В). Аллели 1 А и I B работают в гетерозиготе как бы независимо друг от друга.

Пример наследования групп крови иллюстрирует и прояв-ление множественного аллелизма: ген/может быть представлен тремя разными аллелями, а есть гены, имеющие десятки аллелей. Все аллели одного гена получили название серии мно-жественных аллелей, из которых каждый диплоидный организм может иметь два любых аллеля (и только). Между этими аллелями возможны все перечисленные варианты аллельных взаимодействий.

Явление множественного аллелизма распространено в природе. Известны обширные серии множественных аллелей, определяющих тип совместимости при оплодотворении у грибов, опылении у семенных растений, детерминирующих окраску шерсти животных и т. д.

Взаимодействия неаллельных генов.Неаллельные взаимодействия генов описаны у многих растений и животных. Они приводят к появлению в потомстве дигетерозиготы необычного расщепления по фенотипу: 9:3:4; 9:6:1; 13:3; 12:3:1; 15:1, т.е. модификации общей менделевской формулы 9:3:3:1. Известны случаи взаимодействия двух, трех и большего числа неаллельных генов. Среди них можно выделить следующие основные типы: комплементарность, эпистаз и полимерию.

Комплементарным, или дополнительным, называется такое взаимодействие неаллельных доминантных генов, в результате которого появляется признак, отсутствующий у обоих родителей. Например, при скрещивании двух сортов душистого горошка с белыми цветками появляется потомство с пурпурными цветками. Если обозначить генотип одного сорта ААbb, а другого - ааВВ, то

Гибрид первого поколения с двумя доминантными генами и В) получил биохимическую основу для выработки пурпурного пигмента антоциана, вто время как поодиночке ни ген А, ни ген B не обеспечивали синтез этого пигмента. Синтез антоциана представляет собой сложную цепь последовательных биохимических реакций, контролируемых несколькими неаллельными генами, и только при наличии как минимум двух доминантных генов (А-В-) развивается пурпурная окраска. В остальных случаях {ааВ- и A-bb) цветки у растения белые (знак «-» в формуле генотипа обозначает, что это место может занять как доминантный, так и рецессивный аллель).

При самоопылении растений душистого горошка из F 1 в F 2 наблюдалось расщепление на пурпурно- и белоцветковые формы в соотношении, близком к 9:7. Пурпурные цветки были обнаружены у 9/1 6 растений, белые - у 7/16. Решетка Пеннета наглядно показывает причину этого явления (рис. 3.6).

Эпистаз - это такой тип взаимодействия генов, при котором аллели одного гена подавляют проявление аллельной пары другого гена. Гены, подавляющие действие других генов, называются эпистатическими, ингибиторами или супрессорами. Подавляемый ген носит название гипостатический.

По изменению числа и соотношения фенотип и чес ких классов при дигибридном расщеплении в F 2 рассматривают несколько типов эпистатических взаимодействий: доминантный эпистаз (А>В или В>А) с расщеплением 12:3:1; рецессивный эпистаз (а>В или b>А), который выражается в расщеплении 9:3:4, и т. д.

Полимерия проявляется в том, что один признак формируется под влиянием нескольких генов с одинаковым фенотипичес-ким выражением. Такие гены называются полимерными. В этом случае принят принцип однозначного действия генов на развитие признака. Например, при скрещивании растений пастушьей сумки с треугольными и овальными плодами (стручочками) в F 1 образуются растения с плодами треугольной формы. При их самоопылении в F 2 наблюдается расщепление на растения с треугольными и овальными стручочками в соотношении 15:1. Это объясняется тем, что существуют два гена, действующих однозначно. В этих случаях их обозначают одинаково- А 1 и A 2 .

Рис. 3.6 . Наследование окраски цветков у душистого горошка

Тогда все генотипы 1 ,-А 2 ,-, А 1 2 а 2 , a 1 a 1 A 2 -) будут иметь одинаковый фенотип - треугольные стручочки, и только растения а 1 а 1 а 2 a 2 будут отличаться -- образовывать овальные стручочки. Это случай некумулятивной полимерии.

Полимерные гены могут действовать и по типу кумулятивной полимерии. Чем больше подобных генов в генотипе организма, тем сильнее проявление данного признака, т. е. с увеличением дозы гена 1 А 2 А 3 и т. д.) его действие суммируется, или кумулируется. Например, интенсивность окраски эндосперма зерен пшеницы пропорциональна числу доминантных аллелей разных генов в тригибридном скрещивании. Наиболее окрашенными были зерна А 1 А 1 А 2 А 2 А 3 3 а зерна а 1 а 1 а 2 a 2 а 3 а 3 не имели пигмента.

По типу кумулятивной полимерии наследуются многие признаки: молочность, яйценоскость, масса и другие признаки сельскохозяйственных животных; многие важные параметры физической силы, здоровья и умственных способностей человека; длина колоса у злаков; содержание сахара в корнеплодах сахарной свеклы или липидов в семенах подсолнечника и т. д.

Таким образом, многочисленные наблюдения свидетельствуют о том, что проявление большей части признаков представляет собой результат влияния комплекса взаимодействующих генов и условий внешней среды на формирование каждого конкретного признака.

Взаимодействие генов

Отношение между генами и признаками достаточно сложное. В организме не всегда один ген определяет только один признак и, наоборот, один признак определяется только одним геном. Чаще один ген может способствовать проявлению сразу нескольких признаков, и наоборот. Генотип организма нельзя рассматривать как простую сумму независимых генов, каждый из которых функционирует вне связи с другими. Фенотипное проявления того или иного признака являются результатом взаимодействия многих генов.

Множественное действие генов (плейотропия) - процессы влияния одного гена на формирование нескольких признаков.

Например, у человека ген, определяющий рыжую окраску волос, обусловливает более светлую кожу и появление веснушек.

Иногда гены, определяющие морфологические признаки, влияют на физиологические функции, снижая жизнестойкость и плодовитость, или оказываются летальными. Так, ген, вызывающий голубую окраску у норки, снижает ее плодовитость. Доминантный ген серой окраски у каракулевых овец в гомозиготном состоянии детален, поскольку у таких ягнят недоразвит желудок и они погибают при переходе на питание травой.

Комплементарное взаимодействие генов. На развитие одного признака могут влиять несколько генов. Взаимодействие нескольких неаллельных генов, приводящее к развитию одного признака, называется комплементарным. Например, у кур имеются четыре формы гребня, проявление какой-либо из них связано со взаимодействием двух пар неаллельных генов. Розовидный гребень обусловлен действием доминантного гена одной аллели, гороховидный - доминантного гена другой аллели. У гибридов при наличии двух доминантных неаллельных генов образуется ореховидный гребень, а при отсутствии всех доминантных генов, т.е. у рецессивной гомозиготы по двум неаллельным генам, образуется простой гребень.

Результатом взаимодействия генов является окраска шерсти у собак, мышей, лошадей, форма тыквы, окраска цветков душистого горошка.

Полимерия - такое взаимодействие неаллельных генов, когда степень развития признака зависит от общего количества доминантных генов. По этому принципу наследуется окраска зерен овса, пшеницы, цвет кожи у человека. Например, у негров в двух парах неаллельных генов 4 доминантных, а у людей с белой кожей - ни одного, все гены рецессивные. Сочетания разного количества доминантных и рецессивных генов приводят к образованию мулатов с разной интенсивностью окраски кожи: от темной до светлой.

Различают две основных группы взаимодействия генов: взаимодействие между аллельными генами и взаимодействие между неаллельнимы генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые обусловят тот или иной признак. В цитоплазме происходит взаимодействие между белками - ферментами, синтез которых опрелятся генами, или между веществами, которые образовываются под влиянием этих ферментов.

Возможны следующие типы взаимодействия:

1) для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых опрелятся двумя неаллельнимы генами;

2) фермент, что был синтезирован с участием одного гена, полностью подавляет или инактивирует действие фермента, что был образован другим неаллельным геном;

3) два ферменты, образование которых контролируется двумя неаллельми генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака.

Взаимодействие аллельных генов

Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена.

Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование.

Основная форма взаимодействия - полное доминирование, которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготном организме проявление одной из аллелей доминирует над проявлением другой. При полном доминировании расщепления по генотипу 1:2:1 не совпадает с расщеплением по фенотипу - 3:1. В медицинской практике с двух тысяч моногенных наследственных болезней почти в половины имеет место доминированое проявления патологических генов над нормальными. В гетерозигот патологический аллель проявляется в большинстве случаев признаками заболевания (доминантный фенотип).

Неполное доминирование - форма взаимодействия, при которой у гетерозиготного организма (Аа) доминантный ген (А) не полностью подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. Здесь расщепление по генотипу и фенотипу совпадает и составляет 1:2:1

При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием.

Сверхдоминирование - когда доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном. Так, у дрозофилы при генотипе АА-нормальная продолжительность жизни; Аа - удлиненная триватисть жизни; аа - летальный исход.

Множественный алелизм

У каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят о множественные аллели или множественный аллеломорфизм.

Множественные аллели обозначаются одной буквой с разными индексами, например: А, А1, А3 ... Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака.

Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы.

Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО.

Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического.

Взаимодействие неалельних генов

Известно много случаев, когда признак или свойства детерминируются двумя или более неалельнимы генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потому что взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделивских закономерностей расщепления.

Различают четыре основных типа взаимодействия генов: комплементарность, эпистаз, полимерию и модифицирующее действие (плейотропия).

Комплементарность это такой тип взаимодействия неаллельних генов, когда один доминантный ген дополняет действие другого неаллельного доминантного гена, и они вместе определяют новый признак, который отсутствует у родителей. Причем соответственный признак развивается только в присутствии обоих неаллельних генов. Например, сера окраска шерсти у мышей контролируется двумя генами (А и В). Ген А детерминирует синтез пигмента, однако как гомозиготы (АА), так и гетерозиготы (Аа) - альбиносы. Другой ген В обеспечивает скопления пигмента преимущественно у основания и на кончиках волос. Скрещивания дигетерозигот (АаВЬ х АаВЬ) приводит к расщеплению гибридов в соотношении 9:3:4. Числовые соотношения при комплементарном взаимодействии могут быть как 9:7; 9:6:1 (видоизменение менделивского расщепления).

Примером комплементарного взаимодействия генов у человека может быть синтез защитного белка - интерферона. Его образование в организме связано с комплементарным взаимодействием двух неаллельних генов, расположенных в разных хромосомах.

Эпистаз -это такое взаимодействие неаллельных генов, при котором один ген подавляет действие другого неаллельного гена. Угнетение могут вызывать как доминантные, так и рецессивные гены (А> В, а> В, В> А, В> А), и в зависимости от этого розличают эпистаз доминантный и рецессивный. Подавляющий ген получил название ингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена.

Ген, эффект которого подавляется, получил название гипостатичного. При епистатичном взаимодействияи генов расщепление по фенотипу в F2 составляет 13:3; 12:3:1 или 9:3:4 и др. Окрас плодов тыквы, масть лошадей определяются этим типом взаимодействия.

П ол - это совокупность признаков и свойств организма, определяющих его участие в размножении.
Пол особи может определяться:
а) до оплодотворения яйцеклетки сперматозоидом (прогамное определение пола);
б) в момент оплодотворения (сингамное определение пола);
в) после оплодотворения (эпигамное определение пола).

До оплодотворения пол определяется у некоторых организмов в результате разделения яйцеклеток на быстро и медленно растущие. Первые (более крупные) после слияния с мужской гаметой дают самок, а вторые (мелкие) - самцов. У коловраток, способных размножаться помимо обычного полового размножения с оплодотворением, партеногенетически, часть партеногенетических яйцеклеток во время развития лишается половины хромосом. Из таких яиц развиваются самцы, а остальная часть дает начало самкам.
У морского кольчатого червя бонеллия определение пола происходит в процессе онтогенеза: если личинка садится на дно, из нее развивается самка, а если прикрепляется к хоботку взрослой самки, то самец.
У подавляющего же большинства эукариот пол закладывается в момент оплодотворения и определяется генотипически хромосомным набором, который зигота получает от родителей. Клетки мужских и женских особей животных организмов различаются по паре хромосом. Эту пару называютполовыми хромосомами (гетеросомами ) в противоположность остальным - аутосомам . Половые хромосомы принято обозначать как Х- и Y-хромо-сомы. В зависимости от их сочетания у и организмов различают 5 типов хромосомного определения пола:
1) XX , ХО (O обозначает отсутствие хромосом) встречается у видов Protenor (насекомые);
2) XX , XY - он характерен, например, для дрозофилы, млекопитающих (в том числе и для человека);
3) XY , XX - этот тип определения пола характерен для бабочек, птиц, рептилий;
4) ХО , XX - наблюдается у тли;
5) гапло-диплоидный тип ( 2n, n) встречается, например, у пчел: самцы развиваются из неоплодотворенных гаплоидных яйцеклеток, самки - из оплодотворенных диплоидных.

Конкретные механизмы, связывающие развитие мужского или женского пола с определенным сочетанием половых хромосом у разных организмов различен. У человека, например, пол определяется наличием Y-xpo-мосомы: в ней есть ТДФ-ген, он кодирует тестикул - детерминирующий фактор, который определяет развитие мужского пола.
У дрозофилы же в Y-хромосоме находится ген фертильности, ответственный за плодовитость самца, а пол определяется баллансом числа Х-хромосом и числа наборов аутосом (обычный диплоидный организм содержит, соответственно, два набора аутосом). В Х-хромосомах расположены гены, определяющие развитие по пути самки, а в аутосомах - по пути самца.
Если отношение количества Х-хромосом к количеству наборов аутосом равно 0,5, то развивается самец, а если - 1, то самка.
Помимо нормальных самцов и самок иногда появляются интерсексы - особи, по своим половым признакам занимающие промежуточное положение между мужским и женским полом (не путать с гермафродитами!). Это может быть вызвано как анеуплоидией по половым хромосомам в гаметах, так и различными нарушениями (например, гормональными) в процессе дифференциров-ки пола.
У большинства организмов среди потомков получается 50 % самцов и 50 % самок, так как в норме расщепление по полу подчиняется законам обычного моногибридного скрещивания между гомо- и гетерозиготой, для гибридов которого характерно расщепление в соотношении 1:1.



Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Есть правила индивидуальности, постоянства, парности хромосом. Диплоидный набор хромосом называют кариотипом . В женском и мужском кариотипе 23 пары (46) хромосом (рис. 78).

22 пары хромосом одинаковы. Их называют аутосомами . 23-я пара хромосом - половые хромосомы . В женском кариотипе одинаковые

половые хромосомы XX. В мужском кариотипе половые хромосомы XY. Y-хромосома очень мала и содержит мало генов. Сочетание половых хромосом в зиготе определяет пол будущего организма.

При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Пол, образующий гаметы, одинаковые по половой хромосоме, называют гомогаметным полом. Половина сперматозоидов содержит - 22 аутосомы + Х-хромосома, а половина 22 аутосомы + Y. Пол, образующий гаметы, различные по половой хромосоме, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y-хромосому - мужской

Вероятность рождения мальчика или девочки равна 1:1 или 50%:50%. Такое определение пола характерно для человека и млекопитающих. У некоторых насекомых (кузнечики и тараканы) нет Y-хромосомы. Самцы имеют одну X - хромосому (Х0), а самки - две (XX). У пчел самки имеют 2n набор хромосом (32 хромосомы), а самцы - n (16 хромосом). У женщин в соматических клетках две половые Х-хромосомы. Одна из них образует глыбку хроматина, которая бывает заметна в интерфазных ядрах при обработке реактивом. Эта глыбка - тельце Барра. У мужчин тельце Барра отсутствует, потому что у них всего одна Х-хромосома. Если при мейозе в яйцеклетку попадает сразу две XX-хромосомы и такая яйцеклетка будет оплодотворена сперматозоидом, то зигота будет иметь большее число хромосом. Например, организм с набором хромосом ХХХ (трисомия по X-хромосоме) по фенотипу - девочка. У нее недоразвиты половые железы. В ядрах соматических клеток выделяются два тельца Барра.

Организм с набором хромосом XXY(синдром Клайнфелътера) по фенотипу - мальчик. У него недоразвиты семенники, отмечается физическая и умственная отсталость. Есть тельце Барра.

Хромосомы ХО (моносомия по Х-хромосоме) - определяют синдром Шерешевского-Тернера . Организм с таким набором - девочка. У нее недоразвиты половые железы, малый рост. Нет тельца Барра. Организм, не имеющий Х-хромосомы, а содержащий только Y- хромосому - нежизнеспособен.

Наследование признаков, гены которых находятся в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Если гены находятся в половых хромосомах, они наследуются сцепленно с полом.

Гены могут находиться на половых хромосомах, в этом случае говорят, что они сцеплены с полом. Наследование, сцепленное с полом, имеет некоторые важные особенности. Дело в том, что У-хромосома несет гораздо меньше генов, чем Х-хромосома. Это обстоятельство приводит к тому, что для многих генов наХ-хромо-соме нет соответствующих аллелей на У-хромосоме. В результате если у мужчины наХ-хромосоме оказывается рецессивный аллель, то он проявится в фенотипе. Например, имеется наследственная форма гемофилии - болезни, связанной с нарушением нормальной свертываемости крови. При этих нарушениях у больного возникают длительные кровотечения даже при незначительном повреждении кровеносных сосудов. Существуют две формы гемофилии - А и В, я обе определяются рецессивными генами, локализованными в Х-хромосоме.

На рис.2 показано наследование гемофилии. Схематически представлены половые хромосомы родителей. На Х-хромосомах обозначены аллели рецессивного аллеля гемофилии а. Нормальный аллель доминирует - обозначен как А. Если в брак со здоровым мужчиной вступает здоровая женщина, являющаяся носительницей гена гемофилии, то с одинаковой вероятностью (в 25% случаев) могут родиться здоровая дочь, здоровая дочь - носительница гена гемофилии, здоровый сын, больной сын. Таким образом, носительницами гена гемофилии являются женщины, а болеют ею мужчины. Однако если мужчина-гемофилик вступит в брак со здоровой женщиной, то все его сыновья будут обязательно здоровы (потому что они получат от отца 7-хромосому). Дочери будут тоже здоровыми, но обязательно будут носительницами гена гемофилии.

Теоретически возможна гемофилия и у женщины, но такая вероятность очень невысока, так как для этого необходимо вступление в брак больного-гемофилика с женщиной - носительницей гена гемофилии (и даже в этом случае вероятность рождения больной девочки будет только 0,25). Из-за низкой частоты встречаемости гена гемофилии и того, что больные гемофилией часто умирают до брачного возраста, такие случаи практически не отмечаются.

Итак, если рецессивный ген сцеплен с А-хромосомой, то он гораздо чаще проявляется в фенотипе у мужчин, чем у женщин. Среди других генов, сцепленных с полом, стоит упомянуть гены, связанные с цветовой слепотой.