Цвет, управление цветом, цветовые расчеты и измерения. Свет и цвет: основы основ

Свет и цвет. Природа цвета и его физические основы

Ежедневно человек сталкивается с множеством факторов внешней среды, воздействующих на него. Одним из таких факторов, оказывающих сильное влияние, является цвет. Известно, что цвет может быть виден человеком лишь при свете, в темноте мы не видим никаких цветов. Световые волны воспринимаются человеческим глазом. Мы видим предметы потому, что они отражают свет и потому, что наш глаз способен воспринять эти отраженные лучи. Лучи солнечного или электрического света – световые волны в зрительном аппарате человека преобразуется в ощущение. Это преобразование происходит в три этапа: физический , физиологический , психологический .

Физический – излучение света; физиологический – воздействие цвета на глаз и преобразование его в нервные импульсы, идущие в мозг человека; психологический – восприятие цвета.

Физический этап формирования зрительного восприятия заключается в преобразовании энергии видимого излучения различными средами в энергию измененного потока излучения и изучается физикой.

Видимое излучение называют светом. Свет – видимая часть электромагнитного спектра, это частный случай электромагнитного излучения . Физики шутят, что свет – самое темное место в физике. Свет имеет двойственную природу: при распространении он ведет себя как волна, а при поглощении и излучении – как поток частиц. Итак, свет принадлежит пространству, а цвет – предмету. Цвет – это ощущение, которое возникает в органе зрения человека при воздействии на него света .

В цветоведении принято рассматривать свет как электромагнитное волновое движение. В области видимого излучения каждой длине волны соответствует ощущение какого-либо цвета.

В спектре белого солнечного света различают семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Глаз среднего наблюдателя способен различить в спектре белого света около 120 цветов. Для удобства обозначения цветов принято деление спектра оптического излучения на три зоны:

Длинноволновую – от красного до оранжевого;

Средневолновую – от оранжевого до голубого;

Коротковолновую – от голубого до фиолетового.

Это деление оправдывается качественными различиями между цветами, входящими в различные области спектра. Каждый цвет спектра характеризуется своей длиной волны (таблица 1), т.е. он может быть точно задан длиной волны или частотой колебаний. Самые короткие волны – фиолетовые, самые длинные – красные. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн зрительным аппаратом человека.

Глаз способен воспринимать волны длиной от 400 до 700 нанометров (нанометр – одна миллиардная метра, единица измерения длины световых волн).

Таблица 1. Соответствие диапазонов длин волн ощущениям цветов

С двух сторон от видимой части спектра находятся ультрафиолетовые и инфракрасные области, которые не воспринимаются человеческим глазом, но могут улавливаться специальным оборудованием (таблица 2). С помощью инфракрасного излучения работают камеры ночного видения, а ультрафиолетовое излучение хоть и невидимо человеческому глазу, но может нанести зрению значительный вред. Скорость распространения всех видов волн электромагнитных колебаний равна приближенно 300 000 км/с.

Таблица 2. Разновидности электромагнитных излучений

Световые волны попадают на сетчатку глаза, где воспринимаются светочувствительными рецепторами, передающими сигналы в мозг, и уже там складывается ощущение цвета. Это ощущение зависит от длины волн и интенсивности излучения. А все предметы, которые нас окружают, могут или излучать свет (цвет), или отражать или пропускать падающий на них свет частично или полностью.

Например, если трава зеленая, это значит, что из всего диапазона волн она отражает в основном волны зеленой части спектра, а остальные поглощает. Когда мы говорим «эта чашка красная», то мы на самом деле имеем в виду, что она поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении . Таким образом, красная чашка отражает в основном волны красной части спектра. Если мы говорим, что какой-либо объект имеет какой-либо цвет, это значит, что на самом деле этот объект (или его поверхность) имеет свойство отражать волны определенной длины, и отраженный свет воспринимается как цвет предмета. Если предмет полностью задерживает падающий свет, он будет казаться нам черным, а если отражает все падающие лучи – белым. Правда, последнее утверждение будет верным лишь в том случае, если свет будет белым, неокрашенным. Если же свет приобретает какой-либо оттенок, то и отражающая поверхность будет иметь такой же оттенок. Это можно наблюдать на закате солнца, которое окрашивает все вокруг багряными тонами, или в сумеречный зимний вечер, когда снег кажется синим. Эксперимент с использованием окрашенного цвета довольно любопытно описывает И. Иттен в своей книге «Искусство цвета» .

Каким образом зрительный аппарат распознает эти волны, до настоящего времени еще полностью не известно. Мы знаем только то, что различные цвета возникают в результате количественных различий светочувствительности.

В данном контексте логично было бы напомнить еще одно определение цвета. Цвет – это различное число колебаний световых волн данного источника света, воспринимаемых нашим глазом в виде определенных ощущений, которые мы называем цветовыми .

Ощущение цвета создается при условии преобладания в цвете волн определенной длины. Но если интенсивность всех волн одинаковая, то цвет воспринимается как белый или серый. Не излучающий волн предмет воспринимается как черный. В связи с этим все зрительные ощущения цвета разделяются на две группы: хроматические и ахроматические.

Ахроматическими называют белый, черный цвета и все серые цвета . В их спектр входят лучи всех длин волн в равной степени. Если же возникает преобладание какой-то одной длины волны, то такой цвет становится хроматическим. К хроматическим цветам относятся все спектральные и другие природные цвета .



2.2. Основные характеристики цвета

Для однозначности определения (спецификации) цвета часто используется система психофизических характеристик. К ним относятся следующие характеристики:

Цветовой тон,

Светлота;

Насыщенность.

Цветовой тон – качество цвета, позволяющее дать ему название (например, красный, синий и т.д.) . Интересно, что нетренированный глаз при ярком дневном освещении различает до 180 цветовых тонов, а развитый человеческий глаз способен различать около 360 оттенков цвета. Ахроматические цвета не имеют цветового тона.

Светлота – это степень отличия данного цвета от черного . В спектральных цветах самым светлым является желтый цвет, самым темным – фиолетовый. В пределах одного цветового тона степень светлоты зависит от применения белого. Светлота – степень, присущая как хроматическим, так и ахроматическим цветам . Оттенки одного цвета различной светлоты называют монохромными.

Насыщенность – это степень отличия хроматического цвета от равного по светлоте ахроматического. Так, если чистый спектральный цвет, например красный, принять за 100%, то при смешении 70% красного и 30% белого насыщенность полученной смеси будет равна 70%. От насыщенности зависит степень восприятия цвета.

Наиболее насыщены цвета спектра, причем самый насыщенный из них фиолетовый, а менее всего насыщен желтый.

Ахроматические цвета можно назвать цветами нулевой насыщенности.

Натренированный человеческий глаз может различить около 25 оттенков цвета по насыщенности, от 65 оттенков – по светлоте при высокой освещенности и до 20 – при пониженной.

Собственные и несобственные качества цвета. Цвет, тон, светлота, насыщенность называют собственнымикачествами цвета. Собственные качества – это те качества, которые ему объективно присущи.

Несобственные качества цветам объективно не присущи, а возникают вследствие эмоциональной реакции при их восприятии . Мы говорим, что цвета бывают теплые и холодные, легкие и тяжелые, глухие и звонкие, выступающие и отступающие, мягкие и жесткие. Эти характеристики важны для художника, так как посредством их усиливается выразительность и эмоциональный настрой произведения .

Изменение объемности изображения зависит от насыщенности цвета (рис. 1) Активно насыщенные цвета делают изображение более объемным, нежели цвета слабо насыщенные или затемненные. Разбел и затемнение не только снижают активность цвета, но и ослабляют цветовые контрасты между пятнами. Монохромное изображение, так же как и насыщенное, способно активно передать объем, приближенный к ахроматическому варианту .

Рис. 1. Изменение объемности изображения в зависимости от насыщенности цвета:

а – оптимально насыщенные цвета; б – слабонасыщенные (высветленные) цвета; в – ахроматический вариант; г – слабонасыщенные (затемненные) цвета; д – монохромное изображение объекта, рельефность, объем и эмоциональный настрой композиции. При использовании слабонасыщенных цветов (высветленных или затемненных) объем будет чувствоваться меньше, чем при использовании насыщенных.

В природе не существует цветов как таковых. Каждый оттенок, который мы видим, задает та или иная длина волны. образуется под воздействием самых длинных волн и представляет собой одну из двух граней видимого спектра.

О природе цвета

Возникновение того или иного цвета можно объяснить благодаря законам физики. Все цвета и оттенки являются результатами обработки мозгом информации, поступающей через глаза в форме световых волн различной длины. При отсутствии волн люди видят а при единовременном воздействии всего спектра - белый.

Цвета предметов определяются способностью их поверхностей поглощать волны определенной длины и отталкивать все остальные. Также имеет значение освещенность: чем ярче свет, тем интенсивнее отражаются волны, и тем ярче выглядит объект.

Люди способны различать более ста тысяч цветов. Любимые многими алые, бордовые и вишневые оттенки образуются самыми длинными волнами. Однако чтобы человеческий глаз мог увидеть красный цвет, не должна превышать 700 нанометров. За этим порогом начинается невидимый для людей инфракрасный спектр. Противоположная граница, отделяющая фиолетовые оттенки от ультрафиолетового спектра, находится на уровне около 400 нм.

Цветовой спектр

Спектр цветов как некоторая их совокупность, распределенная в порядке возрастания длины волны, был открыт Ньютоном в ходе проведения его знаменитых экспериментов с призмой. Именно он выделил 7 явно различимых цветов, а среди них - 3 основных. Красный цвет относится и к различимым, и к основным. Все оттенки, которые различают люди - это видимая область обширного электромагнитного спектра. Таким образом, цвет - это электромагнитная волна определенной длины, не короче 400, но не длиннее 700 нм.

Ньютон заметил, что пучки света разных цветов имели разные степени преломления. Если выражаться более корректно, то стекло преломляло их по-разному. Максимальной скорости прохождения лучей через вещество и, как следствие, наименьшей преломляемости способствовала наибольшая длина волны. Красный цвет является видимым отображением наименее преломляемых лучей.

Волны, образующие красный цвет

Электромагнитная волна характеризуется такими параметрами, как длина, частота и Под длиной волны (λ) принято понимать наименьшее расстояние между ее точками, которые колеблются в одинаковых фазах. Основные единицы измерения длины волн:

  • микрон (1/1000000 метра);
  • миллимикрон, или нанометр (1/1000 микрона);
  • ангстрем (1/10 миллимикрона).

Максимально возможная длина волны красного цвета равна 780 ммк (7800 ангстрем) при прохождении через вакуум. Минимальная длина волны этого спектра - 625 ммк (6250 ангстрем).

Другой существенный показатель - частота колебаний. Она взаимосвязана с длиной, поэтому волна может быть задана любой из этих величин. Частота волн красного цвета находится в пределах от 400 до 480 Гц. Энергия фотонов при этом образует диапазон от 1,68 до 1,98 эВ.

Температура красного цвета

Оттенки, которые человек подсознательно воспринимает как теплые либо холодные, с научной точки зрения, как правило, имеют противоположный температурный режим. Цвета, ассоциируемые с солнечным светом - красный, оранжевый, желтый - принято рассматривать как теплые, а противоположные им - как холодные.

Однако теория излучения доказывает обратное: у красных оттенков намного ниже, чем у синих. На деле это легко подтвердить: горячие молодые звезды имеют а угасающие - красный; металл при раскаливании сначала становится красным, затем желтым, а после - белым.

Согласно закону Вина, существует обратная взаимосвязь между степенью нагрева волны и ее длиной. Чем сильнее нагревается объект, тем большая мощность приходится на излучения из области коротких волн, и наоборот. Остается лишь вспомнить, где в видимом спектре существует наибольшая длина волны: красный цвет занимает позицию, контрастную синим тонам, и является наименее теплым.

Оттенки красного

В зависимости от конкретного значения, которое имеет длина волны, красный цвет приобретает различные оттенки: алый, малиновый, бордовый, кирпичный, вишневый и т. д.

Оттенок характеризуется 4 параметрами. Это такие, как:

  1. Тон - место, которое цвет занимает в спектре среди 7 видимых цветов. Длина электромагнитной волны задает именно тон.
  2. Яркость - определяется силой излучения энергии определенного цветового тона. Предельное снижение яркости приводит к тому, что человек увидит черный цвет. При постепенном повышении яркости появится за ним - бордовый, после - алый, а при максимальном повышении энергии - ярко-красный.
  3. Светлость - характеризует близость оттенка к белому. Белый цвет - это результат смешивания волн различных спектров. При последовательном наращивании этого эффекта красный цвет превратится в малиновый, после - в розовый, затем - в светло-розовый и, наконец, в белый.
  4. Насыщенность - определяет удаленность цвета от серого. Серый цвет по своей природе - это три основных цвета, смешанные в разных количествах при понижении яркости излучения света до 50%.

Введение………………………………………………………………………… 1. Понятие цветовой температуры…………………………………………….. 1.1. Таблица числовых значений цветовой температуры распространённых источников света……………………………………………………………….. 1.2. Диаграмма цветности XYZ………………………………………………….

1.3.Солнечный свет и Индекс Цветопередачи (CRI - colour rendering index)..

2. Методы измерения цветовой температуры………………………………...... Источники информации………………………………………………………….

Введение.

По нашим психологическим ощущениям цвета бывают тёплыми и горячими, бывают холодными и очень холодными. На самом деле все цвета горячие, очень горячие, ведь у каждого цвета есть своя температура и она очень высокая. Любой предмет в окружающем нас мире имеет температуру, выше абсолютного нуля, а значит, испускает тепловое излучение. Даже лед, у которого отрицательная температура, является источником теплового излучения. В это трудно поверить, но это так. В природе температура -89°С не самая низкая, можно достичь ещё более низких температур, правда, пока что, в лабораторных условиях. Самая низкая температура, которая на данный момент теоретически возможна в пределах нашей вселенной – это температура абсолютного нуля и она равна -273,15°С. При такой температуре прекращается движение молекул вещества и тела полностью перестают испускать любое излучение (тепловое, ультрафиолетовое, а уж тем более видимое). Полная тьма, нет ни жизни, ни тепла. Возможно, кто-нибудь из вас знает, что цветовая температура измеряется в Кельвинах. Кто покупал себе домой энергосберегающие лампочки, тот видел надпись на упаковке: 2700К или 3500К или 4500К. Это как раз и есть цветовая температура светового излучения лампочки. Но почему измеряется в Кельвинах, и что означает Кельвин? Эта единица измерения была предложена в 1848г. Ульямом Томсоном (он же лорд Кельвин) и официально утверждена в Международной Системе единиц. В физике и науках, имеющих непосредственное отношение к физике, термодинамическую температуру измеряют как раз Кельвинах. Начало отчета температурной шкалы начинается с точки 0Кельвин, что означат - 273,15 градуса Цельсия. То есть 0К – это и есть абсолютный нуль температуры. Можно легко перевести температуру из Цельсия в Кельвин. Для этого нужно просто прибавить число 273. Например, 0°С это 273К, тогда 1°С это 274К, по аналогии, температура тела человека 36,6°С это 36,6 + 273,15 = 309,75К. Вот так всё просто получается.

Глава 1. Понятие цветовой температуры.

Давайте попробуем разобраться, что такое цветовая температура.

Источниками света являются раскаленные до высоких температур тела, тепловые колебания атомов которых и вызывают излучение в виде электромагнитных волн различной длины. Излучение, в зависимости от длины волны, имеет свою цветность. При невысоких температурах и соответственно при более длинных волнах преобладает излучение с теплой, красноватой цветностью светового потока, а при более высоких, с уменьшением длины волны, с холодной, сине-голубой цветностью. Единицей длины волны является нанометр (нм), 1нм=1/1 000 000мм. Еще в 17 веке Исаак Ньютон при помощи призмы разложил так называемый белый дневной свет и получил спектр, состоящий из семи цветов: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового, а в результате различных опытов доказал, что любой спектральный цвет можно получить смешением световых потоков, состоящих из различных соотношений трех цветов - красного, зеленого и синего, которые и были названы основными. Так появилась теория трехкомпонентности.

Человеческий глаз воспринимает цветность света благодаря рецепторам, так называемым колбочкам, которые имеют три разновидности, каждая из которых воспринимает один из трех основных цветов - красный, зеленый или синий и имеет к каждому из них свою чувствительность. Человеческий глаз воспринимает электромагнитные волны в диапазоне от 780 до 380 нанометров. Это видимая часть спектра. Следовательно, и светоприемники носителей информации - кино и фотопленка или матрица камеры должны иметь идентичную глазу чувствительность к цвету. Сенсибилизированные пленки и матрицы видеокамер воспринимают электромагнитные волны в чуть более широком диапазоне, захватывая близлежащее к красной зоне инфракрасное излучение (ИК) в диапазоне 780-900 нм и близлежащее к фиолетовой - ультрафиолетовое (УФ) излучение в диапазоне 380-300 нанометров. Эта область спектра, в которой действует геометрическая оптика и светочувствительные материалы, называется оптическим диапазоном.

Человеческий глаз кроме световой и темновой адаптации обладает так называемой цветовой адаптацией, благодаря которой при различных источниках, с различными соотношениями длин волн основных цветов, правильно воспринимает цвета. Пленка же и матрица такими свойствами не обладают, они сбалансированы под определенную цветовую температуру.

Нагреваемое тело в зависимости от температуры нагрева в своем излучении имеет различное соотношение различных длин волн и соответственно различную цветность светового потока. Эталон, по которому определяется цветность излучения, есть абсолютно черное тело (АЧТ), т.н. излучатель Планка. Абсолютно черное тело - виртуальное тело, поглощающее 100% падающего на него светового излучения, описывается законами теплового излучения. А цветовая температура - это температура АЧТ в градусах Кельвина, при которой цветность его излучения совпадает с цветностью данного источника излучения. Разница между шкалой температуры в градусах Цельсия, где за ноль принята температура замерзания воды, и шкалой в градусах Кельвина составляет -273, 16, потому что точкой отсчета в шкале Кельвина взята температура, при которой в теле прекращается любое движение атомов и соответственно прекращается любое излучение, так называемый абсолютный ноль, соответствующий температуре по Цельсию -273,16 град. То есть 0 градусов по Кельвину соответствует температура -273,16 град. по Цельсию.

Основным естественным источником света для нас является Солнце и различные источники света - огонь в виде костра, спички, факела и осветительные приборы, начиная от бытовых приборов, приборов технического назначения и заканчивая профессиональными осветительными приборами, созданными специально для кинематографа и телевидения. И в бытовых приборах, и в профессиональных, используются различные лампы (не будем касаться их принципа действия и конструктивных различий) с различными энергетическими соотношениями в их спектрах излучения основных цветов, которые можно выразить величиной цветовой температуры. Все источники света разделены на две основные группы. Первые, с цветовой температурой (Тцв.)5600 0К, белого дневного света (ДС), в излучении которых преобладает коротковолновая, холодная часть оптического спектра, вторые - лампы накаливания (ЛН) с Тцв.- 32000К и преобладанием в излучении длинноволновой, теплой части оптического спектра.

С чего всё начинается? Всё начинается с нуля, в том числе и световое излучение. Черный цвет – это отсутствие света вовсе. С точки зрения цвета, черный – это 0 интенсивности излучения, 0 насыщенности, 0 цветового тона (его просто нет), это полное отсутствие всех цветов вообще. Почему мы видим предмет черным, а потому, что он почти полностью поглощает весь падающий на него свет. Существует такое понятие как абсолютно черное тело. Абсолютно черным телом называют идеализированный объект, который поглощает всё падающее на него излучение и ничего не отражающее. Конечно же, в реальности это недостижимо и абсолютно черных тел в природе не существует. Даже те предметы, которые кажутся нам черными, на самом деле не абсолютно черные. Но можно изготовить модель почти что абсолютно черного тела. Модель представляет собой куб с полой структурой внутри, в кубе проделано небольшое отверстие, через которое внутрь куба проникают световые лучи. Конструкция чем-то похожа на скворечник. Посмотрите на рисунок (1).

Рисунок (1). – Модель абсолютно черного тела.

Свет, попадающий внутрь сквозь отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Даже если мы покрасим куб в черный цвет, отверстие будет чернее черного куба. Это отверстие и будет являться абсолютно черным телом. В прямом смысле слова, отверстие не является телом, а только лишь наглядно демонстрирует нам абсолютно черное тело.

Все объекты обладают тепловым излучением (пока их температура выше абсолютного нуля, то есть -273,15 градусов по Цельсию), но ни один объект не является идеальным тепловым излучателем. Одни объекты излучают тепло лучше, другие хуже, и всё это в зависимости от различных условий среды. Поэтому, применяют модель абсолютно черного тела. Абсолютно черное тело является идеальным тепловым излучателем. Мы можем даже увидеть цвет абсолютно черного тела, если его нагреть, и цвет, который мы увидим, будет зависеть от того, до какой температуры мы нагреем абсолютно черное тело. Мы вплотную подошли к такому понятию как цветовая температура.

Посмотрите на рисунок (2).

Рисунок (2). – Цвет абсолютно черного тела в зависимости от температуры нагревания.

а) Есть абсолютно черное тело, мы его не видим вообще. Температура 0 Кельвин (-273,15 градуса Цельсия) – абсолютный нуль, полное отсутствие любого излучения.

б) Включаем «сверхмощное пламя» и начинаем нагревать наше абсолютно черное тело. Температура тела, посредством нагревания, повысилась до 273К.

в) Прошло ещё немного времени и мы уже видим слабое красное свечение абсолютно черного тела. Температура увеличилась до 800К (527°С).

г) Температура поднялась до 1300К (1027°С), тело приобрело ярко-красный цвет. Такой же цвет свечения вы можете увидеть при нагревании некоторых металлов.

д) Тело нагрелось до 2000К (1727°С), что соответствует оранжевому цвету свечения. Такой же цвет имеют раскаленные угли в костре, некоторые металлы при нагревании, пламя свечи.

е) Температура уже 2500К (2227°С). Свечение такой температуры приобретает желтый цвет. Трогать руками такое тело крайне опасно!

ж) Белый цвет – 5500К (5227°С), такой же цвет свечения у Солнца в полдень.

з) Голубой цвет свечения – 9000К (8727°С). Такую температуру путем нагреванием пламенем получить в реальности будет невозможно. Но такой порог температуры вполне достижим в термоядерных реакторах, атомных взрывах, а температура звезд во вселенной может достигать десятки и сотни тысяч Кельвин. Мы можем лишь увидеть такой же голубой оттенок света, например, у светодиодных фонарей, небесных светил или других источников света. Цвет неба в ясную погоду примерно такого же цвета. Подводя итог ко всему вышесказанному, можно дать четкое определение цветовой температуры. Цветовая температура – это температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Проще говоря, температура 5000К – это цвет, который приобретает абсолютно черное тело при нагревании его до 5000К. Цветовая температура оранжевого цвета – 2000К, это означает, что абсолютно черное тело необходимо нагреть до температуры 2000К, чтобы оно приобрело оранжевый цвет свечения.

Но цвет свечения раскаленного тела не всегда соответствует его температуре. Если пламя газовой плиты на кухне сине-голубого цвета, это не значит, что температура пламени свыше 9000К (8727°С). Расплавленное железо в жидком состоянии имеет оранжево-желтый оттенок цвета, что в действительности соответствует его температуре, а это примерно 2000К (1727°С).





































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: закрепить знания учащихся по теме: "Волновые свойства света", развивать познавательный интерес к предмету, показать использование волновых свойств света на практике, закрепить навыки работы с лабораторным оборудованием L-микро, использовать в работе информационные технологии, виртуальные лабораторные работы.

Оборудование: компьютер, интерактивная доска SMART, мультимедийное устройство, диск "ЕГЭ по физике,100 баллов", "Живая физика", оборудование L-микро для проведения лабораторных работ.

I. Организация класса. Разделить класс на 4группы и дать им названия:

  • "Интерференция",
  • "Дифракция",
  • "Поляризация",
  • "Дисперсия".

II. Слово учителя. С давних времён на нашей планете

Много легенд слагалось о свете,
Много тогда было в нём неподвластного,
Но свет всех манил загадкой прекрасною.

Вот первый вопрос:

Что же такое свет?

1 группа.

Много учёных искали ответ,
Много открытий они совершили...
Давайте посмотрим, что они нам открыли?
Прежде всего свет - это волна,
Электромагнитной зовется она.
Со скоростью света ничто не сравнится
Триста тыщ километров в секунду промчится.

2 группа

Свет переменчив и вовсе не прост,
Ведь у него двойственность свойств:
Свойства частиц, конечно, прекрасны,
Но свойства волны, ему тоже подвластны.
Взглянем в характер его мы поглубже-
И здесь свойств немало для нас таких нужных!
Дисперсия, преломленье, дифракция-
Во многих явлениях дают разобраться нам,
Много понять и точно ответить,
Зачем нужен свет и взрослым, и детям!

3 группа

Давайте посмотрим на реальных примерах:
Вот почему лист бумаги белый?
Ответ очень прост, проще не бывает:
Просто бумага весь свет отражает.
А взглянем на черный - противоположно,
Летом в нем ходить невозможно.
И снова вопрос: почему так бывает?
Просто черный цвет все поглощает.

4 группа

Мир так прекрасен, прекрасна планета,
И тут не обошлось без помощи света.
Ведь радугу, листья, деревья, цветы,
Все что в прекрасных тонах видим мы,
Все что для глаза красивым бывает,
Все это свет для нас открывает!

Ньютон, Гюйгенс и свет. Рождение оптики в XVII веке.

Именно И. Ньютон с великой изобретательностью и терпением проделал сотни опытов, каждый из которых должен был ответить на конкретные вопросы:

  • цвет - это характеристика степени преломления;
  • белый цвет - есть смесь разноцветных лучей;
  • при разделении белого цвета угол преломления возрастает от красного к фиолетовому;
  • при смешивании всех цветов вновь образуется белый цвет?

Он проверял свою гипотезу двумя способами:

  • через комбинацию двух призм, поставленных подряд с поворотом на 180°, вторая призма смешивала цвета разложенные первой;
  • известный диск Ньютона, при быстром вращении которого возникает иллюзия белого цвета.

(Способность сетчатки глаза хранить изображения в течении некоторого времени, примерно 0,1 сек.)

Но самой замечательной демонстрацией явлений волновой оптики стали кольца Ньютона. Гюйгенс наблюдал их раньше, но именно Ньютон смог первым объяснить это явление, хотя и склонялся к корпускулярной модели света. Он предположил, что лучи света периодически принимают два состояния: " состояние проходимости" и "состояние отражаемости".

О волновых свойствах света сегодня мы и поговорим.

"Интерференция"

Мы, считаем, что именно интерференция наиболее убедительное доказательство волновых свойств света.

Опыт: включим одну лампочку, потом еще одну - стало светлее, но картины интерференции мы не видим. А теперь попробуем сделать так, как Т. Юнг. В его опыте фронт волны делится на два

близко расположенных источника. На экране интерференционная картина. Он также определил длину волны для фиолетовой части спектра - 0,42 мкм., для красного спектра - 0,7 мкм.Интерференция сопровождалась спектральным разложением на монохроматические составляющие. Но картину интерференции нельзя получить, если источники не когерентны. Когерентными называются две световые волны одинаковой частоты, у которой разность фаз равна нулю. Как показывает опыт, именно при сложении когерентных волн возникает интерференционная картина максимумов и минимумов освещенности.

Опыты на компьютере.

Интерференция нашла широкое применение:

  • интерферометр Майкельсона - прибор, который служит для прецизионных измерений. С помощью этого прибора в 1881 А. Майкельсон и Э. Морли пытались определить, существует ли разница в значении скорости света при его распространении вдоль и поперек направления орбитального движения Земли.
  • просветление оптики. Свет проходя через линзы фотоаппаратов, биноклей отражается от передней и задней поверхностей. При отражении теряется 8-10 % энергии света, а если объектив состоит из нескольких линз, то теряется до 50% энергии. Чтобы этого избежать на поверхность линз химическим методом наносят тонкую пленку, толщина которой и показатель преломления выбираются с таким расчетом, чтобы в отраженном свете возник интерференционный минимум.

Интерференционные методы нашли широкое применение и в ряде других областей науки техники. С помощью интерферометра можно исследовать качество шлифовки поверхностей, можно измерить коэффициенты расширения твердых тел, малое изменение размеров ферромагнетиков в магнитном поле и сегнетоэлектриков в электрическом поле, а также измерить коэффициенты преломления веществ, малые концентрации примесей в газах и жидкости.

В астрономии интерференционные методы позволяют оценить угловой диаметр звезд.

"Дифракция"

Тот факт, что свет заходит за края препятствий, известен людям очень давно. Первое научное описание этого явления принадлежит Ф. Гримальди, который не только описал размытость тени от предмета, но и цветную полосу в области размытости. Он впервые это явление назвал дифракцией. Дифракция света - это огибание светом непрозрачных предметов и, как следствие этого проникновение света в область геометрической тени. Х. Гюйгенс первым попытался объяснить это явление, выдвинув для этого принцип построения волновых фронтов. Но надо отдать дань и другому ученому, О. Френелю, который много сделал для развития волновой теории света. В 1818 году он представил конкурсную работу под названием " Записка о теории дифракции", в которой доказал, что только волновая теория света объясняет дифракционную картину.

Использование дифракции света на одной щели в практических целях весьма затруднено и неудобно из-за слабой видимости дифракционной картины. Дифракционная решетка - спектральный прибор, служащий для разложения света в спектр и измерения длины волны. Они бывают металлическими и стеклянными. На эти решётки наносятся большое число параллельных штрихов: 2000 штрихов на один миллиметр поверхности. Главной характеристикой решётки является постоянная решётки d=а + в, d sinf =mj (m=0,1,2....), там где углы f удовлетворяют условию, наблюдаются главные максимумы дифракционной картины. Среди разнообразных практических применений волновых свойств света в последние десятилетия одно из более интересных - голография. Сущность голографии состоит в фиксации полной информации о предмете, причём информации не только об амплитуде световой волны, но и о её фазе. В 1960 году с появлением лазеров голографический метод стал использоваться чаще. Идеи и принципы голографии сформулировал Д. Габор в 1948 году.Голограммы бывают: оптические, объёмные, акустические. Голографические записи позволяют фиксировать вибрации и деформации, возникающие в различных узлах и деталях работающих машин, а также количественные исследования воздушных потоков в аэродинамических трубах.

"Поляризация"

Упругие волны бывают продольными и поперечными. В продольных волнах колебания частиц происходят вдоль направления распространения волн, а поперечных - перпендикулярно этому направлению. Свет, у которого световой вектор колеблется беспорядочно одновременно во всех направлениях, перпендикулярных лучу, называется естественным или не поляризованным. Типичный пример такого света - солнечное излучение, излучение ламп накаливания, ламп дневного света. А свет, у которого направление колебаний светового вектора строго фиксировано, называется линейно поляризованным или плоско поляризованным. Под поляризацией света понимают выделение из естественного света световых колебаний с определённым направлением электрического вектора. Зависимость показателя поглощения вещества от направления колебаний светового вектора называется дихроизмом. В практическом использовании турмалин не очень удобен: он дорог и из него нельзя вырезать пластины больших размеров. Поэтому более распространены в качестве поляроидов специальные дихроические плёнки, помещённые между стеклянными пластинками, например плёнки из кристалликов герапатита.

В мире давно обсуждается вопрос об установке поляроидов на фары и ветровые стекла автомобилей при устранении слепящего действия фар встречных машин. Для этого поляроид на фарах и ветровом стекле должен пропускать колебания под углом 45° к горизонту. Тогда направление световых колебаний встречной машины будет перпендикулярно плоскости, в которой поляроид пропускает колебания и свет фар будет гаситься. Собственный же поляризованный свет данного автомобиля после отражения от дороги будет проходить сквозь ветровое стекло. Установка поляроидов имеет смысл. Если снабдить ими все автомобили.

"Дисперсия"

Разложение белого света в спектр с помощью стеклянной призмы впервые было получено И. Ньютоном. Белый свет раскладывается в спектр, но монохроматические цвета (красный, синий, фиолетовый) далее на спектральные составляющие не раскладываются.

Будучи сторонником корпускулярной теории света, И. Ньютон объяснял этот факт следующим образом: фиолетовый цвет состоит из маленьких частиц, красный - из более массивных. Изучение явлений интерференции и дифракции света показало, что цвет связан с длиной волны, следовательно, и с её частотой. Это свойство волн можно наблюдать в природе.

В русских летописях радуга называлась райская дуга. В Древней Греции радугу олицетворяла богиня Ирида, она соединяла небо и землю, была посредником между людьми и богами. Радугу "делают" водяные капли: в небе -капли дождя, на земле- брызги водяной струи водопада, фонтана. Именно в водяной капле происходят оптические явления, из -за которых возникает радуга. Преломление на границе воздух - вода по закону "отношение синуса угла падения к синусу угла преломления равно относительному показателю преломления"; отражение света на границе воздух - вода по закону " угол отражения равен углу падения луча". Дисперсия света - это разложение света в спектр. Условия возникновения радуги: наличие капель воды диаметром 0,08 - 0,2 мм; особое положение наблюдателя - спиной к солнцу, вне дождевой зоны при высоте солнца над горизонтом не более 42?. Верхняя часть радуги всегда красного цвета, нижняя - фиолетового. Красивое природное явление не оставит никого равнодушным.

Вопрос: А правда, что существуют белые радуги?

Да, их называют туманными. Они возникают при освещении солнечными лучами слабого тумана, состоящего из капелек радиусом 0,025мм и менее. Даже уличный фонарь может создать белую радугу видимую на темном фоне ночного неба.

Радугу и гало имеет одну и ту же физическую природу. Гало происходит от древнегреческого слова "халос" - круглая площадка. Они могут выглядеть весьма разнообразно - светящиеся кольца вокруг Солнца или Луны, кресты, столбы, ложные светила. Наблюдается гало, если светило просвечивает через тонкие перисто-слоистые облака. Эти облака состоят из ледяных кристалликов в форме правильной шестиугольной призмы. гало бывают белыми и с цветными оттенками и объясняются тем, что возникает свечение в результате преломления света в кристалликах и отражения от их граней. Часто на небе можно фиксировать несколько гало. Например: очень сложное гало наблюдалось в Петербурге 18 июня 1794году: одновременно на небе было 12 кругов и дуг, из них 9 цветных. Его так и называют - Петербургский феномен.

Вопрос: Интересно, а на других планетах может быть такое явление?

Учёные зафиксировали гало и на других планетах Солнечной системы - в атмосфере Венеры, а также в атмосфере Ио, спутнике Юпитера.

Мираж - французского происхождения и имеет два значения: отражение и обманчивое явление. Миражи -это явления, описание которых довольно часто встречается в художественной литературе. Вот отрывок из французской сказки "Принцесса Дангобер":

"Матросы забрались на реи, а капитан взял подзорную трубу и увидел замок, висящий на золотых цепях между небом и землёй". Догадайтесь, о каком явлении идёт речь?

Мираж представляет собой изображение реально существующего на земле предмета, часто увеличенное и сильно искажённое. Они бывают верхние, нижние и сложные.

Нижние (озёрные) возникают над сильно нагретой пове6рхностью. Наблюдают их в пустынях и знойных степях. Воздух около земли сильно нагрет, и его показатель преломления меньше, чем у лежащего более высоко холодного воздуха. Отражение в этом слое аналогично отражению в воде. Верхние возникают, наоборот, над сильно охлажденной поверхностью, например, над холодной водой. Они наблюдаются в северных широтах. В этом случае показатель преломления воздуха выше у поверхности воды и уменьшается с высотой. Сложные миражи называются фата - моргана, возникают одновременно, то есть когда есть условия и для верхнего миража и для нижнего. Сложные миражи имеют вид призрачных дворцов, замков, лугов и садов, при этом вся картина быстро исчезает.

Вопрос: Легенда о "летучем голландце" - это тоже мираж?

Да, безусловно, это верхний мираж.

Закат солнца.

Искривление хода световых лучей в атмосфере объясняет не только мираж, но и удивительно красивое оптическое явление - закат солнца. Действительно, один закат солнца совсем не похож на другой. Но всегда заходящее солнце становится красным.

Синий цвет неба объясняется молекулярным рассеиванием света на флуктуациях плотности. Коэффициент рассеивания обратно пропорционален длине волны в четвёртой степени. В результате сине- фиолетовые лучи рассеиваются в 16 раз сильнее, чем красные. Отсюда голубой цвет дневного неба. Когда солнце низко, путь лучей через атмосферу значительно длиннее, чем днём, когда солнце стоит высоко. Учитывая, что синие лучи сильнее рассеиваются атмосферой, понятно, что от солнца доходят до глаза преимущественно оранжевые и красно - желтые лучи. Поэтому солнце на закате и на восходе кажется оранжево- красным.

Вопрос: Против солнца видна сверкающая дорожка. Как она образуется? Почему дорожка всегда ориентирована на наблюдателя?

Ответ: Дорожка возникает на поверхности воды вследствие отражения света от мелких волн, которые ориентированы в различных направлениях. Поэтому отраженные лучи попадают в глаз и каждый наблюдатель видит свою дорожку.

Спасибо. Мы повторили и обобщили знания

Свет и цвет. Волновая природа цвета

Все разнообразие окружающего мира мы видим благодаря свету и зрению. Свет излучают различные накаленные тела – солнце, нить элек­трической лампы, раскаленный ме­талл, газы, пламя керосиновой лам­пы, костер и т.д., которые называют первоисточниками света. Состав све­та, освещающего различные предме­ты, в значительной мере влияет на видимый человеком цвет этих пред­метов.

Под воздействием световых волн с колебаниями различной частоты у человека возникают различные све­товые и цветовые ощущения. Свет распространяется волнами опреде­ленной длины. Длина волны – это расстояние, на которое распростра­няется колебание за один период, т.е. за время, необходимое для одно­го полного колебания. Длина волны света обозначается греческой бук­вой X и измеряется в микрометрах (мкм).

Видимый спектр, т.е. диапазон волн, воспринимаемый человеком, ог­раничен волнами длиной приблизи­тельно 396 – 760 мкм. Некоторые ис­следователи считают, что глаз человека способен ощущать световые лучи в пределах 302 – 950 мкм, однако чувствительность глаза к крайним ви­димым лучам в сотни раз меньше, чем к световым лучам с длиной волны 396 – 760 мкм.

Прямой свет первоисточников (Солнца и т.д.) падает на окружающие предметы и объекты, при этом непро­зрачные предметы часть лучей погло­щают, а часть отражают. Цвет не­прозрачного предмета определяется светом, который от него отражается. У прозрачных предметов или имею­щих в своей структуре просветы или микропоры (например, ткани) часть лучей отражается, часть поглощается и часть пропускается. В результате все предметы и объекты сами становятся источником отраженного света, и до­вольно значительного, как, например, Луна, Земля, небесные тела и т.д.

Прямой свет определяет харак­терную окраску основного освещения объектов и предметов, их наиболее освещенные места, блики. Отраженный свет – второсте­пенный по силе источник света, определяет, во-первых, общую окраску теней и полутонов. Отраженный от предмета свет, в свою очередь, падает на со­седние предметы, вызывая рефлексы.

Цвет - это свойство тел вызывать определенное зрительное ощущение в соответствии со спектральным составом и интенсивностью отражаемого или испускаемого, или видимого излучения.

Цвета, входящие в солнечный спектр, и соответствующая им длина световых волн следующие (в ммк):

Фиолетовый 400 – 430 Синий 430 – 470
Голубой 470 – 500 Зеленый 500 – 535
Желтый 535 – 595 Оранжевый 595 – 620
Красный 620 – 700

Глаз человека воспринимает лучистую энергию как видимый цвет с длиной волн 400 – 760 нанометров.

Единицей измерения длины волны оптической области спектра излучений является нанометр (нм); 1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

Цветовой спектр

Ньютон впервые сформулировал мысль о сложном составе белого сол­нечного света. Если на пути солнеч­ного луча поставить стеклянную трехгранную призму, то вместо бело­го светового луча появится цветная полоса из различных цветов , называ­емая спектром .

Рисунок 3 – Разделение белого светового луча на цвета спектра

Рисунок 4 – Преломление светового луча через призму

Цвета в спектре рас­полагаются в определенном порядке: красный, оранжевый, желтый, зеле­ный, голубой, синий, фиолетовый. Каждый цвет постепенно, без резких границ, посредством множества про­межуточных цветов переходит в дру­гой цвет. Те же чистые, яркие, спект­ральные цвета можно увидеть в радуге. Цвета радуги - это спектр, который мы наблюдаем в естественных природных условиях (преломление и отражение солнечных лучей в дождевых каплях, рассеянных в воздухе).

Рисунок 5 – Расположение цветов в радуге

Первая попытка привести видимые цвета в систему принадлежала Исааку Ньютону. Цветовая система Ньютона – цветовой круг, составленный из семи секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Это расположение цветов –КОЖЗГСФ - легко запомнить по фразе – КАЖДЫЙ ОХОТНИК ЖЕЛАЕТ ЗНАТЬ, ГДЕ СИДИТ ФАЗАН.

Цвета, отличающиеся различной цветностью (красные, оранжевые, желтые, зеленые, голубые, синие, фио­летовые) называют хроматическими.

В спектре нет белых, серых цветов, а также черного цвета. Эти цвета, от­сутствующие в спектре, можно отли­чить лишь по светлоте. Группубелых, серых ичерных цветовназывают ахро­матическими (бесцветными).

Если же два крайних цвета спектра – красный и фиолетовый смешать между собой, то полу­чится новый промежуточный цвет пурпур­ный. Добавив пурпурный цвет к спектральным, можно спектр замкнуть в кольцо – цветовой круг, то есть расположить все спектральные и пурпурный цвет по окружности.

В результате мы имеем восемь цветов, считающихся в практике наиболее важны­ми: это желтый, оранжевый, красный, пур­пурный, фиолетовый, синий, голубой и зе­леный. Цветовые круги могут быть различны­ми по количеству содержащихся в них цве­тов, например: восемь, двенадцать, шестнадцать,

Рисунок 6 – Цветовой круг (8 цветов)

двад­цать четыре и т. д. (наш глаз в состоянии раз­личить более 150 оттенков цветов). Однако последовательность цветов в любом цвето­вом круге, как и в спектре, сохраняется одна и та же с той же последовательностью цве­тов, как в спектре.

Хроматические цвета отличаются друг от друга по трем признакам: цве­товому тону, насыщенности и светлоте.