Электрическое поле внутри бесконечного соленоида. Магнитное поле бесконечно длинного соленоида

Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рис. 50.1. Внутри соленоида направление этих линий образует с направлением тока в витках правовинтовую систему.

У реального соленоида имеется составляющая тока вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока к элементу длины соленоида ) изменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно

где - число витков соленоида, приходящееся на единицу его длины, I - сила тока в соленоиде.

В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле бесконечного плоского конденсатора однородно и ограничено объемом конденсатора).

В соответствии со сказанным представим соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током постоянной линейной плотности

Разобьем цилиндр на одинаковые круговые токи - «витки».

Из рис. 50.2 видно, что каждая пара витков, расположенных симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.

Из рис. 50.1 вытекает, что направления поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида направления полей не изменяются и в пределе при остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра током правовинтовую систему.

Из параллельности вектора В оси вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным. Чтобы доказать это, возьмем внутри соленоида воображаемый прямоугольный контур 1-2-3-4 (рис. 50.3; участок идет по оси соленоида). Обойдя контур по часовой стрелке, получим для циркуляции вектора В значение Контур не охватывает токов, поэтому циркуляция должна быть равна нулю (см. (49.7)).

Отсюда следует, что Располагая участок контура 2-3 на любом расстоянии от оси, мы каждый раз будем получать, что магнитная индукция на этом расстоянии равна индукции на оси соленоида. Таким образом, однородность поля внутри соленоида доказана.

Теперь обратимся к контуру 1-2-3-4. Мы изобразили векторы штриховой линией, поскольку, как выяснится в дальнейшем, поле вне бесконечного соленоида равно нулю. Пока же мы знаем лишь, что возможное направление поля вне соленоида противоположно направлению поля внутри соленоида. Контур не охватывает токов; поэтому циркуляция вектора В по этому контуру, равная а, должна быть равна нулю.

Отсюда вытекает, что . Расстояния от оси соленоида до участков 1-4 и 2-3 были взяты произвольно. Следовательно, значение В на любом расстоянии от оси будет вне соленоида одно и то же. Таким образом, оказывается доказанной и однородность поля вне соленоида.

Циркуляция по контуру, изображенному на рис. 50.4, равна (для обхода по часовой стрелке). Этот контур охватывает положительный ток величины . В соответствии с (49.7) должно выполняться равенство

или после сокращения на а и замены на (см. )

Из этого равенства следует, что поле как внутри, так и снаружи бесконечного соленоида является конечным.

Возьмем плоскость, перпендикулярную к оси соленоида (рис. 50.5). Вследствие замкнутости линий В магнитные потоки, через внутреннюю часть 5 этой плоскости и через внешнюю часть S должны быть одинаковыми.

Поскольку поля однородны и перпендикулярны к плоскости, каждый из потоков равен произведению соответствующего значения магнитной индукции и площади, пронизываемой потоком. Таким образом, получается соотношение

Левая часть этого равенства конечна, множитель S в правой части бесконечно большой. Отсюда следует, что

Итак, мы доказали, что вне бесконечно длинного соленоида магнитная индукция равна нулю. Внутри соленоида поле однородно.

Положив в (50.3) , придем к формуле для магнитной индукции внутри соленоида:

Произведение называется числом ампер-витков на метр. При витков на метр и силе тока в 1 А магнитная индукция внутри соленоида составляет .

В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад (см. формулу (47.4)). Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения (50.4): - число витков на единицу его длины). В этом случае

Контур, проходящий вне тороида, токов не охватывает, поэтому для него Таким образом, вне тороида магнитная индукция равна нулю.

Для тороида, радиус которого R значительно превосходит радиус витка, отношение для всех точек внутри тороида мало отличается от единицы и вместо (50.6) получается формула, совпадающая с формулой (50.4) для бесконечно длинного соленоида. В этом случае поле можно считать однородным в каждом из сечений тороида. В разных сечениях поле имеет различное направление, поэтому говорить об однородности поля в пределах его тороида можно только условно, имея в виду одинаковость модуля В.

У реального тороида имеется составляющая тока вдоль оси. Эта составляющая создает в дополнение к полю (50.6) поле, аналогичное полю кругового тока.

село Полтавское Аннотация: в статье представлен вывод формул индукции поля соленоида, созданного переменным током. Эту формулу можно использовать для углубленного изучения учащимися темы «Магнитное поле» и при решении задач. Ключевые слова: индукция, соленоид, магнитный поток, частота, индуктивность, индуцированное напряжение, мощность переменного тока. При переменном токе соленоид создаёт переменное магнитное поле. При этом, как известно, индуктивность соленоида определяется формулой [ 1, с.101 ] : L = , где (1) где U – индуцированное в соленоиде напряжение, n – частота переменного тока, I – сила переменного тока. С другой стороны индуктивность соленоида определяется формулой [ 2, с.253 ] : L = , (2) где Ф – магнитный поток соленоида. Приравнивая выражения (1) и (2), получим: Ф = . (3) При этом полный магнитный поток соленоида определяется и другой формулой [ 2, с.242 ] : Ф =В × S × N , (4) где В – индукция магнитного поля, N – число витков соленоида, S – площадь поперечного сечения магнитного поля. Приравняв выражения (3) и (4), получим В = . (5) Таким образом, индукция поля соленоида, созданного переменным током, прямо пропорциональна индуцированному в соленоиде напряжению. Как известно, магнитную индукцию поля, созданного постоянным током, текущим по виткам бесконечно длинного соленоида, внутри этого соленоида на его оси определяют по формуле [ 2, с.232 ] : В = (в вакууме), (6) где n = NI – число ампер-витков соленоида, l длина соленоида, µ о магнитная постоянная. Единица магнитной индукции (тесла) может быть установлена по формуле (6): [ В ] = × = , (7) С другой стороны единица магнитной индукции (тесла) может быть установлена по формуле (5): [ В ] = , (8) Перемножив выражения (7) и (8), получим: [ В ] 2 = × = = , (9) Тогда заменив единицы измерения в выражении (9) физическими величинами, получим формулу для индукции поля соленоида, созданного переменным током: В 2 = , отсюда В = , (10) где V - объём соленоида, Р – мощность переменного тока. Таким образом, индукция магнитного поля соленоида увеличивается при увеличении мощности переменного тока и уменьшается при увеличении объёма соленоида. Задача 1. Магнитная индукция поля внутри соленоида, состоящего из 2000 витков диаметра 2,8см, подключённого к источнику переменного тока с частотой 50Гц, равна 0,72мТл. Каково индуцированное в соленоиде напряжение?
Дано: СИ: Решение:
N = 2000 витков d = 2,8 см В = 0,72 мТл n = 50 Гц = 2,8 × 10 -2 м =0,72 × 10 -3 Тл Индукция поля соленоида определяется формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), найдём . (3)
U – ?
Подставляя исходные данные в выражение (3), получим: = 0,278 В.
Ответ: U = 0,278 В.
Задача 2. Индуцированное в соленоиде напряжение 0,2В. Магнитная индукция поля внутри соленоида, созданного переменным током с частотой 50 Гц, равна 0,52 мТл и диаметр магнитного поля равен 2,8см. Сколько витков содержит соленоид?
Дано: СИ: Решение:
U = 0,2 В d = 2,8 см В = 0,52 мТл n = 50 Гц = 2,8 × 10 -2 м =0,52 × 10 -3 Тл Индукция поля соленоида выражается формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), получим . (3)
N – ?
Подставляя исходные данные в выражение (3), получим: витков
Ответ: N = 2000 витков.
Задача 3. Магнитная индукция поля внутри соленоида с числом витков 400 и объёмом 6,15 × 10 -5 м 3 равна 0,72 мТл. Частота переменного тока 50Гц. Какова мощность переменного тока?
Дано: СИ: Решение:
B = 0,72 мТл n = 50 Гц µ о =1,256 × 10 -6 V = 6,15 × 10 -5 м 3 N = 400 витков =0,72 × 10 -3 Тл Индукция поля соленоида определяется по формуле (10): В = , отсюда Р = . Подставляя исходные данные, получим:
P – ?
» 3,2 мкВт. Ответ: Р » 3,2 мкВт.
Литература
1. Мякишев Г.Я., Буховцев Б.Б. Физика. Учебник для общеобразовательных учреждений. М.: Просвещение, 2007. 336 с. 2. Мустафаев Р.А., Кривцов В.Г. Физика. М.: Высшая школа, 1989. 496 с.

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи. Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида (рис. 4).

Нетрудно заметить сходство между магнитным полем соленоида (вне его) и магнитным полем постоянного стержневого магнита (рис. 5). Конец соленоида, из которого магнитные линии выходят, аналогичен северному полюсу магнита N , другой же конец соленоида, в который магнитные линии входят, аналогичен южному полюсу магнита S .

Полюсы соленоида с током на опыте легко определить с помощью магнитной стрелки. Зная же направление тока в витке, эти полюсы можно определить с помощью правила правого винта: вращаем головку правого винта по току в витке, тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса. Модуль магнитной индукции внутри однослойного соленоида вычисляется по формуле

B = μμ 0 NI l = μμ 0 nl,

где Ν — число витков в соленоиде, I — длина соленоида, n — число витков, приходящееся на единицу длины соленоида.

Намагничивание магнетика. Вектор намагниченности.
Если по проводнику течет ток, то вокруг проводника создаётся МП. Мы пока рассматривали провода, по которым текли токи, находящиеся в вакууме. Если провода, несущие ток, находятся в некоторой среде, то м.п. изменяется. Это объясняется тем, что под действием м.п. всякое вещество способно приобретать магнитный момент, или намагничиваться (вещество становится магнетиком ). Вещества, намагничивающиеся во внешнем м.п. против направления поля называются диамагнетиками . Вещества, слабо намагничивающиеся во внешнем м.п. по направлению поля называются парамагнетиками Намагниченное в-во создаёт м.п. - , это м.п. накладывается на м.п., обусловленное токами - . Тогда результирующее поле:
. (54.1)

Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. - усреднённое макроскопическое поле.


Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые микроскопические токи, обусловленные движением электронов в атомах и молекулах. Каждый такой ток обладает магнитным моментом и создаёт в окружающем пространстве м.п.

Если внешнее поле отсутствует, то молекулярные токи ориентированы беспорядочным образом, и обусловленное ими результирующее поле равно 0.

Намагниченностью называют векторную величину, равную магнитному моменту единицы объёма магнетика:

, (54.3)

где - физически бесконечно малый объём, взятый в окрестности рассматриваемой точки; - магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключённым в объёме (вспомним где, - поляризованность диэлектрика, - дипольный элемент ).

Намагниченность можно представить так:

Токи намагничивания I" . Намагничивание вещества связано с преимущественной ориентацией магнитных моментов отдельных молекул в одном направлении. Элементарные круговые токи, связанные с каждой молекулой, называются молекулярными. Молекулярные токи оказываются ориентированными, т.е. возникают токи намагничивания - .

Токи, текущие по проводам, вследствие движения в веществе носителей тока называют токами проводимости - .

Для электрона движущегося по круговой орбите по часовой стрелке; ток направлен против часовой стрелки и по правилу правого винта направлен вертикально вверх.

Циркуляция вектора намагниченности по произвольному замкнутому контуру равна алгебраической сумме токов намагничивания, охватываемых контуром Г.

Дифференциальная форма записи теоремы о циркуляции вектора .

Напряжённость магнитного поля (стандартное обозначение Н ) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M .

В СИ: где — магнитная постоянная .

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ 0 μ H в системе СИ (см. Магнитная проницаемость , также см. Магнитная восприимчивость ).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации , а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ 0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ , что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Виды магнетиков Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.

По мере усиления поля проявляется явление гистерезиса , когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость m н - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость m max - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения.

Остаточная индукция B ост - индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Н с - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

Магнитные моменты атомов

Магнитный момент Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной (), тогда электроны, протоны и нейтроны имеют спин равный ½ . В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину. Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле.

Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули , по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов. В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле.

Парамагнитные материалы состоят из атомов, магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля. Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия W м магнитного поля катушки с индуктивностью L, создаваемого током I, равна

W м = LI 2 / 2

Магнитное поле соленоида.

В уточнённой модели соленоида конечной длины учтём более реальный вид навивки тонкого провода на каркас соленоида. Основным токонесущим элементом конструкции будем считать винтовую линию. Рассмотрим соленоид с каркасом в форме цилиндрической поверхности, поперечное сечение которой является окружностью радиуса . Пусть продольная ось соленоида, как в предыдущем примере, совпадает с осью аппликат, координаты конечных сечений соленоида на оси аппликат имеют значения и , тонкий проводник намотан на каркас равномерно с шагом , то есть число витков на единицу длины соленоида составляет величину , по проводнику течёт ток .


Радиус-вектор точки наблюдения М по условию определен координатами:

Радиус-вектор расположения элемента контура с током опишем с помощью параметрического представления:

Легко видеть, что при возрастании величины параметра на величину радиус-вектор совершит полный оборот вокруг продольной оси соленоида и сместится на шаг навивки относительно исходного положения в пространстве. Будем считать, что электрический ток течет по проводнику в направлении, определяемом увеличением параметра . Проекции вектора на оси декартовой системы координат имеют вид:

(3)

В соответствии с дифференциальной формой закона Био-Савара-Лапласа (1) раздела 6.2 получаем проекции вектора магнитной индукции на оси декартовых координат для произвольной точки наблюдения:

(3)

, (4) . (5)

Как это ни удивительно, но уточнённая модель приводит к более простым зависимостям для проекций дифференциала вектора магнитной индукции: для расчёта величин проекций искомого вектора понадобится только однократное интегрирование по параметру . Пределы интегрирования определяются при этом условием, что тонкий проводник достиг крайнего сечения соленоида:

Выпишем квадратуры для проекций вектора магнитной индукции на оси декартовой системы координат для произвольной точки наблюдения:

, (7)

, (8)

. (9)

Численные значения проекций вектора магнитной индукции на оси декартовой системы координат легко вычисляются с помощью пакета символьных вычислений Maple, если заданы характеристики системы токов и координаты точки наблюдения. Ниже для определенности положим Проведем вычисления осевой составляющей индукции магнитного поля в сечении z=0 в зависимости от координаты x (радиальное направление!). Результаты расчета представлены на рис. 2. Здесь имеет смысл обратить внимание на небольшую неоднородность магнитного поля внутри соленоида (|x|<1) и наличие осевой составляющей магнитного поля вне соленоида (последнее характерно для соленоида конечных размеров).


В качестве второго примера вычислим распределение осевой составляющей магнитной индукции вдоль оси соленоида при сохранении параметров системы токов (рис. 3). Здесь можно отметить качественное совпадение результатов расчета с подобными результатами упрощенной модели соленоида (рис.2 предыдущего раздела).


На практике чаще всего параметр навивки - отношение шага навивки к радиусу поперечного сечения соленоида - не играет существенной роли, но в отдельных случаях подробный расчет может оказаться полезным.

6.2.6. Поверхностная модель земного магнетизма .

У.Гильберт 400 лет тому назад установил, что Земля является «большим магнитом»: поведение стрелки компаса на земной поверхности похоже на поведение намагниченной стрелки в окрестности экспериментального магнитного шара. Во времена У.Гильберта ещё не было ни теории электричества, ни теории магнитного поля. В современных условиях интересно попробовать смоделировать образование магнитного поля Земли, играющего такую важную роль как обеспечении радиационной безопасности жизни на Земле, так и в практической навигации.

Допустим, что по поверхности сферы радиуса течёт ток постоянной по величине погонной плотности в азимутальном направлении. Величина погонной плотности тока определяется выражением

Здесь - дифференциал сила тока, - элемент дуги на поверхности сферы, перпендикулярный направлению тока, - дифференциал угловой координаты сферической системы координат.



Элемент длины «контура», связанного с описанным дифференциалом силы тока определяется выражением

, (2)

координаты точки расположения элемента имеют вид

, (3)

а его проекции на координатные направления декартовой системы координат

Если координаты точки наблюдения М определены проекциями радиус-вектора {x,y,z}, то не представляет труда выписать последовательно выражения для разности радиус-векторов точки наблюдения и точки расположения элемента контура с током, для модуля этой разности, для векторного произведения и получить зависимости для дифференциалов проекций вектора магнитной индукции в точке наблюдения:

(5)

Для реализации практических вычислений в приведенные соотношения вместо «штрихованных» величин необходимо подставить их выражения с использованием координат сферической системы координат (4).

В соответствии с принципом суперпозиции необходимо просуммировать вклад всех элементов «контуров» с током в величину каждой из проекций вектора магнитной индукции в точке наблюдения. Если декартовы координаты точки наблюдения записать с помощью сферических координат, то проекции вектора магнитной индукции на оси декартовой системы координат в точке наблюдения описываются следующими квадратурами:

Здесь , и - угловые координаты точки наблюдения в сферической системе координат.

Располагая полученными соотношениями, можно вычислить направляющие косинусы вектора магнитной индукции относительно исходной декартовой системы координат

, (7)

и записать уравнения для расчёта координат силовой линии в дифференциальной форме:

( для фиксированной точки силовой линии).

Интересно проанализировать зависимости «горизонтальной» и «вертикальной» составляющих вектора магнитной индукции над поверхностью несущей ток сферы от «северной широты» точки наблюдения. Численные результаты при этом таковы. На экваторе () горизонтальная составляющая поля направлена по меридиану в сторону «южного полюса», вертикальная составляющая равна нулю. На широте 45 0 () имеют место и горизонтальная, и вертикальная составляющие магнитного поля, причем абсолютная величина горизонтальной составляющей меньше, чем аналогичная величина на экваторе, а направленность в сторону южного полюса сохранилась. На «северном полюсе» () горизонтальная составляющая магнитного поля обращается в нуль, а вертикальная достигает максимального значения. Полученный результат объясняет причину трудностей определения местоположения в окрестности «северного полюса» сферы: компас теряет способность указывать направление на полюс.

6.2.7. Объёмная модель земного магнетизма .

Рассмотрим более сложную модель распределения электрического тока в земном шаре. Теперь нам предстоит рассчитать магнитное поле, образованное электрическим током, текущим в объёме сферы в азимутальном направлении с известной объёмной плотностью тока.

Допустим, что по объёму сферического тела радиуса течёт ток с постоянной по величине объёмно плотностью в азимутальном направлении. Элемент сила тока с учётом его направления в пространстве при этом можно описать с помощью выражения

В этом выражении - элемент объёма, в котором течёт ток, - координаты этого элемента объёма в сферической системе координат. Допустим, что координаты точки наблюдения имеют вид: { }. В соответствующей декартовой системе координат имеем

Найдем индукцию магнитного поля внутри соленоида – катушки, диаметр которой значительно больше ее длины l . Будем считать поле внутри катушки однородным, а вдали от катушки – пренебрежимо малым. Выберем контур обхода L в видепрямоугольника 1-2-3-4 (см. рис.). Найдем сначала циркуляцию вектора В. Запишем интеграл циркуляции в выражение . Разобьем интеграл по контуру L на четыре интеграла: 1-2, 2-3, 3-4, 4-1.

Контур 12341 охватывает N витков катушки в каждом из которых ток I . Таким образом, из теоремы следует, что B×l = m o NI . Отсюда найдем В .

Тема 9. Вопрос 8.

Поток вектора магнитной индукции (магнитный поток)

Представим себе некоторую замкнутую поверхность в магнитном поле. Линии магнитной индукции всегда замкнуты, они не имеют начала и конца, Поэтому количество входящих в поверхность линий будет равно количеству выходящих из нее линий. Магнитный поток пропорционален количеству линий индукции, следовательно, поток будет равен нулю. Равенство нулю магнитного потока через любую замкнутую поверхность свидетельствует о том, что магнитное поле не имеет источников этого поля (магнитных зарядов не существует). Таким образом, магнитное поле является вихревым , т.е. не имеющим источников его образования.

Тема 10. Вопрос 1.

Тема 10. Вопрос 2.

Магнитные силы.

Используя выражение для силы Ампера, найдем силу взаимодействия двух бесконечно длинных прямых проводников с токами I 1 и I 2 .

Мы рассматривали действие проводника с током I 1 на проводник с током I 2 . В соответствии с III законом Ньютона второй проводник действует на первый с такой же силой.

Тема 10. Вопрос 3.

Получение выражения для вращающего момента, действующего на контур с током в магнитном поле.

Учитывая векторный характер этих величин, можно записать общее выражение:

Тема 10. Вопрос 4.

Контур с током в магнитном поле.

Однородное поле.

Таким образом, во внешнемоднородном магнитном поле под действием магнитных сил:

1)свободно ориентированный контур с током будет поворачиваться до тех пор, пока плоскость контура не окажется перпендикулярной линиям индукции, т.е. пока магнитный момент не станет параллельным линиям индукции и

2)на контур будут действовать растягивающие силы.

Неоднородное поле.

В неоднородном магнитном поле кроме указанных выше сил, которые поворачивают и растягивают контур, появляется составляющая сил, которая стремится переместить контур. Если контур оказался ориентированным своим магнитным моментом по полю (как на рисунке), то составляющая силы F 1 будет растягивать контур, а составляющая F 2 будет втягивать контур в область более сильного поля. Если контур окажется в поле таким образом, что его магнитный момент будет направлен против поля, это положение контура будет неустойчивым. Контур развернется по полю, и будет втягиваться в область более сильного поля.

Приведем выражение для силы, действующей на контур с током в неоднородном магнитном поле, индукция которого изменяется только по одной координате х .

Тема 10. Вопрос 5.