Какие функции выполняет наружная клеточная мембрана? Строение наружной клеточной мембраны. Наружная клеточная мембрана

Клеточная мембрана — молекулярная структура, которая состоит из липидов и белков. Главные её свойства и функции:

  • отделение содержимого любой клетки от внешней среды, гарантируя её целостность;
  • управление и налаживание обменом между средой и клеткой;
  • внутриклеточные мембраны разбивают клетку на специальные отсеки: органеллы или компартменты.

Слово «мембрана» на латыни означает «пленка». Если говорить о клеточной мембране, то это совокупность двух пленок, которые обладают различными свойствами.

Биологическая мембрана включает в себя три вида белков:

  1. Периферические – расположены на поверхности пленки;
  2. Интегральные – целиком пронизывают мембрану;
  3. Полуинтегральные – одним концом проникают внутрь билипидного слоя.

Какие функции выполняет клеточная мембрана

1. Клеточная стенка — прочная оболочка клетки, которая находится снаружи от цитоплазматической мембраны. Она выполняет защитные, транспортные и структурные функции. Присутствует у многих растений, бактерий, грибов и архей.

2. Обеспечивает барьерную функцию, то есть избирательный, регулируемый, активный и пассивный обмен веществ с внешней средой.

3. Способна передавать и сохранять информации, а также принимает участие в процессе размножения.

4. Выполняет транспортную функцию, которая может через мембрану транспортировать вещества в клетку и из клетки.

5. Клеточная мембрана имеет одностороннюю проводимость. Благодаря этому, молекулы воды могут без задержек проходить через клеточную мембрану, а молекулы прочих веществ проникают выборочно.

6. С помощью клеточной мембраны происходит получение воды, кислорода и питательных веществ, а через неё удаляются продукты клеточного обмена.

7. Выполняет клеточный обмен через мембраны, и может исполнять их с помощью 3 главных типов реакций: пиноцитоз, фагоцитоз, экзоцитоз.

8. Мембрана обеспечивает специфику межклеточных контактов.

9. В мембране присутствуют многочисленные рецепторы, которые способны воспринимать химические сигналы — медиаторы, гормоны и множество других биологических активных веществ. Так она в силах изменить метаболическую активность клетки.

10. Основные свойства и функции клеточной мембраны:

  • Матричная
  • Барьерная
  • Транспортная
  • Энергетическая
  • Механическая
  • Ферментативная
  • Рецепторная
  • Защитная
  • Маркировочная
  • Биопотенциальная

Какую функцию выполняет в клетке плазматическая мембрана?

  1. Отграничивает содержимое клетки;
  2. Осуществляет поступление веществ в клетку;
  3. Обеспечивает удаление ряда веществ из клетки.

Структура мембраны клетки

Клеточные мембраны включают липиды 3 классов:

  • Гликолипиды;
  • Фосфолипиды;
  • Холестерол.

В основном мембрана клетки состоит из белков и липидов, и имеет толщину не более 11 нм. От 40 до 90% всех липидов составляют фосфолипиды. Также важно отметить гликолипиды, которые являются одним из основных компонентов мембраны.

Структура клеточной мембраны трехслойна. В центре располагается однородный жидкий билипидный слой, а белки закрывают его с двух сторон (как мозаику), отчасти проникая в толщу. Также белки необходимы для мембраны, чтобы пропускать внутрь клеток и транспортировать из них наружу особые вещества, которые не могут проникнуть через жировой слой. Например, ионы натрия и калия.

  • Это интересно —

Строение клетки — видео

    Отграничительная (барьерная )- отделяют клеточное содержимое от внешней среды;

    Регулируют обмен между клеткой и средой;

    Делят клетки на отсеки, или компартменты, предназначенные для тех или иных специализированных метаболических путей (разделительная );

    Является местом протекания некоторых химических реакций (световые реакции фотосинтеза в хлоропластах, окислительное фосфорилирование при дыхании в митохондриях);

    Обеспечивают связь между клетками в тканях многоклеточных организмов;

    Транспортная - осуществляет трансмембранный транспорт.

    Рецепторная - являются местом локализации рецепторных участков, распознающих внешние стимулы.

Транспорт веществ через мембрану – одна из ведущих функций мембраны, обеспечивающая обмен веществ между клеткой и внешней средой. В зависимости от затрат энергии для переноса веществ различают:

    пассивный транспорт, или облегченная диффузия;

    активный (избирательный) транспорт при участии АТФ и ферментов.

    транспорт в мембранной упаковке. Выделяют эндоцитоз (в клетку) и экзоцитоз (из клетки) – механизмы, которые осуществляют транспорт через мембрану крупных частиц и макромолекул. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и в цитоплазму отшнуровывается везикула. От цитоплазмы везикула отграничена одиночной мембраной, которая является частью наружной цитоплазматической мембраны. Различают фагоцитоз и пиноцитоз. Фагоцитоз – поглощение крупных частиц, достаточно твердых. Например, фагоцитоз лимфоцитов, простейших и др. Пиноцитоз – процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз – процесс выведения различных веществ из клетки. При экзоцитозе мембрана везикулы, или вакуоли сливается с наружной цитоплазматической мембраной. Содержимое везикулы выводится за поверхность клетки, а мембрана включается в состав наружной цитоплазматической мембраны.

В основе пассивного транспорта незаряженных молекул лежит разность концентраций водорода и зарядов, т.е. электрохимический градиент. Вещества будут перемещаться из области с более высоким градиентом в область с более низким. Скорость транспорта зависит от разницы градиентов.

    Простая диффузия – транспорт веществ непосредственно через липидный бислой. Характерна для газов, неполярных или малых незаряженных полярных молекул, растворимых в жирах. Вода быстро проникает через бислой, т.к. ее молекула мала и электрически нейтральна. Диффузию воды через мембраны называют осмосом.

    Диффузия через мембранные каналы – транспорт заряженных молекул и ионов (Na, K, Ca, Cl), проникающих через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих водяные поры.

    Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков. Каждый белок отвечает за строго определенную молекулу или группу родственных молекул, взаимодействует с ней и перемещает сквозь мембрану. Например, сахара, аминокислоты, нуклеотиды и другие полярные молекулы.

Активный транспорт осуществляется белками – переносчиками (АТФ-аза) против электрохимического градиента, с затратой энергии. Источником ее служат молекулы АТФ. Например, натрий – калиевый насос.

Концентрация калия внутри клетки значительно выше, чем вне ее, а натрия – наоборот. Поэтому катионы калия и натрия через водяные поры мембраны пассивно диффундируют по градиенту концентрации. Это объясняется тем, что проницаемость мембраны для ионов калия выше, чем для ионов натрия. Соответственно калий быстрее диффундирует из клетки, чем натрий – в клетку. Однако, для нормальной жизнедеятельности клетки необходимо определенное соотношение ионов 3 калия и 2 натрия. Поэтому в мембране существует натрий-калиевый насос, активно перекачивающий натрий из клетки, а калий в клетку. Этот насос представляет собой трансмембранный белок мембраны, способный к конформационным перестройкам. Поэтому он может присоединять к себе как ионы калия, так и ионы натрия (антипорт). Процесс энергоемкий:

    С внутренней стороны мембраны к белку-насосу поступают ионы натрия и молекула АТФ, а с наружной – ионы калия.

    Ионы натрия соединяются с молекулой белка, и белок приобретает АТФ-азную активность, т.е. способность вызывать гидролиз АТФ, который сопровождается выделением энергии, приводящей в движение насос.

    Освободившийся при гидролизе АТФ фосфат присоединяется к белку, т.е. фосфорилирует белок.

    Фосфорилирование вызывает конформационные изменения белка, он оказывается неспособным удержать ионы натрия. Они высвобождаются и выходят за пределы клетки.

    Новая конформация белка способствует присоединению к нему ионов калия.

    Присоединение ионов калия вызывает дефосфорилирование белка. Он опять меняет свою конформацию.

    Изменение конформации белка приводит к высвобождению ионов калия внутри клетки.

    Белок вновь готов присоединять к себе ионы натрия.

За один цикл работы насос выкачивает из клетки 3 иона натрия и закачивает 2 иона калия.

Цитоплазма – обязательный компонент клетки, заключенный между поверхностным аппаратом клетки и ядром. Это сложный гетерогенный структурный комплекс, состоящий из:

    гиалоплазмы

    органелл (постоянных компонентов цитоплазмы)

    включений – временных компонентов цитоплазмы.

Цитоплазматический матрикс (гиалоплазма) это внутреннее содержимое клетки – бесцветный, густой и прозрачный коллоидный раствор. Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке, содержат ферменты, необходимые для образования энергии, в основном за счет анаэробного гликолиза.

Основные свойства цитоплазматического матрикса.

    Определяет коллоидные свойства клетки. Вместе с внутриклеточными мембранами вакуолярной системы его можно рассматривать как высоко гетерогенную или многофазную коллоидную систему.

    Обеспечивает изменение вязкости цитоплазмы, переход из геля (более густого) в золь (более жидкий), которое возникает под действием внешних и внутренних факторов.

    Обеспечивает циклоз, амебовидное движение, деление клетки и движение пигмента в хроматофорах.

    Определяет полярность расположения внутриклеточных компонентов.

    Обеспечивает механические свойства клеток – эластичность, способность к слиянию, ригидность.

Органеллы – постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. В зависимости от особенностей строения различают:

    мембранные органоиды – имеют мембранное строение. Могут быть одномембранными (ЭПС, аппарат Гольджи, лизосомы, вакуоли растительных клеток). Двумембранными (митохондрии, пластиды, ядро).

    Немембранные органеллы – не имеют мембранного строения (хромосомы, рибосомы, клеточный центр, цитоскелет).

Органоиды общего назначения – свойственны всем клеткам: ядро, митохондрии, клеточный центр, аппарат Гольджи, рибосомы, ЭПС, лизосомы. Если органоиды характерны для определенных типов клеток, их называют специальными органоидами (например, миофибриллы, сокращающие мышечное волокно).

Эндоплазматическая сеть – единая непрерывная структура, мембрана которой образует множество впячиваний и складок, которые выглядят как канальцы, микровакуоли и крупные цистерны. Мембраны ЭПС, с одной стороны связаны с клеточной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.

Существует две разновидности ЭПС – шероховатая и гладкая.

У шероховатой, или гранулярной ЭПС, цистерны и канальцы связаны с рибосомами. является наружной стороной мембраны.У гладкой, или агранулярной ЭПС связь с рибосомами отсутствует. Это внутренняя сторона мембраны.

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную . Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.

Такая функциональность обеспечивается особым строением клеточной мембраны .

В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.

В плане поддержания гомеостаза (саморегуляции относительного постоянства внутренней среды) барьерная функция клеточной мембраны тесно связана с транспортной .

Малые молекулы способны проходить сквозь плазмалемму без всяких «помощников», по градиенту концентрации, т. е. из области с высокой концентрацией данного вещества в область с низкой концентрацией. Так, например, обстоит дело для газов, участвующих в дыхании. Кислород и углекислый газ диффундируют через клеточную мембрану в том направлении, где их концентрация в данный момент меньше.

Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.

Интегральные (пронизывающие мембрану насквозь) белки часто работают по принципу открывающихся и закрывающихся каналов. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней, и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.

Ферментативная функция клеточной мембраны в большей степени реализована на мембранах органоидов клетки. Большинство синтезируемых в клетке белков выполняют ферментативную функцию. «Усаживаясь» на мембрану в определенном порядке, они организуют конвейер, когда продукт реакции, катализируемый одним белком-ферментом, переходит к следующему. Такой «конвейер» стабилизируют поверхностные белки плазмалеммы.

Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.

У мембраны, которая окружает клетку (цитоплазматической) на внешней стороне располагается множество углеводных цепей, прикрепленных к липидам или белкам (в результате образуются гликолипиды и гликопротеины). Многие из таких углеводов выполняют рецепторную функцию , будучи восприимчивыми к определенным гормонам, улавливая изменения физических и химических показателей в окружающей среде.

Если, например, гормон соединяется со своим клеточным рецептором, то углеводная часть молекулы-рецептора изменяет свое строение, вслед за ней изменяет строение и связанная с ней белковая часть, пронизывающая мембрану. На следующем этапе в клетке запускаются или приостанавливаются различные биохимические реакции, т. е. меняется ее метаболизм, начинается клеточный ответ на «раздражитель».

Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировачную, формирование межклеточных контактов и др. Однако их можно рассмотреть как «подфункции» уже рассмотренных.