Как определить знак числа в тригонометрической функции. Свойства синуса, косинуса, тангенса и котангенса

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Тип урока: систематизации знаний и промежуточного контроля.

Оборудование: тригонометрический круг, тесты, карточки с заданиями.

Цели урока: систематизировать изученный теоретический материал по определениям синуса, косинуса, тангенса угла; проверить степень усвоения знаний по данной теме и применение на практике.

Задачи:

  • Обобщить и закрепить понятия синуса, косинуса и тангенса угла.
  • Формировать комплексное представление о тригонометрических функциях.
  • Способствовать выработке у учащихся желания и потребности изучения тригонометрического материала; воспитывать культуру общения, умение работать в группах и потребности в самообразовании.

«Кто смолоду делает и думает сам, тот
становится потом, надёжнее, крепче, умнее.

(В.Шукшин)

ХОД УРОКА

I. Организационный момент

Класс представлен тремя группами. В каждой группе консультант.
Учитель сообщает тему, цели и задачи урока.

II. Актуализация знаний (фронтальная работа с классом)

1) Работа в группах по заданиям:

1. Сформулировать определение sin угла.

– Какие знаки имеет sin α в каждой координатной четверти?
– При каких значениях имеет смысл, выражение sin α, и какие значения оно может принимать?

2. Вторая группа те – же вопросы для cos α.

3. Третья группа ответы готовит по тем же вопросам tg α и ctg α.

В это время трое учащихся самостоятельно работают у доски по карточкам (представители разных групп).

Карточка № 1.

Практическая работа.
С помощью единичной окружности вычислить для угла 50 , 210 и – 210 значения sin α, cos α и tg α.

Карточка № 2.

Определить знак выражения: tg 275; cos 370; sin 790; tg 4,1 и sin 2.

Карточка № 3.

1) Вычислить:
2) Сравнить: cos 60 и cos 2 30 – sin 2 30

2) Устно:

а) Предложен ряд чисел: 1; 1,2; 3; , 0, , – 1. Среди них есть лишние. Какое свойство sin α или cos α могут выражать эти числа (Может ли sin α или cos α принимать эти значения).
б) Имеет ли смысл выражение: cos (–); sin 2; tg 3: ctg (– 5); ; ctg0;
ctg (– π). Почему?
в) Существует ли наименьшее и наибольшее значение sin или cos, tg, ctg.
г) Верно ли?
1) α = 1000 является углом II четверти;
2) α = – 330 является углом IV четверти.
д) Числам соответствует одна и та же точка на единичной окружности.

3) Работа у доски

№ 567 (2; 4) – Найти значение выражения
№ 583 (1-3) Определить знак выражения

Домашнее задание: таблица в тетради. № 567(1, 3) № 578

III. Усвоение дополнительных знаний. Тригонометрия в ладони

Учитель: Оказывается, значения синусов и косинусов углов «находятся» на вашей ладони. Протяните руку (любую) и разведите как можно сильнее пальцы (как на плакате). Приглашается один ученик. Мы измеряем углы между нашими пальцами.
Берется треугольник, где есть угол в 30, 45 и 60 90 и прикладываем вершину угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону совмещаем с мизинцем, а другую сторону – с одним из остальных пальцев.
Оказывается между мизинцем и большим пальцем угол 90, между мизинцем и безымянным – 30, между мизинцем и средним – 45, между мизинцем и указательным – 60. И это у всех людей без исключения

мизинец № 0 – соответствует 0,
безымянный № 1 – соответствует 30,
средний № 2 – соответствует 45,
указательный № 3 – соответствует 60,
большой № 4 – соответствует 90.

Таким образом, у нас на руке 4 пальца и запомним формулу:

№ пальца

Угол

Значение

Это просто мнемическое правило. Вообще значение sin α или cos α надо знать наизусть, но иногда это правило поможет в трудную минуту.
Придумайте правило для cos (углы без изменения, а отсчета от большого пальца). Физическая пауза, связанная со знаками sin α или cos α.

IV. Проверка усвоений ЗУН

Самостоятельная работа с обратной связью

Каждый ученик получает тест (4 варианта) и лист с ответами для всех одинаковый.

Тест

Вариант 1

1) При каком угле поворота радиус займет то же положение, что и при повороте на угол 50.
2) Найдите значение выражения: 4cos 60 – 3sin 90.
3) Какое из чисел меньше нуля: sin 140, cos 140, sin 50, tg 50.

Вариант 2

1) При каком угле поворота радиус займет тоже положении, что и при повороте на угол 10.
2) Найти значение выражения: 4cos 90 – 6sin 30.
3) Какое из чисел больше нуля: sin 340, cos 340, sin 240, tg (– 240).

Вариант 3

1) Найдите значение выражения: 2ctg 45 – 3cos 90.
2) Какое из чисел меньше нуля: sin 40, cos (– 10), tg 210, sin 140.
3) Углом какой четверти является угол α, если sin α > 0, cos α < 0.

Вариант 4

1) Найдите значение выражения: tg 60 – 6ctg 90.
2) Какое из чисел меньше нуля: sin(– 10), cos 140, tg 250, cos 250.
3) Углом какой четверти является угол α, если ctg α< 0, cos α> 0.

А
0

Б
Sin50

В
1

Г
– 350

Д
– 1

Е
Cos (– 140)

Ж
3

З
310

И
Cos 140

Л
350

М
2

Н
Cos 340

О
– 3

П
Cos 250

Р

С
Sin 140

Т
– 310

У
– 2

Ф
2

Х
Tg 50

Ш
Tg 250

Ю
Sin 340

Я
4

(слово – тригонометрия ключевое)

V. Сведения из истории тригонометрии

Учитель: Тригонометрия – это достаточно важный раздел математики для жизни человека. Современный вид тригонометрии придал крупнейший математик 18 столетия Леонард Эйлер – швейцарец по происхождению долгие годы работавший в России и являвшийся членом Петербургской академии наук. Он ввел известные определения тригонометрических функций сформулировал и доказал известные формулы, мы их учить будем позже. Жизнь Эйлера очень интересна и я советую познакомиться с ней по книге Яковлева «Леонард Эйлер».

(Сообщение ребят по данной теме)

VI. Подведение итогов урока

Игра «Крестики – нолики»

Участвуют двое учащихся самых активных. Их поддерживают группы. Решение заданий записывается в тетрадь.

Задания

1) Найти ошибку

а) sin 225 = – 1,1 в) sin 115 < О
б) cos 1000 = 2 г) cos (– 115) > 0

2) Выразите в градусах угол
3) Выразите в радианах угол 300
4) Какое наибольшее и наименьшее значение может иметь выражение: 1+ sin α;
5) Определите знак выражения: sin 260, cos 300.
6) В какой четверти числовой окружности расположена точка
7) Определите знаки выражения: cos 0,3π, sin 195, ctg 1, tg 390
8) Вычислите:
9) Сравнить: sin 2 и sin 350

VII. Рефлексия урока

Учитель: Где мы можем встретиться с тригонометрией?
На каких уроках в 9 классе, да и сейчас вы применяете понятия sin α, cos α; tg α; ctg α и с какой целью?

Позволяют установить ряд характерных результатов – свойств синуса, косинуса, тангенса и котангенса . В этой статье мы рассмотрим три основных свойства. Первое из них указывает знаки синуса, косинуса, тангенса и котангенса угла α в зависимости от того, углом какой координатной четверти является α . Дальше мы рассмотрим свойство периодичности, устанавливающее неизменность значений синуса, косинуса, тангенса и котангенса угла α при изменении этого угла на целое число оборотов. Третье свойство выражает зависимость между значениями синуса, косинуса, тангенса и котангенса противоположных углов α и −α .

Если же Вас интересуют свойства функций синуса, косинуса, тангенса и котангенса, то их можно изучить в соответствующем разделе статьи .

Навигация по странице.

Знаки синуса, косинуса, тангенса и котангенса по четвертям

Ниже в этом пункте будет встречаться фраза «угол I , II , III и IV координатной четверти». Объясним, что же это за углы.

Возьмем единичную окружность , отметим на ней начальную точку А(1, 0) , и повернем ее вокруг точки O на угол α , при этом будем считать, что мы попадем в точку A 1 (x, y) .

Говорят, что угол α является углом I , II , III , IV координатной четверти , если точка А 1 лежит в I , II , III , IV четверти соответственно; если же угол α таков, что точка A 1 лежит на любой из координатных прямых Ox или Oy , то этот угол не принадлежит ни одной из четырех четвертей.

Для наглядности приведем графическую иллюстрацию. На чертежах ниже изображены углы поворота 30 , −210 , 585 и −45 градусов, которые являются углами I , II , III и IV координатных четвертей соответственно.

Углы 0, ±90, ±180, ±270, ±360, … градусов не принадлежат ни одной из координатных четвертей.

Теперь разберемся, какие знаки имеют значения синуса, косинуса, тангенса и котангенса угла поворота α в зависимости от того, углом какой четверти является α .

Для синуса и косинуса это сделать просто.

По определению синус угла α - это ордината точки А 1 . Очевидно, что в I и II координатных четвертях она положительна, а в III и IV четвертях – отрицательна. Таким образом, синус угла α имеет знак плюс в I и II четвертях, а знак минус – в III и VI четвертях.

В свою очередь косинус угла α - это абсцисса точки A 1 . В I и IV четвертях она положительна, а во II и III четвертях – отрицательна. Следовательно, значения косинуса угла α в I и IV четвертях положительны, а во II и III четвертях – отрицательны.


Чтобы определить знаки по четвертям тангенса и котангенса нужно вспомнить их определения: тангенс – это отношение ординаты точки A 1 к абсциссе, а котангенс – отношение абсциссы точки A 1 к ординате. Тогда из правил деления чисел с одинаковыми и разными знаками следует, что тангенс и котангенс имеют знак плюс, когда знаки абсциссы и ординаты точки A 1 одинаковые, и имеют знак минус – когда знаки абсциссы и ординаты точки A 1 различны. Следовательно, тангенс и котангенс угла имеют знак + в I и III координатных четвертях, и знак минус – во II и IV четвертях.

Действительно, например, в первой четверти и абсцисса x , и ордината y точки A 1 положительны, тогда и частное x/y , и частное y/x – положительно, следовательно, тангенс и котангенс имеют знаки + . А во второй четверти абсцисса x – отрицательна, а ордината y – положительна, поэтому и x/y , и y/x – отрицательны, откуда тангенс и котангенс имеют знак минус.


Переходим к следующему свойству синуса, косинуса, тангенса и котангенса.

Свойство периодичности

Сейчас мы разберем, пожалуй, самое очевидное свойство синуса, косинуса, тангенса и котангенса угла. Оно состоит в следующем: при изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса этого угла не изменяются.

Это и понятно: при изменении угла на целое число оборотов мы из начальной точки А всегда будем попадать в точку А 1 на единичной окружности, следовательно, значения синуса, косинуса, тангенса и котангенса остаются неизменными, так как неизменны координаты точки A 1 .

С помощью формул рассматриваемое свойство синуса, косинуса, тангенса и котангенса можно записать так: sin(α+2·π·z)=sinα , cos(α+2·π·z)=cosα , tg(α+2·π·z)=tgα , ctg(α+2·π·z)=ctgα , где α - угол поворота в радианах, z – любое , абсолютная величина которого указывает количество полных оборотов, на которые изменяется угол α , а знак числа z указывает направление поворота.

Если же угол поворота α задан в градусах, то указанные формулы перепишутся в виде sin(α+360°·z)=sinα , cos(α+360°·z)=cosα , tg(α+360°·z)=tgα , ctg(α+360°·z)=ctgα .

Приведем примеры использования этого свойства. Например, , так как , а . Вот еще пример: или .

Это свойство вместе с формулами приведения очень часто используется при вычислении значений синуса, косинуса, тангенса и котангенса «больших» углов.

Рассмотренное свойство синуса, косинуса, тангенса и котангенса иногда называют свойством периодичности.

Свойства синусов, косинусов, тангенсов и котангенсов противоположных углов

Пусть А 1 – точка, полученная в результате поворота начальной точки А(1, 0) вокруг точки O на угол α , а точка А 2 – это результат поворота точки А на угол −α , противоположный углу α .

Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов базируется на достаточно очевидном факте: упомянутые выше точки А 1 и А 2 либо совпадают (при ), либо располагаются симметрично относительно оси Ox . То есть, если точка A 1 имеет координаты (x, y) , то точка А 2 будет иметь координаты (x, −y) . Отсюда по определениям синуса, косинуса, тангенса и котангенса записываем равенства и .
Сопоставляя их, приходим к соотношениям между синусами, косинусами, тангенсами и котангенсами противоположных углов α и −α вида .
Это и есть рассматриваемое свойство в виде формул.

Приведем примеры использования этого свойства. Например, справедливы равенства и .

Остается лишь заметить, что свойство синусов, косинусов, тангенсов и котангенсов противоположных углов, как и предыдущее свойство, часто используется при вычислении значений синуса, косинуса, тангенса и котангенса, и позволяет полностью уйти от отрицательных углов.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а .

Синус - функция числа x . Ее область определения

Область значений синуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период синуса

Знак синуса:

1. синус равен нулю при , где n - любое целое число;

2. синус положителен при , где n - любое целое число;

3. синус отрицателен при

Где n - любое целое число.

Синус - функция нечетная x и -x , то их ординаты - синусы - окажутся также противоположными. То есть для любого x .

1. Синус возрастает на отрезках , где n - любое целое число.

2. Cинус убывает на отрезке , где n - любое целое число.

При ;

при .

Косинус

Косинусом числа а называется абсцисса точки, изображающей это число на числовой окружности. Косинусом угла в а радиан называется косинус числа а .

Косинус - функция числа. Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений косинуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси абсцисс является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период косинуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак косинуса:

1. косинус равен нулю при , где n - любое целое число;

2. косинус положителен при , где n - любое целое число;

3. косинус отрицателен при , где n - любое целое число.

Косинус - функция четная . Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x , то их абсциссы - косинусы - окажутся равными. То есть

для любого x .

1. Косинус возрастает на отрезках , где n - любое целое число.

2. Косинус убывает на отрезках , где n - любое целое число.

при ;

при .

Тангенс

Тангенсом числа называется отношение синуса этого числа к косинусу этого числа: .

Тангенсом угла в а радиан называется тангенс числа а .

Тангенс - функция числа. Ее область определения - множество всех чисел, у которых косинус не равен нулю, так как никаких других ограничений в определении тангенса нет. И так как косинус равен нулю при , то , где .

Область значений тангенса

Период тангенса x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию тангенсов в некоторой точке t . Вот и получится, что , то есть число является периодом тангенса.

Знак тангенса: тангенс - отношение синуса к косинусу. Значит, он

1. равен нулю, когда синус равен нулю, то есть при , где n - любое целое число.

2. положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при , где а - любое целое число.

3. отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при , где а - любое целое число.

Тангенс - функция нечетная . Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, . В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .

Вот и получилось, что .

Значит, тангенс возрастает на каждом участке своей области определения , то есть на всех интервалах вида , где а - любое целое число.

Котангенс

Котангенсом числа называется отношение косинуса этого числа к синусу этого числа: . Котангенсом угла в а радиан называется котангенс числа а . Котангенс - функция числа. Ее область определения - множество всех чисел, у которых синус не равен нулю, так как никаких других ограничений в определении котангенса нет. И так как синус равен нулю при , то , где

Область значений котангенса - множество всех действительных чисел.

Период котангенса равен . Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию котангенсов в некоторой точке t . Вот и получится, что , то есть, что число является периодом котангенса.

В этой статье будут рассмотрены три основных свойства тригонометрических функций: синуса, косинуса, тангенса и котангенса.

Первое свойство - знак функции в зависимости от того, какой четверти единичной окружности приналдежит угол α . Второе свойство - периодичность. Согласно этому свойству, тигонометрическая функция не меняет значения при изменении угла на целое число оборотов. Третье свойсто определяет, как меняются значения функций sin, cos, tg, ctg при противоположных углах α и - α .

Yandex.RTB R-A-339285-1

Часто в математическом тексте или в контексте задачи можно встретить фразу: "угол первой, второй, третьей или четвертой координатной четверти". Что это такое?

Обратимся к единичной окружности. Она разделена на четыре четверти. Отметим на окружности начальную точку A 0 (1 , 0) и, поворачивая ее вокруг точки O на угол α , попадем в точку A 1 (x , y) . В зависимости от того, в какой четверти будет лежать точка A 1 (x , y) , угол α будет называться углом первой, второй, третьей и четвертой четвети соответственно.

Для наглядности приведем иллюстрацию.

Угол α = 30 ° лежит в первой четверти. Угол - 210 ° является углом второй четверти. Угол 585 ° - угол третьей четверти. Угол - 45 ° - это угол четвертой четверти.

При этом углы ± 90 ° , ± 180 ° , ± 270 ° , ± 360 ° не принадлежат ни одной четверти, так как лежат на координатных осях.

Теперь рассмотрим знаки, которые принимают синус, косинус, тангенс и котангенс в зависимости от того, в какой четверти лежит угол.

Чтобы определить знаки синуса по четвертям, вспомним опредение. Синус - это ордината точки A 1 (x , y) . Из рисунка видно, что в первой и второй четвертях она положительна, а в третьей и четверной - отрицательна.

Косинус - это абсцисса точки A 1 (x , y) . В соответсии с этим, определяем знаки косинуса на окружности. Косинус положителен в первой и четвертой четвертях, а отрицателен во второй и третьей четверти.

Для определения знаков тангенса и котангенса по четвертям также вспоминаем определения этих тригонометрических функций. Тангенс - отношение ординаты точки к абсциссе. Значит, по правилу деления чисел с разными знаками, когда ордината и абсцисса имеют одинаковые знаки, знак тангенса на окружности будет положительным, а когда ордината и абсцисса имеют разные знаки - отрицательным. Аналогично определяются знаки котангенса по четвертям.

Важно помнить!

  1. Синус угла α имеет знак плюс в 1 и 2 четвертях, знак минус - в 3 и 4 четвертях.
  2. Косинус угла α имеет знак плюс в 1 и 4 четвертях, знак минус - в 2 и 3 четвертях.
  3. Тангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус - в 2 и 4 четвертях.
  4. Котангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус - в 2 и 4 четвертях.

Свойство периодичности

Свойство периодичности - одно из самых очевидных свойств тригонометрических функций.

Свойство периодичности

При изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса данного угла остаются неизменными.

Действительно, при изменении угла на целое число оборотов мы всегда будем попадать из начальной точки A на единичной окружности в точку A 1 с одними и теми же координатами. Соответственно, не будут меняться и значения синуса, косинуса, тангенса и котангенса.

Математически данное свойство записывается так:

sin α + 2 π · z = sin α cos α + 2 π · z = cos α t g α + 2 π · z = t g α c t g α + 2 π · z = c t g α

Какое применение на практике находит это свойство? Свойство периодичности, как и формулы приведения, часто используется для вычисления значений синусов, косинусов, тангенсов и котангенсов больших углов.

Приведем примеры.

sin 13 π 5 = sin 3 π 5 + 2 π = sin 3 π 5

t g (- 689 °) = t g (31 ° + 360 ° · (- 2)) = t g 31 ° t g (- 689 °) = t g (- 329 ° + 360 ° · (- 1)) = t g (- 329 °)

Вновь обратимся к единичной окружности.

Точка A 1 (x , y) - результат поворота начальной точки A 0 (1 , 0) вокруг центра окружности на угол α . Точка A 2 (x , - y) - результат поворота начальной точки на угол - α .

Точки A 1 и A 2 симметричны относительно оси абсцисс. В случае, когда α = 0 ° , ± 180 ° , ± 360 ° точки A 1 и A 2 совпадают. Пусть одна точка имеет координаты (x , y) , а вторая - (x , - y) . Вспомним определения синуса, косинуса, тангенса, котангенса и запишем:

sin α = y , cos α = x , t g α = y x , c t g α = x y sin - α = - y , cos - α = x , t g - α = - y x , c t g - α = x - y

Отсюда следует свойство синусов, косинусов, тангенсов и котангенсов противоположных углов.

Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов

sin - α = - sin α cos - α = cos α t g - α = - t g α c t g - α = - c t g α

Согласно этому свойству, справедливы равенства

sin - 48 ° = - sin 48 ° , c t g π 9 = - c t g - π 9 , cos 18 ° = cos - 18 °

Рассмотренное свойство часто используется при решении практических задач в случаях, когда нужно избавиться от отрицательных знаков углов в агрументах тригонометрических функций.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter