Что такое метаболизм. Обмен веществ. Понятие ассимиляции и диссимиляции. Виды обмена веществ

ПЛАН-КОНСПЕКТ УРОКА

Тема: Ассимиляция и диссимиляция. Метаболизм.

    ФИО Муратова Гульназ Раушановна

    Место работы МБОУ «Нижнебишевская СОШ»

    Должность учитель биологии

    Предмет биология

6. Базовый учебник Биология. Введение в общую биологию и экологию. 9 класс: учеб. для общеобразовательных учреждений / А.А. Каменский,Е.А. Криксунов, В.В. Пасечник.- 11-е изд., стереотип.- М.: Дрофа, 2010

Цель урока:

Познакомить учащихся с понятием «обмен веществ в организме», ассимиляция, диссимиляция, метаболизм.

Задачи урока:

Образовательные: конкретизировать знания об обмене веществ (метаболизме) как свойстве живых организмов, познакомить с двумя сторонами обмена, выявить общие закономерности метаболизма; установить связь пластического и энергетического обмена на разных уровнях организации живого и их связь с окружающей средой.

Развивающие:формировать умение выделять сущность процесса в изучаемом материале; обобщать и сравнивать, делать выводы; работать с текстом, схемами, другими источниками;

реализация творческого потенциала учащихся, развитие самостоятельности.

Воспитательные: используя приобретенные знания, понимать перспективы практического использования фотосинтез; понимать влияние обмена веществ на сохранение и укрепление здоровья.

Оборудование: компьютер, проектор, презентация.

Тип урока: изучение нового материала.

Формы работы учащихся: самостоятельная работа с учебником, индивидуальная работа у доски, фронтальная работа.

Ход урока

    Организационный момент.

II . Повторение материала

    Проверка правильности заполнения таблицы «Сравнение строения клеток эукариот и прокариот». (Ответ учащегося у доски.)

    Фронтальная беседа по вопросам:

    Какую роль выполняет спора у прокариот? Чем она отличается от спор эукариот?

    Сравнивая строение и процессы жизнедеятельности эукариот и прокариот, выделите признаки, позволяющие предположить, какие клетки исторически более древние, а какие - более молодые.

    Что такое ферменты? Какова их роль в организме?

    Что такое обмен веществ? Приведите примеры обмена веществ в организме.

III. Изучение нового материала .

Задание: сравните два определения, найдите, есть ли в них отличие или они сходны. Чем вы это можете объяснить?

Обмен веществ складывается из двух взаимосвязанных процессов – анаболизма и катаболизма.

1. В ходе ассимиляции происходит биосинтез сложных молекул из простых молекул-предшественников или из молекул веществ, поступивших из внешней среды.

2. Важнейшими процессами ассимиляции являются синтез белков и нуклеиновых кислот (свойственный всем организмам) и синтез углеводов (только у растений, некоторых бактерий и цианобактерий).

3. В процессе ассимиляции при образовании сложных молекул идет накопление энергии, главным образом в виде химических связей.

1. При разрыве химических связей в молекулах органических соединений энергия высвобождается и запасается в виде АТФ.

2. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у прокариот – в цитоплазме, на мембранных структурах.

3. Диссимиляция обеспечивает все биохимические процессы в клетке энергией.

Всем живым клеткам постоянно нужна энергия, необходимая для протекания в них различных биологических и химических реакций. Одни организмы для этих реакций используют энергию солнечного света (при фотосинтезе), другие – энергию химических связей органических веществ, поступающих с пищей. Извлечение энергии из пищевых веществ осуществляется в клетке путем их расщепления и окисления кислородом, поступающим в процессе дыхания. Поэтому этот процесс называют биологическим окислением , или клеточным дыханием .

Биологическое окисление с участием кислорода называют аэробным , без кислорода – анаэробным . Процесс биологического окисления идет многоступенчато. При этом в клетке происходит накопление энергии в виде молекул АТФ и других органических соединений.

IV. Закрепление изученного материала.

    Что такое ассимиляция? Приведите примеры реакций синтеза в клетке.

    Что такое диссимиляция? Приведите примеры реакций распада в клетке.

    Докажите, что ассимиляция и диссимиляция - две стороны единого процесса обмена веществ и энергии - метаболизма.

Задание. Установите соответствие между процессами, протекающими в клетках организмов, и их принадлежностью к ассимиляции или диссимиляции:

Процессы, протекающие в клетках

Обмен веществ

1. Испарение воды

2. Дыхание

3. Расщепление жиров

4. Биосинтез белков

5. Фотосинтез

6. Расщепление белков

7.Расщепление
полисахаридов

8. Биосинтез жиров

9.Синтез
нуклеиновых кислот

10. Хемосинтез

А – ассимиляция

Б – диссимиляция

Ответ: 1 – Б, 2 – Б, 3 – Б, 4 – А, 5 – А, 6 – Б, 7 – Б, 8 – А, 9 – А, 10 – А.

Домашнее задание: Изучить § 2.8 «Ассимиляция и диссимиляция. Метаболизм», ответить на вопросы в конце параграфа, повторить § 1.7.

Вопрос 1. Почему Солнце — главнейший ис­точник энергии на Земле?

Для синтеза органических веществ всем организмам необходима энергия. Основ­ным источником первичных органиче­ских соединений на планете являются растения. Растения используют для их синтеза энергию Солнца. Другие живые существа обеспечиваются питанием, а следовательно, и энергией за счет ве­ществ, полученных растениями. Таким образом, именно Солнце является глав­ным источником энергии.

Вопрос 2. Почему ассимиляция невозможна без диссимиляции, и наоборот?

Процесс ассимиляции характеризуется образованием новых, необходимых клет­ке соединений. Для синтеза каких-либо веществ нужны затраты энергии. Энергия образуется за счет постоянного распада запасенных при ассимиляции сложных органических веществ. Совокупность ре­акций распада веществ клетки, сопровож­дающихся выделением энергии, называ­ют диссимиляцией. Таким образом, при диссимиляции энергия образуется, а при ассимиляции она расходуется на создание новых соединений. Эти два взаимосвязан­ных процесса, протекающих в клетке, не­возможны один без другого.

Вопрос 3. Могли бы какие-либо живые суще­ства выжить на Земле, если бы Солнце погасло?

Солнце является источником энергии для растений, которые благодаря хлоро­филлу синтезируют органические вещест­ва. Животные, грибы и бактерии исполь­зуют эту органику для получения энергии АТФ, затрачиваемой ими для синтеза не­обходимых соединений, построения кле­ток. Без солнечной энергии они не смогли бы существовать.

Однако некоторые бактерии в качестве источника энергии используют энергию, выделяющуюся при окислении ими неор­ганических соединений (аммиака, соеди­нений серы и др.). Микроорганизмы, обмен веществ которых не зависит от солнечной энергии, вполне могли бы вы­жить, если бы Солнце погасло.

2.8. Ассимиляция и диссимиляция. Метаболизм

5 (100%) 3 votes

На этой странице искали:

  • почему солнце главнейший источник энергии на земле
  • почему ассимиляция невозможна без диссимиляции и наоборот
  • почему считается что солнце главнейший источник энергии на земле
  • почему солнце главный источник энергии на земле
  • почему солнце главнейший источник энергии

Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее элементы, необходимые для питания, и выделяя продукты жизнедеятельности. В круговороте органических веществ самыми существенными стали процессы синтеза и распада.

Ассимиляция или пластический обмен – совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе ассимиляции синтезируются органические вещества, необходимые клетке. обеспечивает рост, развитие, обновление организма и накопление запасов, используемых в качестве источника энергии. Организмы с точки зрения термодинамики представляют собой открытые системы, т. е. могут существовать только при непрерывном притоке энергии извне. Ассимиляция уравновешивается суммой процессов диссимиляции (распада). Примером таких реакций являются фотосинтез, биосинтез белка и репликация ДНК.

Аминокислоты -> Белки

Глюкоза -> Полисахариды

Глицерин + Жирные кислоты -> Жиры

Нуклеотиды -> Нуклеиновые кислоты

Другая сторона обмена веществ - процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые соединения, при этом утрачивается их сходство с веществами организма и выделяется энергия, запасаемая в виде АТФ, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Белки -> Аминокислоты

Полисахариды -> Глюкоза

Жиры -> Глицерин + Жирные кислоты

Нуклеиновые кислоты -> Нуклеотиды

Обмен веществ обеспечивает постоянство химического состава и строения всех частей организма и как следствие - постоянство функционирования в непрерывно меняющихся условиях окружающей среды.

Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры ДНК. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.

Структура молекулы ДНК была расшифрована в 1953г Уотсоном, Криком, Уилкинсом. Это две спирально закрученные антипараллельные (напротив конца 3 / одной цепи располагается 5 / конец другой) полинуклеотидные цепи. Мономерами ДНК являются нуклеотиды , в состав каждого из них входят: 1) дезоксирибоза; 2) остаток фосфорной кислоты; 3) одно из четырех азотистых оснований (аденин, тимин, гуанин, цитозин).). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид , прикреплена изнутри к клеточной мембране. ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Нуклеотиды соединяются в цепочку благодаря фосфорно-диэфирным связям между дезоксирибозой одного остатка и остатком фосфорной кислоты другого нуклеотида. Азотистые основания присоединяются к дезоксирибозе и образуют боковые радикалы. Между азотистыми основаниями цепочек ДНК устанавливаются водородные связи (2 между А и Т, 3 между Г и Ц). Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью.


РЕПАРАЦИЯ ДНК- особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации. Каждая из систем репарации включает следующие компоненты:

ДНК-хеликаза - фермент, «узнающий» химически изменённые участки в цепи и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий повреждённый участок;

ДНК-полимераза - фермент, синтезирующий соответствующий участок цепи ДНК взамен удалённого;

ДНК-лигаза - фермент, замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.

Репликация молекул ДНК происходит в синтетический период интерфазы. Каждая из двух цепей "материнской" молекулы служит матрицей для "дочерней". После репликации вновь синтезированная молекула ДНК содержит одну "материнскую" цепочку, а вторую - "дочернюю", вновь синтезированную (полуконсервативный способ). Для матричного синтеза новой молекулы ДНК необходимо, чтобы старая молекула была деспирализована и вытянута. Репликация начинается в нескольких местах молекулы ДНК. Участок молекулы ДНК от точки начала одной репликации до точки начала другой называется репликоном . Прокариотическая клетка содержит один репликон, а эукариотическая - содержит много репликонов. Начало репликации активируется праймерами (затравками), состоящими из 100-200 пар нуклеотидов. Фермент ДНК-геликаза раскручивает и разделяет материнскую спираль ДНК на 2 нити, на которых по принципу комплементарности при участии фермента ДНК-полимеразы собираются «дочерние» цепи ДНК . Фермент ДНК-топоизомераза скручивает «дочерние» молекулы ДНК. В каждом репликоне ДНК-полимераза может двигаться вдоль «материнской» нити только в одном направлении (3/ ⇒ 5/). Таким образом, присоединение комплементарных нуклеотидов дочерних нитей идет в противоположных направлениях (антипараллельно). Репликация во всех репликонах идет одновременно. Фрагменты Оказаки и части «дочерних» нитей, синтезированные в разных репликонах, сшиваются в единую нить ферментом лигазой . Репликация характеризуется полуконсервативностью, антипараллельностью и прерывистостью (фрагменты Оказаки).

Механизм репарации основан на наличии в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Такую репарацию называют эксцизионной , т.е. с «вырезанием». Она осуществляется до очередного цикла репликации, поэтому ее называют также дорепликативной .

В том случае, когда система эксцизионной репарации не исправляет изменения, возникшего в одной цепи ДНК, в ходе репликации происходит фиксация этого изменения и оно становится достоянием обеих цепей ДНК. Это приводит к замене одной пары комплементарных нуклеотидов на другую либо к появлению разрывов (брешей) во вновь синтезированной цепи против измененных участков. Пострепликативная репарация осуществляется путем рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Пример- восстановление нормальной структуры ДНК при возникновении тиминовых димеров (Т-Т) Ковалентные связи, возникающие между рядом стоящими остатками тимина, делают их не способными к связыванию с комплементарными нуклеотидами. В результате во вновь синтезируемой цепи ДНК появляются разрывы (бреши), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется затем путем синтеза на комплементарной ей полинуклеотидной цепи. Проявлением такой пострепликативной репарации, осуществляемой путем рекомбинации между цепями двух дочерних молекул ДНК, можно считать нередко наблюдаемый обмен материалом между сестринскими хроматидами.

18. Репликация молекулы ДНК. Репликон. Праймер. Принципы репликации ДНК: полуконсервативность, антипараллельность, прерывистость (фрагменты Оказаки). Фазы репликации: инициации, элонгации, терминации . Особенности репликации ДНК про- и эукариот.

Способность к самокопированию- репликация. Это свойство обеспечивается двухцепочечной структуре. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным .

Для осуществления репликации цепи материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул. C помощью фермента геликазы , разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется синтез комплементарных цепей.

Cинтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки ) также в направлении от 5"- к 3"-концу. Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазы соединяется с предшествующим фрагментом после удаления его РНК-затравки. В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей . Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов, требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей (отстающей ). Хотя отдельные фрагменты образуются в направлении 5" → 3", в целом эта цепь растет в направлении 3" → 5". Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот на порядок ниже, чем у прокариот. Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.

Праймер - это короткий фрагмент нуклеиновой кислоты, комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы, а также при репликации ДНК. Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3"-конца праймера. ДНК-полимераза последовательно добавляет к 3"-концу праймера нуклеотиды, комплементарные матричной цепи.

Репликон - единица процесса репликации участка генома, к-рый находится под контролем одной точки инициации (начала) репликации. От точки инициации репликация идёт в обе стороны, в нек-рых случаях с неравной скоростью. Репликация ДНК - ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

· инициация репликации

· элонгация

· терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

Полуконсервативность означает, что каждая дочерняя ДНК состоит из одной матричной цепи и одной вновь синтезированной.

Антипараллельность цепей ДНК: противоположная направленность двух нитей двойной спирали ДНК; одна нить имеет направление от 5" к 3", другая - от 3" к 5".

Каждая цепь ДНК имеет определенную ориентацию. Один конец несет гидроксильную группу (- ОН), присоединенную к 3"-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5"-положении сахара. Две комплементарные цепи в молекуле ДНК расположены в противоположных направлениях - антипараллельно: одна нить имеет направление от 5" к 3", другая - от 3" к 5". При параллельной ориентации напротив 3"-конца одной цепи находился бы З"-конец другой.

У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро.

Ассимиляция в биологии - это процесс, который играет важную роль в пищеварительной системе живого организма. Что же это такое? Допустим, вы сегодня съели еду, чтобы получить определенную энергию. Но вы когда-нибудь задумывались о том, как пища попадает из тарелки в клетки? После того как вы что-то съели, ваш организм начинает расщеплять пищу во время пищеварения, поглощает питательные вещества и распределяет их по клеткам во время ассимиляции, где они используются для роста и восстановления.

Что происходит после еды?

Чтобы понять, что такое усвоение пищи и ассимиляция в биологии, давайте сначала посмотрим, как мы перевариваем обычную еду. Возьмем такой пример, как чизбургер. Во время жевания происходит вымачивание, измельчение и превращение еды в болюс, который затем перемещается через пищевод в желудок, где уже сильные кислоты и ферменты разбивают его на части.

Углеводы и белки (булочка и мясо) начинают перевариваться раньше всех. Далее в тонком кишечнике жиры (сыр) начинают разрушаться до их отдельных компонентов, называемых жирными кислотами. На данный момент переваривание чизбургера завершено. Теперь пришло время, чтобы усвоить питательные вещества, поступившие в ваш организм.

Усвоение питательных веществ

Усвоение питательных веществ осуществляется в тонком кишечнике, который снабжен мелкими выступами, которые называются микроворсинками. Эти важные клетки принимают питательные вещества из кишечника и перекачивают его в кровь, которая доставляет их к телу. Чтобы понять этот процесс, давайте посмотрим на то, как конкретно усваиваются углеводы.

К тому времени, как углеводы, содержащиеся в булочке гамбургера, достигают тонкого кишечника, они разбиваются на сахар, известный как глюкоза. Микроворсинки содержат небольшие насосы, которые высасывают ее из просвета кишечника, и перемещают в его эпителиальные клетки. Однако, чтобы сахар поступил к остальной части тела, он должен войти в поток крови. Другая сторона кишечных эпителиальных клеток имеет еще один насос, который направляет глюкозу в кровеносные сосуды, которые окружают кишечник.

Слишком много глюкозы в крови может вызвать серьезные проблемы, поэтому часть ее доставляется в печень для хранения. Клетки этого жизненно важного органа хранят избыток сахара в виде гликогена. Оттуда глюкоза доставляется ко всем клеткам в организме, которые используют ее для создания клеточной энергии, или АТФ, необходимой для удовлетворения всех потребностей клеток и организма в целом. Питательные вещества - это не единственное, что необходимо для того, чтобы тело продолжало оставаться здоровым. Очень важным является достаточное употребление воды.

Ассимиляция в биологии - это что?

Биологическое усвоение представляет собой сочетание двух процессов, во время которых в клетки поставляются питательные вещества. Первый включает в себя поглощение витаминов, минералов и других химических веществ из пищи. В организме человека это делается с помощью физического (пероральное жевание и желудочное вспенивание) и химического распада (ферментов и кислот). Второй процесс, который называется биоассимиляцией, является химическим изменением веществ в крови, печени или клеточных выделениях.

Ассимиляция и диссимиляция в биологии

Диссимиляцией в биологии называют процесс распада органических соединений (белков, жиров, углеводов и т. д.) на простые вещества. Единство ассимиляции и диссимиляции обеспечивает обмен вещества и энергии, которая является краеугольным камнем жизнедеятельности и обеспечивает непрерывность обновления органического вещества в течение всего жизненного цикла организма.

Диссимиляция в растительных и животных организмах

Диссимиляция в растениях занимает центральное место в метаболизме целого ряда процессов, в том числе дыхания и гликолиза. Высвобождение энергии и используемый результат этих процессов необходим для существования жизненно важных признаков. Среди конечных продуктов диссимиляции лидирующие позиции занимают вода, газообразный диоксид углерода и аммиак.

Если у животных эти продукты в процессе накопления выделяются снаружи, то у растений углекислый газ (не в полной мере) и аммиак применяются для биосинтеза органики и являются исходным материалом для усвоения. Интенсивность процессов диссимиляции у растений изменяется в зависимости от стадии онтогенеза организма и зависит от некоторых других факторов.

Примеры биологической ассимиляции

Основным источником энергии для всего живого на планете является солнечное излучение. Все организмы, обитающие на Земле, могут быть разделены на автотрофные и гетеротрофные. Первая группа - это преимущественно зеленые растения, способные преобразовывать лучистую энергию от солнца и путем фотосинтеза получать органические соединения из неорганических веществ.

Остальные живые организмы, не считая некоторых микроорганизмов, способных получать энергию с помощью средств от химических реакций, усваивают уже сформированное органическое вещество и используют его в качестве источника энергии или в качестве структурного материала для создания органов. Время, когда происходит самая активная и интенсивная ассимиляция в биологии, - это молодой возраст у животных и вегетационный период у растений.

Метаболизм: единство двух процессов

Метаболизм представляет собой единство двух процессов: ассимиляции и диссимиляции. Усвоение является суммой всех процессов создания живой материи: поглощение клеткой веществ, поступающих в организм из окружающей среды, формирование более сложных химических соединений из более простых и так далее. Ассимиляция в биологии - это процесс, в котором клетки, использующие различные материалы, превращаются в живую материю. Диссимиляция - это разрушение живой материи, распад, расщепление веществ в клеточных структурах, в частности в белковых соединениях. Ассимиляция (примеры в природе - это фотосинтез, фиксация азота из почвы, поглощение питательных веществ при пищеварении) и диссимиляция неразрывно связаны между собой. Усвоение сопровождается увеличением процессов разрушения, которые, в свою очередь, подготавливают почву для ассимиляции.

Синтез веществ, идущий в клетке, называют биологическим синтезомили сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией(лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называютобменом веществ и энергии.Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.

19. Обмен веществ и энергии в клетке. Фотосинтез, хемосинтез. Процесс ассимиляции (основные реакции). Обмен веществ представляет собой единство ассимиляции и диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Фотосинтез -это процесс превращения энергии солнечного света в энергию химических соединений. Фотосинтез -это процесс образования органических веществ(глюкозы,а затем крахмала)из неорганических веществ, в хлоропластах на свету с выделением кислорода. Протекает фотосинтез в 2 фазы: световая и теневая. Световая фаза протекает на свету. Во время световой фазы происходит возбуждение хлорофилла путем поглощения кванта света. В световой фазе происходит фотолиз воды с последующим выделением кислорода в атмосферу. Кроме того, в световой фазе фотосинтеза протекают следующие процессы: накопление протонов водорода, синтез АТФ из АДФ, присоединение H+ к специальному переносчику НАДФ

ИТОГ СВЕТОВОЙ РЕАКЦИИ:

Образование АТФ и НАДФ*H, выделение O2 в атмосферу.

Темновая фаза (цикл фиксации CO2, цикл Кальвина) протекает в строме хлоропласта. В темновой фазе происходит следующие процессы

Из световой реакции берется АТФ и НАДФ*H

Из атмосферы - CO2

1)Фиксация CO2

2)Образование глюкозы

3)Образование крахмала

ИТОГОВОЕ УРАВНЕНИЕ:

6CO2+6H2O---(хлорофилл,свет)-С6H12O6+6O2

Хемосинтез – синтез органических веществ за счет энергии химических реакций. Хемосинтез осуществляется бактериями Основные реакции фотосинтеза: 1) окисление серы: 2H2S + O2 = 2H20 + 2S

2S + O2 + 2H2O = 2H2SO4 2) окисление азота: 2NH3 + 3O2 = 2HNO2 + 2H2O 2HNO2 + O2 = HNO3 3) окисление кислорода 2H2 + O2 = 2H2O 4) окисление железа: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2

20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена. Обмен веществ представляет собой единство ассимиляции и диссимиляции. при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся Все функции, выполняемы клеткой, требуют затрат энергии, которая освобождается в процессе диссимиляции. Биологическое значение диссимиляции сводится не только к освобождению энергии, потребной клетке, но нередко и к разрушению веществ, вредных для организма Весь процесс диссимиляции, или энергетического обмена, состоит из 3 этапов: подготовительный, бескислородный и кислородный. В подготовительном этапе под действием ферментов происходит расщепление полимеров до мономеров. Так, белки расщепляются до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. В подготовительном этапе выделяется мало энергии и рассеивается обычно в виде тепла. 2) Бескислородный или анаэробный этап. Разберем на примере глюкозы. В анаэробном этапе происходит распад глюкозы до молочной кислоты: С6H12O6 + 2АДФ + Н3РО4 = 2C3H6O3 + 2Н2О + 2АТФ (молочная к-та) 3) Кислородный этап. При кислородном этапе вещества окисляются до СО2 и Н2О. При доступе кислорода пировиноградная кислота проникает в митохондрии и подвергается окислению: С3H6O3+6O2-6CO2+6H2O+36АТФ Суммарное уравнение: C6H12O6+6O2-6CO2+6H2O+38АТФ