Приближенное значение величины и погрешности приближений. Методические указания к самостоятельной работе обучающихся. Точные и приближенные значения величин

Для современных задач необходимо использовать сложный математический аппарат и развитые методы их решения. При этом часто приходится встречаться с задачами, для которых аналитическое решение, т.е. решение в виде аналитического выражения, связывающего исходные данные с требуемыми результатами, либо вообще невозможно, либо выражается такими громоздкими формулами, что использование их для практических целей нецелесообразно.

В этом случае применяются численные методы решения, которые позволяют достаточно просто получить численное решение поставленной задачи. Численные методы реализуются с помощью вычислительных алгоритмов.

Все многообразие численных методов подразделяют на две группы:

Точные – предполагают, что если вычисления ведутся точно, то с помощью конечного числа арифметических и логических операций могут быть получены точные значения искомых величин.

Приближенные– которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение задачи лишь с заданной точностью.

1. величина и число. Величиной называется то, что в определенных единицах может быть выражено числом.

Когда говорят о значении величины, то имеют в виду некоторое число, называемое числовым значением величины, и единицу ее измерения.

Таким образом, величиной называют характеристику свойства объекта или явления, которая является общей для множества объектов, но имеет индивидуальные значения для каждого из них.

Величины могут быть постоянными и переменными. Если при некоторых условиях величина принимает только одно значение и не может его изменять, то она называется постоянной, если же она может принимать различные значения, то – переменной. Так, ускорение свободного падения тела в данном месте земной поверхности есть величина постоянная, принимающая единственное числовое значение g=9,81… м/с2, в то время как путь s, проходимый материальной точкой при ее движении, – величина переменная.

2. приближенные значения чисел. Значение величины, в истинности которого мы не сомневаемся, называется точным. Часто, однако, отыскивая значение какой-либо величины, получают лишь ее приближенное значение. В практике вычислений чаще всего приходится иметь дело с приближенными значениями чисел. Так, p – число точное, но вследствие его иррациональности можно пользоваться лишь его приближенным значением.

Во многих задачах из-за сложности, а часто и невозможности получения точных решений применяются приближенные методы решения, к ним относятся: приближенное решение уравнений, интерполирование функций, приближенное вычисление интегралов и др.

Главным требованием к приближенным расчетам является соблюдение заданной точности промежуточных вычислений и конечного результата. При этом в одинаковой степени недопустимы как увеличение погрешностей (ошибок) путем неоправданного загрубления расчетов, так и удержание избыточных цифр, не соответствующих фактической точности.


Существуют два класса ошибок, получающихся при вычислениях и округлении чисел – абсолютные и относительные.

1. Абсолютная погрешность (ошибка).

Введем обозначения:

Пусть А – точное значение некоторой величины, Запись а » А будем читать "а приближенно равно А". Иногда будем писать А = а, имея в виду, что речь идет о приближенном равенстве.

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем: D а = ½а А ½<= D а пред . . и тогда

а – D а пред . ≤ А а + D а пред . . (4)

Значит, а – D а пред . будет приближенным значением А с недостатком, а а + D а пред приближенным значением А с избытком. Пользуются также краткой записью: А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбратьвозможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.

Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред.

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред.

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

Сахалинской области

«Профессиональное училище № 13»

Методические указания к самостоятельной работе обучающихся

Александровск-Сахалинский

Приближенные значения величин и погрешности приближений: Метод указ. / Сост.

ГБОУ НПО «Профессиональное училище №13», - Александровск-Сахалинский, 2012

Методические указания предназначены для обучающихся всех профессий, изучающих курс математики

Председатель МК

Приближенное значение величины и погрешности приближений.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3/2 можно рассматривать как приближенное значение числа - 8/5 с точностью до 1/5 , поскольку

< а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3/2 есть приближенное значение числа - 8/5 c избытком, так как - 3/2 > - 8/5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.

Погрешности

Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется предельной абсолютной погрешностью приближенной величины a.

Отношение абсолютной погрешности к модулю приближенного значения называется относительной погрешностью приближенного значения. Относительную погрешность обычно выражают в процентах.

Пример. | 1 - 20 | < | 1 | + | -20|.

Действительно,

|1 - 20| = |-19| = 19,

|1| + | - 20| = 1 + 20 = 21,

Упражнения для самостоятельной работы.

1. С какой точностью можно измерять длины с помощью обыкновенной линейки?

2. С какой точностью показывают время часы?

3. Знаете ли вы, с какой точностью можно измерять веc тела на современных электрических весах?

4. а) В каких пределах заключено число а , если его приближенное значение с точностью до 0,01 равно 0,99?

б) В каких пределах заключено число а , если его приближенное значение с недостатком с точностью до 0,01 равно 0,99?

в) В каких пределах заключено число а , если его приближенное значение с избытком с точностью до 0,01 равно 0,99?

5 . Какое приближение числа π ≈ 3,1415 лучше: 3,1 или 3,2?

6. Можно ли приближенное значение некоторого числа с точностью до 0,01 считать приближенным значением того же числа с точностью до 0,1? А наоборот?

7 . На числовой прямой задано положение точки, соответствующей числу а . Указать на этой прямой:

а) положение всех точек, которые соответствуют приближенным значениям числа а с недостатком с точностью до 0,1;

б) положение всех точек, которые соответствуют приближенным значениям числа а с избытком с точностью до 0,1;

в) положение всех точек, которые соответствуют приближенным значениям числа а с точностью до 0,1.

8. В каком случае абсолютная величина суммы двух чисел:

а) меньше суммы абсолютных величин этих чисел;

б) равна сумме абсолютных величин этих чисел?

9. Доказать неравенства:

a) |a - b | < |a | + |b |; б)* |а - b | > ||а | - | b ||.

Когда в этих формулах имеет место знак равенства?

Литература:

1. Башмаков (базовый уровень) 10-11 кл. – М.,2012

2. Башмаков, 10 кл. Сборник задач. - М: Издательский центр «Академия», 2008

3. , Мордкович:Справочные материалы: Книга для учашихся.-2-е изд.-М.: Просвещение, 1990

4. Энциклопедический словарь юного математика/Сост. .-М.: Педагогика,1989

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3 / 2 можно рассматривать как приближенное значение числа - 8 / 5 с точностью до 1 / 5 , поскольку

Если а" < а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3 / 2 есть приближенное значение числа - 8 / 5 c избытком, так как - 3 / 2 > - 8 / 5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Конец работы -

Эта тема принадлежит разделу:

Методическое пособие для выполнения практических работ по дисциплине математика часть 1

Методическое пособие для выполнения практических работ по дисциплине.. для профессий начального профессионального образования и специальностей среднего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Методическое пособие составлено в соответствии с рабочей программой по дисциплине «Математика», разработанной на основе Федерального государственного образовательного стандарта третьего поколения п

Пропорции. Проценты.
Цели урока: 1) Обобщить теоретические знания по теме «Проценты и пропорции». 2) Рассмотреть виды и алгоритмы решений задач на проценты, составление пропорций решить

Пропорция.
Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с,

ПРАКТИЧЕСКАЯ РАБОТА № 2
«Уравнения и неравенства» Цели урока: 1) Обобщить теоретические знания по теме: «Уравнения и неравенства». 2) Рассмотреть алгоритмы решений заданий теме «Ур

Уравнения, содержащие переменную под знаком модуля.
Модуль числа а определяется следующим образом: П р и м е р: Решить уравнение. Р е ш е н и е. Если, то и данное уравнение примет вид. Можно записать так:

Уравнения с переменной в знаменателе.
Рассмотрим уравнения вида. (1) Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

Рациональные уравнения.
Уравнение f(x) = g(x) называется рациональным, если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым;

Решение уравнений методом введения новой переменной.
Суть метода поясним на примере. П р и м е р: Решить уравнение. Р е ш е н и е. Положим, получим уравнение, откуда находим. Задача сводится к решению совокупности уравнений

Иррациональные уравнения.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод воз

Метод интервалов
Пример:Решить неравенство. Решение. ОДЗ: откуда имеем x [-1; 5) (5; +) Решим уравнение Числитель дроби равен 0 при x = -1, это и есть корень уравнения.

Упражнения для самостоятельной работы.
3х + (20 – х) = 35,2, (х – 3) - х = 7 – 5х. (х + 2) - 11(х + 2) = 12. х = х, 3у = 96, х + х + х + 1 = 0, – 5,5n(n – 1)(n + 2,5)(n -

ПРАКТИЧЕСКАЯ РАБОТА № 4
«Функции, их свойства и графики» Цели урока: 1) Обобщить теоретические знания по теме: «Функции, свойства и графики». 2) Рассмотреть алгори

Будет грубой ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Графики обратных тригонометрических функций
Построим график арксинуса Построим график арккосинуса Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основн

Математические портреты пословиц
Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека н


Построить графики функций а)у=х2 ,у=х2+1 ,у=(х-2)2 б)у=1/х, у=1/(x-2),y=1/x -2 на одной координатной плоскости. Построить графики функций c

Натуральные числа

Свойства сложения и умножения натуральных чисел
a + b = b + a - переместительное свойство сложения (a + b) + c = a + (b +c) - сочетательное свойство сложения ab = ba

Признаки делимости натуральных чисел
Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делитс

Шкалы и координаты
Длины отрезков измеряют линейкой. На линейке (рис. 19) нанесены штрихи. Они разбивают линейку на равные части. Эти части называют делениями. На рисунке 19 длина ка

Рациональные числа
Цели урока: 1) Обобщить теоретические знания по теме «Натуральные числа». 2) Рассмотреть виды и алгоритмы решений задач связанных с понятием натурального числа.

Десятичные дроби. Перевод десятичной дроби в обыкновенную дробь.
Десятичная дробь - это другая форма записи дроби со знаменателем Например, . Если в разложении знаменателя дроби на простые множители содержатся только 2 и 5, то эту дробь можно записать в виде дес

Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби, где - целое число, а - натуральное число. Возведём предполагаемое равенство в квадрат: . Отсюда

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.
ПОГРЕШНОСТИ Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется

Базовый уровень
Пример.Вычислить. Решение: . Ответ: 2,5. Пример. Вычислить. Решение: Ответ: 15.


Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип: явно указано то преобразование, которое необходимо выполнить. Например. 1

Задачи для самостоятельного решения
Отметьте номер правильного ответа: Результат упрощения выражения имеет вид 1. ; 4. ; 2. ; 5. . 3. ; Значение выражения равно 1) 4; 2) ; 3)

Задачи для самостоятельного решения
Найдите значение выражения 1. .2. . 2. . 3. . 4. . 5. .7. . 6.. при. 7.. при. 8.. при. 9. при. 1

Задачи для самостоятельного решения
Вопрос 1. Найдите логарифм 25 по основанию 5. Вопрос 2. Найдите логарифм по основанию 5. Вопрос 3.

ПРАКТИЧЕСКАЯ РАБОТА № 17
«Аксиомы стереометрии и следствия из них» Цель урока: 1) Обобщить теоретические знания

Сахалинской области

«Профессиональное училище № 13»

Методические указания к самостоятельной работе обучающихся

Александровск-Сахалинский

Приближенные значения величин и погрешности приближений: Метод указ. / Сост.

ГБОУ НПО «Профессиональное училище №13», - Александровск-Сахалинский, 2012

Методические указания предназначены для обучающихся всех профессий, изучающих курс математики

Председатель МК

Приближенное значение величины и погрешности приближений.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3/2 можно рассматривать как приближенное значение числа - 8/5 с точностью до 1/5 , поскольку

< а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3/2 есть приближенное значение числа - 8/5 c избытком, так как - 3/2 > - 8/5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.

Погрешности

Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется предельной абсолютной погрешностью приближенной величины a.

Отношение абсолютной погрешности к модулю приближенного значения называется относительной погрешностью приближенного значения. Относительную погрешность обычно выражают в процентах.

Пример. | 1 - 20 | < | 1 | + | -20|.

Действительно,

|1 - 20| = |-19| = 19,

|1| + | - 20| = 1 + 20 = 21,

Упражнения для самостоятельной работы.

1. С какой точностью можно измерять длины с помощью обыкновенной линейки?

2. С какой точностью показывают время часы?

3. Знаете ли вы, с какой точностью можно измерять веc тела на современных электрических весах?

4. а) В каких пределах заключено число а , если его приближенное значение с точностью до 0,01 равно 0,99?

б) В каких пределах заключено число а , если его приближенное значение с недостатком с точностью до 0,01 равно 0,99?

в) В каких пределах заключено число а , если его приближенное значение с избытком с точностью до 0,01 равно 0,99?

5 . Какое приближение числа π ≈ 3,1415 лучше: 3,1 или 3,2?

6. Можно ли приближенное значение некоторого числа с точностью до 0,01 считать приближенным значением того же числа с точностью до 0,1? А наоборот?

7 . На числовой прямой задано положение точки, соответствующей числу а . Указать на этой прямой:

а) положение всех точек, которые соответствуют приближенным значениям числа а с недостатком с точностью до 0,1;

б) положение всех точек, которые соответствуют приближенным значениям числа а с избытком с точностью до 0,1;

в) положение всех точек, которые соответствуют приближенным значениям числа а с точностью до 0,1.

8. В каком случае абсолютная величина суммы двух чисел:

а) меньше суммы абсолютных величин этих чисел;

б) равна сумме абсолютных величин этих чисел?

9. Доказать неравенства:

a) |a - b | < |a | + |b |; б)* |а - b | > ||а | - | b ||.

Когда в этих формулах имеет место знак равенства?

Литература:

1. Башмаков (базовый уровень) 10-11 кл. – М.,2012

2. Башмаков, 10 кл. Сборник задач. - М: Издательский центр «Академия», 2008

3. , Мордкович:Справочные материалы: Книга для учашихся.-2-е изд.-М.: Просвещение, 1990

4. Энциклопедический словарь юного математика/Сост. .-М.: Педагогика,1989

Сейчас, когда человек владеет мощным арсеналом компьютерной техники (различные калькуляторы, компьютеры и т.п.), соблюдение правил приближенных вычислений особенно важно, чтобы не исказить достоверность результата.

Выполняя любые вычисления, следует помнить о точности результата, которую можно или нужно (если устанавливают) получить. Так, недопустимо производить вычисления с большей точностью, чем это задано данным физической задачи или требуется условиями експерименту1. Например, выполняя математические действия с числовыми значениями физических величин, которые имеют две достоверные (значимые) цифры, нельзя записывать результат расчетов с точностью, что выходит за пределы двух достоверных цифр, даже если в итоге имеем их больше.

Значение физических величин надо записывать, отмечая лишь знаки достоверного результата. Например, если числовое значение величины 39 600 имеет три достоверных знаки (абсолютная погрешность результата равен 100), то результат надо записать в виде 3,96 104 или 0,396 105. В подсчете достоверных цифр не учитываются нули слева от числа.

Чтобы результат вычислений был корректным, его надо округлить, оставляя лишь истинное значение величины. Если числовое значение величины содержит лишние (недостоверные) цифры, которые преобладают заданную точность, то последняя цифра, хранящейся увеличивается на 1 при условии, что избыток (лишние цифры) равна или больше половины значения следующего разряда числа.

В разных числовых значениях нуль может быть как достоверной, так и недостоверной цифрой. Так, в примере б) он является недостоверной цифрой, а в г) - достоверной, значимой. В физике, если хотят подчеркнуть достоверность разряда числового значения физической величины, в стандартном ее выражении указывают «0». Например, запись значения массы 2,10 10-3 кг указывает на три достоверные цифры результата и соответствующую точность измерения, а значение 2,1 10-3 кг только две достоверные цифры.

Следует помнить, что результат действий с числовыми значениями физических величин является приближенным результатом, который учитывает точность расчета или погрешность измерений. Поэтому при приближенных вычислений следует руководствоваться следующими правилами подсчета достоверных цифр:

1. При выполнении арифметических действий с числовыми значениями физических величин в их результате следует брать столько достоверных знаков, сколько их имеет числовое значение с наименьшим количеством достоверных знаков.

2. Во всех промежуточных подсчетах следует сохранять на одну цифру больше, чем их имеет числовое значение с наименьшим количеством достоверных знаков. В конечном итоге эта «дополнительная» цифра отбрасывается путем округления.

3. Если отдельные данные имеют более достоверных знаков, чем другие, их значения предварительно следует округлить (можно сохранить одну «избыточную» цифру) и после этого выполнять действия.