Значение слова аксиома. Что такое аксиома

АКСИОМА

АКСИОМА

(от греч. axioma - значимое, принятое положение) - исходное, принимаемое без доказательства положение к.-л. теории, лежащее в основе доказательств др. ее положений.
Долгое термин «А.» понимался не просто как отправной пункт доказательств, но и как истинное положение, не нуждающееся в особом доказательстве в силу его самоочевидности, наглядности, ясности и т.п. Так, Аристотель считал, что А. (начала) не требуют доказательства по причине своей ясности и простоты. Др.-греч. математик Евклид рассматривал принятые им геометрические А. как самоочевидные истины, достаточные для выведения всех др. истин геометрии. Нередко А. трактовались как вечные и непреложные истины, известные до всякого опыта и не зависящие от него, попытка обоснования которых могла только подорвать их очевидность.
Переосмысление проблемы обоснования А. изменило и самого термина «А.». А. являются не исходным началом познания, а скорее его промежуточным результатом. Они обосновываются не сами по себе, а в качестве необходимых составных элементов теории: последней есть одновременно и подтверждение ее А. Критерии выбора А. меняются от теории к теории и являются во многом прагматическими, учитывающими соображения краткости, удобства манипулирования, минимизации числа исходных понятий и т.п. В частности, в формальном исчислении, теорем которого уже известен, А. - это просто одна из тех формул, из которых выводятся остальные доказуемые формулы. Если, однако, еще не определена однозначно, ее А. может диктоваться и содержательными соображениями.
АКСИОМАТИЧЕСКИЙ - способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.
А.м. - особый способ определения объектов и отношений между ними. Он используется в математике, логике, а также в отдельных разделах физики, биологии и др.
А.м. зародился еще в античности и приобрел большую известность благодаря «Началам» Евклида, появившимся ок. 330-320 до н.э. Евклиду не удалось, однако, описать в его «аксиомах и постулатах» все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. «Скрытые» допущения геометрии Евклида были выявлены только в Новейшее время Д. Гильбертом, рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.
К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т.д.
А.м. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории.
Как показал К. Гёдель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности А.м. и невозможности полной формализации научного знания.

Философия: Энциклопедический словарь. - М.: Гардарики . Под редакцией А.А. Ивина . 2004 .

АКСИОМА

(греч. - удостоенное, принятое положение, от о? - считаю достойным) , исходное положение науч. теории, принимаемое в качестве истинного без логич. доказательства и лежащее в основе доказательства др. положений этой теории. Термин «А.» впервые встречается у Аристотеля. В истории познания А. обычно рассматривались как вечные и непреложные априорные истины, при этом упускалась из виду их обусловленность многовековым человеч. опытом, прак-тич.познават. деятельностью.

В совр. науке А.- это те предложения теории, которые принимаются за исходные, причём об истинности решается либо в рамках др. науч. теорий, либо посредством интерпретации данной теории. В отличие от содержат, науч. теории, А. в формальном исчислении - это просто одна из тех формул, из которых по правилам вывода этого исчисления выводятся остальные доказуемые в нём формулы (теоремы этого исчисления) .

см. также ст. Аксиоматический метода лит. к ней.

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

АКСИОМА

(от греч. axioma – , требование)

исходное положение, которое не может быть доказано, но в то же время и не нуждается в доказательстве, т. к. является совершенно очевидным и поэтому может служить исходным положением для др. положений (см. Дедукция). Логическими аксиомами являются: закон тождества, закон противоречия, закон исключенного третьего (см. Exclusi tertii principium), закон достаточного основания. Аксиоматика – учение об определениях и доказательствах в их отношении к системе аксиом. Ср. Логистика.

Философский энциклопедический словарь . 2010 .

АКСИО́МА

(греч. ἀξίωμα – удостоенное, принятое положение, от ἀξιόω – считаю достойным) – положение нек-рой данной теории, к-рое при дедуктивном построении этой теории не доказывается в ней, а принимается за исходное, отправное, лежащее в основе доказательств других предложений этой теории. Обычно в качестве А. выбираются такие предложения рассматриваемой теории, к-рые являются заведомо истинными или могут в рамках этой теории считаться истинными, не вызывая сомнений в силу своей простоты и ясности.

Возникнув в Древней Греции, термин "А." впервые встречается у Аристотеля, а затем через труды последователей и комментаторов Эвклида прочно входит в геометрию. В средние века аристотелевской философии обусловило его проникновение в другие области науки, а через нее и в обыденную . А. стали называть такое положение, к-рое, будучи совершенно очевидным, не нуждается в доказательстве. Природу этой очевидности видели, следуя взглядам, идущим еще от Платона, в прирожденности человеку таких основных истин, как математич. А. Учение Канта об априорности последних, т.е. о том, что они предшествуют всякому опыту и не зависят от него, было кульминацией таких взглядов на А. Построение Лобачевским неэвклидовой геометрии явилось первым крупным ударом по взгляду на А. как на вечные и непреложные "априорные" истины.

Критикуя взгляды Гегеля на логич. А. (на фигуры аристотелевских силлогизмов), Ленин писал: "практическая человека миллиарды раз должна была приводить человека к повторению разных логических фигур, д а б ы эти фигуры м о г л и получить а к с и о м" ("Философские тетради", 1947, с. 164). Именно в обусловленности многовековым человеч. опытом и практикой, включая сюда также и , и опыт развития науки, – очевидности А., рассматриваемых как истины, не нуждающиеся в доказательстве.

Вместе с тем взгляда на А. как на "априорные" истины привело к раздвоению понятия А. Все возрастающая в связи с запросами практики экспериментировать в области построения новых теорий, заменять, подобно Лобачевскому, одну А. , а также связанная с опытным происхождением А. их относительность, от ранее встречавшихся конкретных условий опыта и уровня развития науки, приводящая к невозможности выбрать раз навсегда и навечно в качестве А. такие положения, к-рые будут истинны абсолютно во всех условиях, – все это обусловило появление (а в наст. время в математике, особенно в математич. логике) и господство понятия А. в смысле, несколько отличном от традиционного. Понятие А. в этом новом смысле зависит от того, построение какой теории рассматривается и как проводится. А. данной теории при этом называются просто те предложения этой теории, к-рые при данном построении ее как дедуктивной теории (т.е. при данной ее аксиоматизации) принимаются за исходные, притом совершенно независимо от того, сколь они просты и очевидны.

Более того, уже из опыта, напр., построения различных неэвклидовых геометрий и их последующего истолкования и практич. использования (см. Относительности теория) стала ясной при построении (или аксиоматизации) той или иной теории каждый раз требовать заранее истинности ее аксиом. Об истинности А. нек-рой теории можно говорить лишь в связи с той или иной интерпретацией системы А. этой теории, но даже вопрос о существовании интерпретации часто ставится уже после построения самой теории. Да и при наличии фиксированной интерпретации возникают глубокие трудности, связанные со сложностью самого понятия истинности и проявляющиеся при попытках логико-математич. определения этого понятия в применении хотя бы к предложениям нек-рой достаточно четко описанной теории. Эти трудности могли быть обнаружены лишь после того, как стало возможным говорить о математич. описаниях самих теорий средствами развитого аппарата математич. логики, позволяющего формализовать различные теории. С его созданием связано дальнейшее , еще одно раздвоение понятия А., появление третьего смысла этого термина. В формальном исчислении А. является уже не предложением нек-рой содержательной научной теории, а просто одной из тех формул, из к-рых по правилам вывода этого исчисления выводятся остальные доказуемые в нем формулы ("теоремы" этого исчисления). См. также Метод аксиоматический и лит. к этой статье.

А. Кузнецов. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

АКСИОМА

АКСИОМА (греч. αξίωμα-принятое положение)-предложение, по какой-либо причине принимаемое в качестве исходного для каких-либо дальнейших рассуждений. Это общее аксиомы всякий раз конкретизируется вместе с уточнением того, что понимается под предложением, причиной и под дальнейшими рассуждениями. Типичные примеры аксиом: 1) некоторое символического языка исчисления, если под дальнейшими рассуждениями понимаются использующие его выводы в рамках данного исчисления. В этом случае причина принятия аксиом-само рассматриваемого исчисления. Здесь сомнения по поводу принятия аксиом бессмысленны; 2) некоторая эмпирическая , если под дальнейшими рассуждениями понимается, к примеру, систематически развиваемый на ее основе раздел физики. В этом случае причина принятия аксиомы-вера в закономерность природы, выражаемую данной гипотезой. Здесь сомнения по поводу принятия аксиомы не только осмысленны, но и желательны; 3) соглашение понимать термины, участвующие в формулировке некоторого суждения, как угодно, но все-таки таким образом, чтобы при этом понимании рассматриваемая формулировка выражала истинное . Это тот, когда под дальнейшими рассуждениями понимается заведомо истинных следствий из неоднозначно понимаемого исходного суждения. Здесь сомнения по поводу принятия аксиомы бессмысленны. Когда такого рода аксиому используют в рамках научной теории, ее часто называют постулатом значения; 4) , оцениваемое как необходимо истинное (аподиктическое), если под дальнейшими рассуждениями понимался какая-либо систематически развиваемая , претендующая на в эпистемологическом отношении (геометрия Евклида, Декарта, Спинозы, Фихте, Гильберта и т. д.). В этом случае причина принятия аксиомы-свидетельство специальной познавательной (интуиции) к непосредственному усмотрению некоторых (называемых часто самоочевидными) истин. В рамках указанной претензии сомневаться в аксиомах абсурдно, но вопрос об оправданности самой этой претензии- одна из самых глубоких и открытых проблем в философии. К. Ф. Самохвалов

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Синонимы :

Смотреть что такое "АКСИОМА" в других словарях:

    - (греч. axioma, от axium признавать, почитать). Истина, не требующая доказательств, напр., целое больше своей части. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АКСИОМА греч. axioma, от axiun, признавать,… … Словарь иностранных слов русского языка

    См … Словарь синонимов

    аксиома - ы ж. axiome m., нем. Axiom <, гр. axiôma. 1547. Лексис.1. Отправное положение какой л. науки, принимаемое без доказательств. Сл. 18. Логическия и Онтологическия аксиомы. Брян. 1799 4. || чаще мн. Непреложные правила какой л. науки, искусства;… … Исторический словарь галлицизмов русского языка

Без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами .

Назначение [ | ]

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать - то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами .

Аксиоматиза́ция теории - явное указание конечного или счётного , рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии .

Толчком к изменению восприятия аксиом послужили работы российского математика Николая Лобачевского о неевклидовой геометрией , впервые опубликованные в конце 1820-х годов. Ещё будучи студентом, он пытался доказать пятый постулат Евклида, но позднее отказался от этого. Лобачевский сделал вывод о том, что пятый постулат является лишь произвольным ограничением, которое можно заменить другим ограничением. Если бы пятый постулат Евклида был доказуем, то Лобачевский столкнулся бы с противоречиями. Однако, хотя новая версия пятого постулата и не была наглядно-очевидной, она полностью выполняла роль аксиомы, позволяя построить новую непротиворечивую систему геометрии.

Сперва идеи Лобачевского не были признаны (например, о них отрицательно отзывался академик Остроградский). Позднее, когда Лобачевский опубликовал работы на других языках, он был замечен Гауссом , который тоже имел некоторые наработки в области неевклидовой геометрии. Он косвенно высказал восхищение этой работой. Настоящее признание геометрия Лобачевского получила лишь через 10-12 лет после смерти автора, когда была доказана её непротиворечивость в случае непротиворечивости геометрии Евклида. Это привело к революции в математическом мире. Гильберт развернул масштабный проект по аксиоматизации всей математики для доказательства её непротиворечивости. Его планам не суждено было сбыться из-за последовавших теорем Гёделя о неполноте . Однако это послужило толчком к формализации математики. Например, появились аксиомы натуральных чисел и их арифметики , работы Кантора по созданию теории множеств . Это позволило математикам создавать строго истинные доказательства для теорем.

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории - аксиомы могут быть достаточно произвольными, они не обязаны быть очевидными. Единственным неизменным требованием к аксиоматическим системам является их внутренняя непротиворечивость. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом . В соответствии с

Русский язык богат иноязычной лексикой. И это не случайно. Появление слов из другого языка - свидетельство многообразных связей между странами и народами. Перенимая что-либо из другого языка, люди используют и слово, которым это обозначено.

Одни иноязычные слова употребляются только специалистами, другие прочно вошли в речь, став общеупотребительными. Одним из таких слов является «аксиома». Что такое аксиома. Каково значение и употребление данного слова?

Слово аксиома - греческое (axioma), в переводе с данного языка оно обозначает «значимое, принятое положение». Аксиомой называют какую-то мысль, положение, которое доказано, не требует дополнительных объяснений и используется как основа для других доказательств. Аксиома - это истина, не требующая доказательств.

Употребление слова «аксиома»

  • Первоначально слово было чисто научным термином. Учёные использовали его, чтобы утвердительно высказать мысль о чём-либо. Например: "Солнце движется вокруг солнца, это аксиома."
  • Аксиома - это истина, принимаемая на веру. Поэтому в основе любой религии лежат аксиомы, которые называют канонами религии. Например: "В основе религии лежит аксиома, что мир создан Богом."
  • С течением времени слово стало употребительным и в речи стало использоваться для убедительности доказательства чего-либо. Например: "Для успешной сдачи ЕГЭ выпускники должны серьёзно изучать теорию по предмету, это аксиома."

Материал о других терминах можно найти в разделе

Аксиома: определение из Википедии

Аксио́ма (др.-греч. ἀξίωμα - утверждение, положение), постула́т - исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать - то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.
Аксиоматиза́ция теории - явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), начиная с определённого уровня сложности, либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, ни истинность, ни ложность которого не может быть доказана средствами самой этой системы).
Примеры аксиом
Аксиома выбора
Аксиома параллельности Евклида
Аксиома Архимеда
Аксиома объёмности
Аксиома регулярности
Аксиома полной индукции
Аксиома Колмогорова
Аксиома булеана
Примеры систем аксиом
Аксиоматика теории множеств
Аксиоматика вещественных чисел
Аксиоматика Евклида
Аксиоматика Гильберта

Аксиома: определение из словаря Ожегова

АКСИ’ОМА, -ы, ж.
1. Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений (спец.).
2. Положение, принимаемое без доказательств (книжн.).
прил. ~тический, -ая, -ое.

Аксиома: определение из словаря Даля

АКСИОМА ж. греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина.

Аксиома: определение из словаря Ефремовой

ж.
1) Исходное положение какой-л. научной теории, принимаемое без доказательств.
2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая
доказательств.

Аксиома: определение из словаря Ушакова

аксиомы, ж. (греч. axioma). Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.).

На текущей странице дано определение слова аксиома простым языком. Надеемся, что после прочтения этого объяснения простыми словами, у вас больше не осталось вопросов, что такое аксиома.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.