Как запутать частицы. Квантовая запутанность

Квантовая запутанность - это квантовомеханическое явление, которое стали изучать на практике сравнительно недавно - в 1970-е годы. Оно заключается в следующем. Представим себе, что в результате какого-нибудь события родились одновременно два фотона. Получить пару квантово-запутанных фотонов можно, например, светя на нелинейный кристалл лазером с определенными характеристиками. У порождаемых фотонов в паре могут быть разные частоты (и длины волны), но при этом сумма их частот равна частоте исходного возбуждения. У них также ортогональные поляризации в базисе кристаллической решетки, что облегчает их пространственное разделение. При рождении пары частиц должны выполняться законы сохранения, а значит, суммарные характеристики (поляризация, частота) двух частиц имеют заранее известное, строго определенное значение. Из этого следует, что, зная характеристику одного фотона, мы совершенно точно можем узнать характеристику другого. Согласно принципам квантовой механики, до момента измерения частица находится в суперпозиции нескольких возможных состояний, а при измерении суперпозиция снимается и частица оказывается в каком-то одном состоянии. Если проанализировать много частиц, то в каждом состоянии окажется определенный процент частиц, соответствующий вероятности этого состояния в суперпозиции.

А что же происходит с суперпозицией состояний у запутанных частиц в момент измерения состояния одной из них? Парадоксальность и контринтуитивность квантовой запутанности заключается в том, что характеристика второго фотона оказывается определена ровно в тот момент, когда мы измерили характеристику первого. Нет, это не теоретическое построение, это суровая правда окружающего мира, подтвержденная экспериментально. Да, она подразумевает наличие взаимодействия, предающегося с бесконечно большой скоростью, превышающей даже скорость света. Как этим пользоваться на благо человечества пока не очень понятно. Есть идеи применения для вычислений на квантовом компьютере, криптографии и коммуникации.

Ученым из Вены удалось разработать совершенно новую и крайне контринтуитивную методику получения изображений, основанную на квантовой природе света. В их системе изображение формирует свет, никогда не взаимодействовавший с объектом. В основе технологии лежит принцип квантовой запутанности. Статья об этом опубликована в журнале Nature. В исследовании принимали участие сотрудники Института квантовой оптики и квантовой информации (Institute for Quantum Optics and Quantum Information, IQOQI) Венского центра квантовой науки и технологии (Vienna Center for Quantum Science and Technology, VCQ) и Венского университета.

В эксперименте венских ученых один из пары запутанных фотонов обладал длиной волны в инфракрасной части спектра, и именно он проходил через образец. Его собрат обладал длиной волны, соответствующей красному свету и мог детектироваться камерой. Пучок света, генерируемый лазером, делился на две половины, и половины направлялись на два нелинейных кристалла. Объект помещался между двумя кристаллами. Он представлял собой вырезанный силуэт кота - в честь перекочевавшего уже в фольклор персонажа умозрительного эксперимента Эрвина Шредингера. На него направлялся инфракрасный пучок фотонов с первого кристалла. Затем эти фотоны проходили через второй кристалл, где прошедшие сквозь изображение кота фотоны смешивались со свежеродившимися инфракрасными фотонами так, что понять, в каком из двух кристаллов они родились, было совершенно невозможно. Более того, камера и вовсе не детектировала инфракрасные фотоны. Оба пучка красных фотонов объединялись и отправлялись на приемное устройство. Оказалось, что благодаря эффекту квантовой запутанности они хранили всю нужную для создания изображения информацию об объекте.

К аналогичным результатам привел эксперимент, в котором в качестве изображения использовалась не непрозрачная пластина с вырезанным контуром, а объемное силиконовое изображение, не поглощавшее света, но замедлявшее прохождение инфракрасного фотона и создающее разность фаз между фотонами, прошедшими через разные части изображения. Оказалось, что такая пластика оказывала влияние и на фазу красных фотонов, находящихся в состоянии квантовой запутанности с инфракрасными фотонами, но никогда не проходившими через изображение.

  • Перевод

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Чарующей аурой загадочности окутано понятие квантовой запутанности, а также (каким-то образом) связанное с ним требование квантовой теории о необходимости наличия «многих миров». И, тем не менее, по сути своей это научные идеи с приземлённым смыслом и конкретными применениями. Я хотел бы объяснить понятия запутанности и множества миров настолько просто и ясно, насколько знаю их сам.

I

Запутанность считается явлением, уникальным для квантовой механики – но это не так. На самом деле, для начала будет более понятным (хотя это и необычный подход) рассмотреть простую, не квантовую (классическую) версию запутанности. Это позволит нам отделить тонкости, связанные с самой запутанностью, от других странностей квантовой теории.

Запутанность появляется в ситуациях, в которых у нас есть частичная информация о состоянии двух систем. К примеру, нашими системами могут стать два объекта – назовём их каоны. «К» будет обозначать «классические» объекты. Но если вам очень хочется представлять себе что-то конкретное и приятное – представьте, что это пирожные.

Наши каоны будут иметь две формы, квадратную или круглую, и эти формы будут обозначать их возможные состояния. Тогда четырьмя возможными совместными состояниями двух каонов будут: (квадрат, квадрат), (квадрат, круг), (круг, квадрат), (круг, круг). В таблице указана вероятность нахождения системы в одном из четырёх перечисленных состояний.


Мы будем говорить, что каоны «независимы», если знание о состоянии одного из них не даёт нам информации о состоянии другого. И у этой таблицы есть такое свойство. Если первый каон (пирожное) квадратный, мы всё ещё не знаем форму второго. И наоборот, форма второго ничего не говорит нам о форме первого.

С другой стороны, мы скажем, что два каона запутаны, если информация об одном из них улучшает наши знания о другом. Вторая табличка покажет нам сильную запутанность. В этом случае, если первый каон будет круглым, мы будем знать, что второй тоже круглый. А если первый каон квадратный, то таким же будет и второй. Зная форму одного, мы однозначно определим форму другого.

Квантовая версия запутанности выглядит, по сути, также – это отсутствие независимости. В квантовой теории состояния описываются математическими объектами под названием волновая функция. Правила, объединяющие волновые функции с физическими возможностями, порождают очень интересные сложности, которые мы обсудим позже, но основное понятие о запутанном знании, которое мы продемонстрировали для классического случая, остаётся тем же.

Хотя пирожные нельзя считать квантовыми системами, запутанность квантовых систем возникает естественным путём – например, после столкновений частиц. На практике незапутанные (независимые) состояния можно считать редкими исключениями, поскольку при взаимодействии систем между ними возникают корреляции.

Рассмотрим, к примеру, молекулы. Они состоят из подсистем – конкретно, электронов и ядер. Минимальное энергетическое состояние молекулы, в котором она обычно и находится, представляет собой сильно запутанное состояние электронов и ядра, поскольку расположение этих составляющих частиц никак не будет независимым. При движении ядра электрон движется с ним.

Вернёмся к нашему примеру. Если мы запишем Φ■, Φ● как волновые функции, описывающие систему 1 в её квадратных или круглых состояниях и ψ■, ψ● для волновых функций, описывающих систему 2 в её квадратных или круглых состояниях, тогда в нашем рабочем примере все состояния можно описать, как:

Независимые: Φ■ ψ■ + Φ■ ψ● + Φ● ψ■ + Φ● ψ●

Запутанные: Φ■ ψ■ + Φ● ψ●

Независимую версию также можно записать, как:

(Φ■ + Φ●)(ψ■ + ψ●)

Отметим, как в последнем случае скобки чётко разделяют первую и вторую системы на независимые части.

Существует множество способов создания запутанных состояний. Один из них – измерить составную систему, дающую вам частичную информацию. Можно узнать, например, что две системы договорились быть одной формы, не зная при этом, какую именно форму они выбрали. Это понятие станет важным чуть позже.

Более характерные последствия квантовой запутанности, такие, как эффекты Эйнштейна-Подольского-Розена (EPR) и Гринберга-Хорна-Зейлингера (GHZ), возникают из-за её взаимодействия ещё с одним свойством квантовой теории под названием «принцип дополнительности». Для обсуждения EPR и GHZ позвольте мне сначала представить вам этот принцип.

До этого момента мы представляли, что каоны бывают двух форм (квадратные и круглые). Теперь представим, что ещё они бывают двух цветов – красного и синего. Рассматривая классические системы, например, пирожные, это дополнительное свойство означало бы, что каон может существовать в одном из четырёх возможных состояний: красный квадрат, красный круг, синий квадрат и синий круг.

Но квантовые пирожные – квантожные… Или квантоны… Ведут себя совсем по-другому. То, что квантон в каких-то ситуациях может обладать разной формой и цветом не обязательно означает, что он одновременно обладает как формой, так и цветом. Фактически, здравый смысл, которого требовал Эйнштейн от физической реальности, не соответствует экспериментальным фактам, что мы скоро увидим.

Мы можем измерить форму квантона, но при этом мы потеряем всю информацию о его цвете. Или мы можем измерить цвет, но потеряем информацию о его форме. Согласно квантовой теории, мы не можем одновременно измерить и форму и цвет. Ничей взгляд на квантовую реальность не обладает полнотой; приходится принимать во внимание множество разных и взаимоисключающих картин, у каждой из которых есть своё неполное представление о происходящем. Это и есть суть принципа дополнительности, такая, как её сформулировал Нильс Бор.

В результате квантовая теория заставляет нас быть осмотрительными в приписывании свойствам физической реальности. Во избежание противоречий приходится признать, что:

Не существует свойства, если его не измерили.
Измерение – активный процесс, изменяющий измеряемую систему

II

Теперь опишем две образцовые, но не классические, иллюстрации странностей квантовой теории. Обе были проверены в строгих экспериментах (в реальных экспериментах люди меряют не формы и цвета пирожных, а угловые моменты электронов).

Альберт Эйнштейн, Борис Подольский и Натан Розен (EPR) описали удивительный эффект, возникающий при запутанности двух квантовых систем. EPR-эффект объединяет особую, экспериментально достижимую форму квантовой запутанности с принципом дополнительности.

EPR-пара состоит из двух квантонов, у каждого из которых можно измерить форму или цвет (но не то и другое сразу). Предположим, что у нас есть множество таких пар, все они одинаковые, и мы можем выбирать, какие измерения мы проводим над их компонентами. Если мы измерим форму одного из членов EPR-пары, мы с одинаковой вероятностью получим квадрат или круг. Если измерим цвет, то с одинаковой вероятностью получим красный или синий.

Интересные эффекты, казавшиеся EPR парадоксальными, возникают, когда мы проводим измерения обоих членов пары. Когда мы меряем цвет обоих членов, или их форму, мы обнаруживаем, что результаты всегда совпадают. То есть, если мы обнаружим, что один из них красный и затем меряем цвет второго, мы также обнаруживаем, что он красный – и т.п. С другой стороны, если мы измеряем форму одного и цвет другого, никакой корреляции не наблюдается. То есть, если первый был квадратом, то второй с одинаковой вероятностью может быть синим или красным.

Согласно квантовой теории, мы получим такие результаты, даже если две системы будет разделять огромное расстояние и измерения будут проведены почти одновременно. Выбор типа измерений в одном месте, судя по всему, влияет на состояние системы в другом месте. Это «пугающее дальнодействие», как называл его Эйнштейн, по-видимому, требует передачу информации – в нашем случае, информации о проведённом измерении – со скоростью, превышающей скорость света.

Но так ли это? Пока я не узнаю, какой результат получили вы, я не знаю, чего ожидать мне. Я получаю полезную информацию, когда я узнаю ваш результат, а не когда вы проводите измерение. И любое сообщение, содержащее полученный вами результат, необходимо передать каким-либо физическим способом, медленнее скорости света.

При дальнейшем изучении парадокс ещё больше разрушается. Давайте рассмотрим состояние второй системы, если измерение первой дало красный цвет. Если мы решим мерить цвет второго квантона, мы получим красный. Но по принципу дополнительности, если мы решим измерить его форму, когда он находится в «красном» состоянии, у нас будут равные шансы на получение квадрата или круга. Поэтому, результат EPR логически предопределён. Это просто пересказ принципа дополнительности.

Нет парадокса и в том, что удалённые события коррелируют. Ведь если мы положим одну из двух перчаток из пары в коробки и отправим их в разные концы планеты, неудивительно, что посмотрев в одну коробку, я могу определить, на какую руку предназначена другая перчатка. Точно так же, во всех случаях корреляция пар EPR должна быть зафиксирована на них, когда они находятся рядом и потому они могут выдержать последующее разделение, будто бы имея память. Странность EPR-парадокса не в самой по себе возможности корреляции, а в возможности её сохранения в виде дополнений.

III

Дэниел Гринбергер, Майкл Хорн и Антон Зейлингер открыли ещё один прекрасный пример квантовой запутанности. ОН включает три наших квантона, находящихся в специально подготовленном запутанном состоянии (GHZ-состоянии). Мы распределяем каждый из них разным удалённым экспериментаторам. Каждый из них выбирает, независимо и случайно, измерять ли цвет или форму и записывает результат. Эксперимент повторяют многократно, но всегда с тремя квантонами в GHZ-состоянии.

Каждый отдельно взятый экспериментатор получает случайные результаты. Измеряя форму квантона, он с равной вероятностью получает квадрат или круг; измеряя цвет квантона, он с равной вероятностью получает красный или синий. Пока всё обыденно.

Но когда экспериментаторы собираются вместе и сравнивают результаты, анализ показывает удивительный результат. Допустим, мы будем называть квадратную форму и красный цвет «добрыми», а круги и синий цвет – «злыми». Экспериментаторы обнаруживают, что если двое из них решили измерить форму, а третий – цвет, тогда либо 0, либо 2 результата измерений получаются «злыми» (т.е. круглыми или синими). Но если все трое решают измерить цвет, то либо 1 либо 3 измерения получаются злыми. Это предсказывает квантовая механика, и именно это и происходит.

Вопрос: количество зла чётное или нечётное? В разных измерениях реализовываются обе возможности. Нам приходится отказаться от этого вопроса. Не имеет смысла рассуждать о количестве зла в системе без связи с тем, как его измеряют. И это приводит к противоречиям.

Эффект GHZ, как описывает его физик Сидни Колман, это «оплеуха от квантовой механики». Он разрушает привычное, полученное из опыта ожидание того, что у физических систем есть предопределённые свойства, независимые от их измерения. Если бы это было так, то баланс доброго и злого не зависел бы от выбора типов измерений. После того, как вы примете существование GHZ-эффекта, вы его не забудете, а ваш кругозор будет расширен.

IV

Пока что мы рассуждаем о том, как запутанность не позволяет назначить уникальные независимые состояния нескольким квантонам. Такие же рассуждения применимы к изменениям одного квантона, происходящим со временем.

Мы говорим об «запутанных историях», когда системе невозможно присвоить определённое состояние в каждый момент времени. Так же, как в традиционной запутанности мы исключаем какие-то возможности, мы можем создать и запутанные истории, проводя измерения, собирающие частичную информацию о прошлых событиях. В простейших запутанных историях у нас есть один квантон, изучаемый нами в два разных момента времени. Мы можем представить ситуацию, когда мы определяем, что форма нашего квантона оба раза была квадратной, или круглой оба раза, но при этом остаются возможными обе ситуации. Это темпоральная квантовая аналогия простейшим вариантам запутанности, описанным ранее.

Используя более сложный протокол, мы можем добавить чуть-чуть дополнительности в эту систему, и описать ситуации, вызывающие «многомировое» свойство квантовой теории. Наш квантон можно подготовить в красном состоянии, а затем измерить и получить голубое. И как в предыдущих примерах, мы не можем на постоянной основе присвоить квантону свойство цвета в промежутке между двумя измерениями; нет у него и определённой формы. Такие истории реализовывают, ограниченным, но полностью контролируемым и точным способом, интуицию, свойственную картинке множественности миров в квантовой механике. Определённое состояние может разделиться на две противоречащие друг другу исторические траектории, которые затем снова соединяются.

Эрвин Шрёдингер, основатель квантовой теории, скептически относившийся к её правильности, подчёркивал, что эволюция квантовых систем естественным образом приводит к состояниям, измерение которых может дать чрезвычайно разные результаты. Его мысленный эксперимент с «котом Шрёдингера» постулирует, как известно, квантовую неопределённость, выведенную на уровень влияния на смертность кошачьих. До измерения коту невозможно присвоить свойство жизни (или смерти). Оба, или ни одно из них, существуют вместе в потустороннем мире возможностей.

Повседневный язык плохо приспособлен для объяснения квантовой дополнительности, в частности потому, что повседневный опыт её не включает. Практические кошки взаимодействуют с окружающими молекулами воздуха, и другими предметами, совершенно по-разному, в зависимости от того, живы они или мертвы, поэтому на практике измерение проходит автоматически, и кот продолжает жить (или не жить). Но истории с запутанностью описывают квантоны, являющиеся котятами Шрёдингера. Их полное описание требует, чтобы мы принимали к рассмотрению две взаимоисключающие траектории свойств.

Контролируемая экспериментальная реализация запутанных историй – вещь деликатная, поскольку требует сбора частичной информации о квантонах. Обычные квантовые измерения обычно собирают всю информацию сразу – к примеру, определяют точную форму или точный цвет – вместо того, чтобы несколько раз получить частичную информацию. Но это можно сделать, хотя и с чрезвычайными техническими трудностями. Этим способом мы можем присвоить определённый математический и экспериментальный смысл распространению концепции «множественности миров» в квантовой теории, и продемонстрировать её реальность.

Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

Начало квантовой физики

Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

Понимание микромира в начале ХХ века

В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их кропотливый труд, полного понимания структуры атома не существовало.

Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях - волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.

После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление - некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области - квантовой запутанности частиц.

Теория квантовой запутанности

Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

Мир подчинён строгим законам физики

Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.
Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

Аналогия и понимание

Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.

Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.

Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

Где может быть использована квантовая спутанность?

Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету - триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

Это в очередной раз говорит о том, что мы стоим на пороге великих открытий - перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

Эфиродинамика и квантовая запутанность

По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём - методом ассоциации.

Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.
Корабль будет нашей элементарной частицей, а море - эфиром (тёмной энергией).
Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей - каплей.

Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

Микромир живёт по своим законам

Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина - вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

Новая гипотеза - новый взгляд на мир

Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия - целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами - по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же это предположение может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство - время.

Эпилог

Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.

Квантовая запутанность - явление, при котором подсистемы некоторой ранее единой квантовомеханической системы, будучи разнесенными на расстояние друг от друга, продолжают оказывать влияние друг на друга. В этом случае изменение состояния одной системы сказывается на другой системе. Явление носит существенно квантовый характер и не имеет классического аналога.

Кофе остывает, здания рушатся, яйца бьются, а звезды выдыхаются во Вселенной, которой, кажется, суждено деградировать в состояние равномерной серости, известной как тепловое равновесие. Астроном-философ сэр Артур Эддингтон в 1927 году привел постепенное распространение энергии в качестве доказательства необратимой «стрелы времени».

Но к недоумению поколений физиков, стрела времени, похоже, не вытекает из основных законов физики, по которым двигаться вперед во времени - это то же самое, что и назад. По этим законам, если бы кто-то знал пути всех частиц во вселенной и повернул их вспять, энергия накапливалась бы, а не распылялась: холодный кофе спонтанно нагревался бы, здания собирались бы из обломков, а солнечный свет собирался обратно в солнце.

«В классической физике мы сильны, - говорит Санду Попеску, профессор физики Бристольского университета в Великобритании в интервью журналу QuantaMagazine. - Если бы я знал больше, мог бы я переломить ход события, собрать воедино все молекулы разбитого яйца?». Конечно, профессор говорит, что стрела времени не управляется человеческим незнанием. И все же, с момента рождения термодинамики в 1850-х годах, единственным известным подходом для расчета распространения энергии оставалось сформулировать статистическое распределение неизвестных траекторий частицы и показать, что с течением времени незнание смазывает картину вещей.

Теперь физики определили фундаментальный источник стрелы времени. Энергия рассеивается и объекты приходят в равновесие, говорят они, потому что элементарные частицы переплетаются, когда взаимодействуют - странный эффект под названием «квантовая запутанность». «Наконец мы можем понять, почему чашка кофе уравновешивается в комнате, - говорит Тони Шорт, квантовый физик из Бристоля. - Запутанность накапливается между состоянием чашки кофе и состоянием комнаты». Попеску, Шорт и их коллеги Ной Линден и Андреас Уинтер сообщили об открытии журналу Physical Review E в 2009 году, утверждая, что объекты достигают равновесия, или состояния равномерного распределения энергии, в течение бесконечного количества времени за счет квантово-механического запутывания с окружающей средой. Похожее открытие опубликовал Питер Рейман из Билефельдского университета в Германии несколькими месяцами раньше в Physical Review Letters. Шорт и коллеги укрепили аргументацию в 2012 году, показав что запутанность вызывает уравновешенность за конечное время. Также, в работе, опубликованной на arXiv.org в феврале, две отдельных группы предприняли следующий шаг, рассчитав, что большинство физических систем быстро уравновешиваются, за время, пропорциональное их размеру.

Если новая линия исследований верна, история стрелы времени начинается с квантово-механической идеи о том, что в своей основе природа по своей сути неопределенна. Элементарной частице не хватает конкретных физических свойств и она определяется только вероятностями нахождения в определенных состояниях. К примеру, в определенный момент частица может с 50-процентным шансом вращаться по часовой стрелке и с 50-процентным - против часовой. Экспериментально проверенная теорема северо-ирландского физика Джона Белла гласит, что нет «истинного» состояния частицы; вероятности - единственное, что можно использовать для его описания. Квантовая неопределенность неизбежно приводит к запутанности, предполагаемому источнику стрелы времени.

Когда две частицы взаимодействуют, их больше нельзя описывать отдельными, независимо развивающимися вероятностями под названием «чистые состояния». Вместо этого, они становятся запутанными компонентами более сложного распределения вероятностей, которые описываются двумя частицами вместе. Система в целом находится в чистом состоянии, но состояние каждой из индивидуальных частиц «смешанное». Обе частицы можно отдалить на световые годы друг от друга, но спин каждой частицы будет коррелировать с другим. Альберт Эйнштен хорошо описал это как «жуткое действие на расстоянии». «Запутанность - это некотором смысле суть квантовой механики», или законы, регулирующие взаимодействия на субатомных масштабах, говорит Бруннер. Это явление лежит в основе квантовых вычислений, квантовой криптографии и квантовой телепортации.

Идея того, что запутанность может объяснить стрелу времени, впервые пришла в голову Сету Ллойду тридцать лет назад, когда он был 23-летним выпускником факультета философии Кембриджского университета с Гарвардской степенью по физике. Ллойд понял, что квантовая неопределенность и то, как она распространяется по мере того, что частицы становятся все более запутанными, может заменить человеческую неуверенность (или незнание) в старых классических доказательствах как истинный источник стрелы времени. Используя известный квантово-механический подход, в котором единицы информации являются основными строительными блоками, Ллойд провел несколько лет, изучая эволюцию частиц с точки зрения перетасовки единиц (1) и нулей (0). Он выяснил, что поскольку частицы все больше запутываются друг с другом, информация, которая их описывала (1 - для спина по часовой стрелке, и 0 - против часовой, например), перейдет на описание системы запутанных частиц в целом. Как если бы частицы постепенно потеряли свою индивидуальную автономию и стали пешками коллективного состояния. В этот момент, как обнаружил Ллойд, частицы переходят в состояние равновесия, их состояния перестают меняться, словно чашка с кофе остывает до комнатной температуры. «Что происходит на самом деле? Вещи становятся более взаимосвязаны. Стрела времени - это стрела роста корреляций».

«Когда Ллойд высказал идею в своей диссертации, мир был не готов, - говорит Ренато Реннер, глава Института теоретической физики в ETH Zurich. - Никто не понимал его. Иногда нужно, чтобы идеи приходили в нужное время». В 2009 году доказательство группы бристольских физиков вызвало отклик у квантовых информационных теоретиков, открывая новые способы применения их методов. Оно показало, что по мере того, как объекты взаимодействуют со своим окружением - как частицы в чашке кофе взаимодействуют с воздухом, например, - информация об их свойствах «утекает и смазывается со средой», поясняет Попеску. Эта локальная потеря информации приводит к тому, что состояние кофе приходит к стагнации, даже если чистое состояние всей комнаты продолжает развиваться. За исключением редких случайных флуктуаций, говорит ученый, «его состояние перестает меняться со временем». Получается, холодная чашка с кофе не может спонтанно нагреться. В принципе, по мере эволюции чистого состояния комнаты, кофе может внезапно «стать не смешанным» с воздухом и войти в чистое состояние. Но кофе доступно настолько больше смешанных состояний, чем чистых, что это практически никогда не произойдет - скорее вселенная закончится, чем мы сможем это засвидетельствовать. Эта статистическая маловероятность делает стрелу времени необратимой.

«По сути, запутанность открывает для вас огромное пространство, - комментирует Попеску. - Представьте, что вы находитесь в парке, перед вами ворота. Как только вы войдете в них, вы попадете в огромное пространство и потеряетесь в нем. К воротам тоже не вернетесь никогда».
В новой истории стрелы времени информация теряется в процессе квантовой запутанности, а не из-за субъективного отсутствия человеческих знаний, что приводит к уравновешиванию чашки кофе и комнаты. Комната в конце концов уравновешивается с внешней средой, а среда - еще более медленно - дрейфует к равновесию с остальной частью вселенной. Гиганты термодинамики 19 века рассматривали этот процесс как постепенное рассеяние энергии, которое увеличивает общую энтропию, или хаос, вселенной. Сегодня же, Ллойд, Попеску и другие в этой сфере видят стрелу времени по-другому. По их мнению, информация становится все более диффузной, но никогда не исчезает полностью. Хотя локально энтропия растет, общая энтропия вселенной остается постоянной и нулевой.

«В целом вселенная находится в чистом состоянии, - говорит Ллойд. - Но отдельные ее части, будучи запутанными с остальной частью вселенной, остаются смешанными».

«В этих работах нет ничего, что объяснит, почему вы начинаете с ворот, - говорит Попеску, возвращаясь к аналогии с парком. - Другими словами, они не объясняют, почему изначальное состояние вселенной было далеко от равновесия». Ученый намекает на то, что этот вопрос относится к природе Большого Взрыва.
Несмотря на недавний прогресс в расчете времени уравновешивания, новый подход до сих пор не может стать инструментом для расчета термодинамических свойств конкретных вещей, вроде кофе, стекла или экзотических состояний материи.

«Дело в том, что нужно найти критерии, при которых вещи ведут себя как оконное стекло или чашка чая, - говорит Реннер. - Я думаю, что увижу новые работы в этом направлении, но впереди еще много работы».
Некоторые исследователи выразили сомнение в том, что этот абстрактный подход к термодинамике когда-нибудь сможет точно объяснить, как ведут себя конкретные наблюдаемые объекты. Но концептуальные достижения и новый математический формализм уже помогают исследователям задаваться теоретическими вопросами из области термодинамики, например о фундаментальных пределах квантовых компьютеров и даже о конечной судьбе Вселенной.

Двадцать шесть лет спустя грандиозного провала идеи Ллойда о стреле времени, он рад быть свидетелем ее подъема и пытается применить идеи последней работы к парадоксу информации, попадающей в черную дыру.

По мнению ученых, наша способность помнить прошлое, но не будущее, другое проявление стрелы времени, также может рассматриваться как возрастание корреляций между взаимодействующими частицами. Когда читаешь что-то с листа бумаги, мозг коррелирует с информацией через фотоны, которые достигают глаз. Только с этого момента вы будете способны вспомнить, что написано на бумаге. Как отмечает Ллойд: «Настоящее может быть определено как процесс связывания (или установления корреляций) с нашим окружением». Фоном для устойчивого роста запутанностей по всей вселенной является, конечно, само время. Физики подчеркивают, что несмотря на большие успехи в понимании того, как происходят изменения во времени, они ни на йоту не приблизились к пониманию природы самого времени или почему оно отличается от трех других измерений пространства. Попеску называет эту загадку «одной из величайших непоняток в физике».

«Мы можем обсудить факт того, что час назад наш мозг был в состоянии, которое коррелировало с меньшим числом вещей, - говорит он. - Но наше восприятие того, что время идет - это совсем другое дело. Скорее всего, нам понадобится революция в физике, которая откроет нам эту тайну».

Это изящная и мощная концепция. Она предполагает, что время – это возникающий феномен, который появляется в реальности благодаря природе квантового спутывания. И оно существует только для наблюдателей внутри нашей вселенной. Любой богоподобный наблюдатель за её пределами будет видеть статичную неизменяющуюся вселенную, как прежде предсказывало более раннее квантовое уравнение Уилера-ДеВитта. Разумеется, у нас нет никакой возможности получить наблюдателя за пределами нашей вселенной и у нас нет и никаких шансов когда-либо подтвердить эту теорию. По крайней мере, так было до сегодняшнего дня. Недавно Екатерина Морева из Istituto Nazionale di Ricerca Metrologica в Турине, Италия, и несколько её коллег сумели впервые экспериментально проверить идеи Пейджа и Вутерса. И они продемонстрировали, что время действительно является возникающим феноменом для внутренних наблюдателей, но его не существует для наблюдателей внешних.

Этот эксперимент включает в себя создание игрушечной вселенной, состоящей из пары спутанных фотонов и наблюдателя, который может измерять их состояние одним из двух способов. В первом наблюдатель измеряет эволюцию системы, спутывая себя с ней. Во втором богоподобный наблюдатель измеряет эволюцию в сравнении с внешними часами, которые полностью независимы от игрушечной вселенной.


Сам эксперимент достаточно прямолинеен. Каждый из спутанных фотонов имеет поляризацию, которая может быть изменена прохождением через двулучепреломляющую пластинку. В первом случае наблюдатель измеряет поляризацию одного фотона, таким образом, спутываясь с ним. Затем он сравнивает результат с поляризацией второго фотона. Полученная им разница и будет мерой времени.

Во втором случае оба фотона также проходят через двулучепреломляющие пластинки, которые изменяют их поляризацию. Однако в этом случае наблюдатель измеряет только глобальные свойства обоих фотонов, сравнивая их с независимыми часами.

В этом случае наблюдатель не может заметить какой-либо разницы между фотонами, не приходя в состоянии спутанности с одним из них. А если нет никакой разницы, система предстаёт перед ним статичной. Другими словами – время в ней не возникает.

Это весьма впечатляющий эксперимент. Появление чего-либо является популярной концепцией в науке. В частности, недавно физики заинтересовались идеей, что гравитация также является таким возникающим феноменом. А отсюда до идеи о сходном механизме возникновения времени оставался всего один шаг. Чего не хватает возникающей гравитации – это, разумеется, экспериментальной демонстрации, которая показывала бы, как это работает на практике. Именно поэтому работа Моревы имеет такое важное значение – она впервые в мире помещает абстрактную и экзотическую идею на устойчивое экспериментальное основание. А возможно самым важным результатом этой работы является то, что ей впервые удалось продемонстрировать, что квантовая механика и общая теория относительности не так уж несовместимы.

Следующим шагом станет дальнейшее развитие идеи, в частности – на макроскопическом уровне. Одно дело показать, как время возникает в фотонах, и другое – понять, как оно возникает для людей. Квантовая механика уже достаточно глубоко проникла в смежные научные области. В попытке объяснить в терминах квантовой теории саму жизнь она даже породила свою собственную биологию. Но до сих пор никто не решался прямо утверждать, что эффект запутанности лежит в самой сердцевине живых существ – внутри спирали ДНК.

Новорождённая квантовая биология (quantum biology) официально не признана научной дисциплиной. Однако она уже превратилась в одну из самых интересных и захватывающих тем передовых исследований. Например, раскрывающих важную роль квантовых эффектов в ряде биологических процессов, как в фотосинтезе . Новое исследование провела группа физиков из Национального университета Сингапура (NSU). Элизабет Рипер (Elizabet Rieper) и её коллеги исходили из того, что двойная спираль ДНК не распадается именно благодаря принципу квантовой запутанности (сцепленности).

Чтобы проверить свою смелую теорию, учёные построили упрощённую теоретическую модель ДНК на компьютере. В ней каждый нуклеотид состоит из облака электронов вокруг центрального положительно заряженного ядра. Это «негативное» облако может двигаться относительно ядра, создавая диполь. При этом смещение облака туда и обратно приводит к образованию гармонического осциллятора.

Рипер с коллегами заинтересовались, что же произойдёт с колебаниями облаков (фононами), когда пары оснований создадут двойную спираль ДНК. По мнению учёных, при формировании пар нуклеотидов их объединённые облака теоретически должны колебаться в противоположном направлении с облаком от соседней пары, чтобы обеспечить стабильность всей структуры. Поскольку фононы по сути являются квантовыми объектами, они могут существовать в виде суперпозиции состояний и умеют «запутываться». Учёные начали с того, что предположили отсутствие любых тепловых эффектов, влияющих на спираль извне. «Очевидно, что цепочки попарно связанных гармонических осцилляторов могут быть запутаны лишь при нулевой температуре», – говорит Рипер. В своей пока неопубликованной научными изданиями статье физики приводят доказательство, что эффект запутывания в принципе, может возникнуть и при комнатной температуре. А возможно это потому, что длина волны у описанных фононов близка к размерам спирали ДНК. Это позволяет формироваться так называемым стоячим волнам (феномен, известный как фононный захват). После этого фононы не могут «сбежать». Данный эффект не будет иметь особенного значения для гигантской молекулы, если только он не распространяется на всю спираль. Однако компьютерное моделирование, проведённое Рипер со товарищи, демонстрирует – эффект и вправду колоссален.

Каждое электронное облако в паре оснований не просто колеблется согласованно с движениями соседей - фононы при этом находятся в суперпозиции состояний. А общая картина всех таких колебаний в ДНК описывается квантовыми законами: вдоль всей цепочки нуклеотиды-осцилляторы колеблются синхронно – это проявление квантовой сцепленности. Общее же движение спирали оказывается равным нулю.


Модель спирали ДНК, на которой увеличен фрагмент с двумя соседними парами оснований. Синим выделены электронные облака в двух крайних позициях своих колебаний, направления которых отмечают стрелки (иллюстрация Rieper et al.). Если пытаться описать эту модель исключительно в рамках классической физики, то ничего из перечисленного произойти не сможет: «классическая» спираль должна хаотично вибрировать и распадаться на части. По мнению исследователей, именно квантовые эффекты ответственны за «склеивание» ДНК. Но, как и в случае с теорией космической ряби – амбициозной «сестрой-близнецом» нынешней работы (правда, занятой объектами макромира), – главный вопрос не оригинален: как этот вывод доказать? Ответа пока нет. Команда Рипер в конце своей статьи интригует мыслью о том, что запутывание каким-то образом напрямую влияет на способ «считывания» информации из ДНК. Дескать, в будущем это удастся проверить и использовать экспериментально. Как именно – пока никто даже не предполагает.

Несмотря на некоторую долю спекулятивности, выдвинутое физиками предположение взбудоражило многие умы. Ведь квантовые эффекты уже находили в самых неожиданных местах, например в электрической цепи , но покамест никто не замахивался на претензии такого масштаба – микроскопического и в то же время невероятно важного.

В свете изложенного тратящий массу сил на запутывание нескольких кубитов в твёрдом теле человек выглядит забавно, поскольку не подозревает, что самым ярким примером такой системы является он сам.

Появилось много популярных статей, где рассказывается о квантовой запутанности. Опыты с квантовой запутанностью весьма эффектны, но премиями не отмечены. Почему вот такие интересные для обывателя опыты не представляют интереса для учёных? Популярные статьи рассказывают об удивительных свойствах пар запутанных частиц - воздействие на одну приводит к мгновенному изменению состояния второй. И что же такое скрывается за термином «квантовая телепортация», о которой уже начали говорить, что она происходит со сверхсветовой скоростью. Давайте рассмотрим все это с точки зрения нормальной квантовой механики.

Что получается из квантовой механики

Квантовые частицы может находиться в двух типах состояний, согласно классическому учебнику Ландау и Лифшица - чистом и смешанном. Если частица не взаимодействует с другими квантовыми частицами, она описывается волновой функцией, зависящей только от её координат или импульсов - такое состояние называют чистым. В этом случае волновая функция подчиняется уравнению Шредингера. Возможен другой вариант - частица взаимодействует с другими квантовыми частицами. В этом случае волновая функция относится уже ко всей системе взаимодействующих частиц и зависит от всех их динамических переменных. Если мы интересуемся только одной частицей, то её состояние, как показал Ландау ещё 90 лет назад, можно описать матрицей или оператором плотности. Матрица плотности подчиняется уравнению, аналогичному уравнению Шредингера

Где - матрица плотности, H - оператор Гамильтона, а скобки обозначают коммутатор.

Его вывел Ландау. Любые физические величины, относящиеся к данной частицы, можно выразить через матрицу плотности. Такое состояние называют смешанным. Если у нас есть система взаимодействующих частиц, то каждая из частиц находится в смешанном состоянии. Если частицы разлетелись на большие расстояния, и взаимодействие исчезло, их состояние все равно останется смешанным. Если же каждая из нескольких частиц находятся в чистом состоянии, то волновая функция такой системы есть произведение волновых функций каждой из частиц (если частицы различны. Для одинаковых частиц, бозонов или фермионов, надо составить симметричную или антисимметричную комбинацию см. , но об этом позже. Тождественность частиц, фермионы и бозоны – это уже релятивистская квантовая теория.

Запутанным состоянием пары частиц называется такое состояние, в котором имеется постоянная корреляция между физическими величинами, относящимися к разным частицам. Простой и наиболее часто распространенный пример - сохраняется некая суммарная физическая величина, например, полный спин или момент импульса пары. Пара частиц при этом находится в чистом состоянии, но каждая из частиц - в смешанном. Может показаться, что изменение состояния одной частицы сразу скажется на состоянии другой частицы. Даже если они разлетелись далеко и не взаимодействуют, Именно это высказывается в популярных статьях. Это явление уже окрестили квантовой телепортацией, Некоторые малограмотные журналисты даже утверждают, что изменение происходит мгновенно, то есть распространяется быстрее скорости света.

Рассмотрим это с точки зрения квантовой механики, Во-первых, любое воздействие или измерение, меняющее спин или момент импульса только одной частицы, сразу же нарушает закон сохранения суммарной характеристики. Соответствующий оператор не может коммутировать с полным спином или полным моментом импульса. Таким образом, нарушается первоначальная запутанность состояния пары частиц. Спин или момент второй частицы уже нельзя однозначно связать с таковым для первой. Можно рассмотреть эту проблему с другой стороны. После того, как взаимодействие между частицами исчезло, эволюция матрицы плотности каждый из частиц описывается своим уравнением, в которое динамические переменные другой частицы не входят. Поэтому воздействие на одну частицу не будет менять матрицу плотности другой.

Имеется даже теорема Эберхарда , которая утверждает, что взаимное влияние двух частиц невозможно обнаружить измерениями. Пусть имеется квантовая система, которая описывается матрицей плотности. И пусть эта система состоит из двух подсистем A и B. Теорема Эберхарда гласит, что никакое измерение наблюдаемых, связанных только с подсистемой A, не влияет на результат измерения любых наблюдаемых, которые связаны только с подсистемой B. Впрочем, доказательство теоремы использует гипотезу редукции волновой функции, которая не доказана ни теоретически, ни экспериментально. Но все эти рассуждения сделаны в рамках нерелятивистской квантовой механики и относятся к различным, не тождественным частицам.

Эти рассуждения не работают в релятивистской теории в случае пары одинаковых частиц. Еще раз напомню, что тождественность или неразличимость частиц – из релятивистской квантовой механики, где число частиц не сохраняется. Однако для медленных частиц мы можем использовать более простой аппарат нерелятивистской квантовой механики, просто учитывая неразличимость частиц. Тогда волновая функция пары должна быть симметричной (для бозонов) или антисимметричной (для фермионов) по отношению к перестановке частиц. Такое требование возникает в релятивистской теории, независимо от скоростей частиц. Именно это требование приводит к дальнодействующим корреляциям пары одинаковых частиц. В принципе протон с электроном тоже могут находиться в запутанном состоянии. Однако если они разойдутся на несколько десятков ангстрем, то взаимодействие с электромагнитными полями и другими частицами разрушит это состояние. Обменное взаимодействие (так называют это явление) действует на макроскопических расстояниях, как показывают эксперименты. Пара частиц, даже разойдясь на метры, остается неразличимой. Если вы проводите измерение, то вы точно не знаете, к какой частице относится измеряемая величина. Вы проводите измерения с парой частиц одновременно. Поэтому все эффектные эксперименты проводились именно с одинаковыми частицами – электронами и фотонами. Строго говоря, это не совсем то запутанное состояние, которое рассматривают в рамках нерелятивистской квантовой механики, но что-то похожее.

Рассмотрим простейший случай – пара одинаковых невзаимодействующих частиц. Если скорости малы, мы можем пользоваться нерелятивистской квантовой механикой с учетом симметрии волновой функции по отношению к перестановке частиц. Пусть волновая функция первой частицы , второй частицы - , где и - динамические переменные первой и второй частиц, в простейшем случае – просто координаты. Тогда волновая функция пары

Знаки + и – относятся к бозонам и фермионам. Предположим, что частицы находятся далеко друг от друга. Тогда локализованы в удаленных областях 1 и 2 соответственно, то есть вне этих областей они малы. Попробуем вычислить среднее значение какой-нибудь переменной первой частицы, например, координаты. Для простоты можно представить, что в волновые функции входят только координаты. Окажется, что среднее значение координат частицы 1 лежит МЕЖДУ областями 1 и 2, причем оно совпадает со средним значением для частицы 2. Это на самом деле естественно – частицы неразличимы, мы не можем знать, у какой частицы измеряются координаты. Вообще все средние значения у частиц 1 и 2 будут одинаковы. Это значит, что, перемещая область локализации частицы 1 (например, частица локализована внутри дефекта кристаллической решетки, и мы двигаем весь кристалл), мы воздействуем на частицу 2, хотя частицы не взаимодействуют в обычном смысле – через электромагнитное поле, например. Это простой пример релятивистской запутанности.

Никакой мгновенной передачи информации из-за этих корреляций между двумя частицами не происходит. Аппарат релятивистской квантовой теории изначально построен так, что события, находящиеся в пространстве-времени по разные стороны светового конуса, не могут влиять друг на друга. Проще говоря, никакой сигнал, никакое воздействие или возмущение не могут распространяться быстрее света. Обе частицы на самом деле являются состоянием одного поля, например, электрон-позитронного. Воздействуя на поле в одной точке (на частицу 1), мы создаем возмущение, которое распространяется подобно волнам на воде. В нерелятивистской квантовой механике скорость света считается бесконечно большой, оттого возникает иллюзия мгновенного изменения.

Ситуация, когда частицы, разнесенные на большие расстояния, остаются связанными в паре, кажется парадоксальной из-за классических представлений о частицах. Надо помнить, что реально существуют не частицы, а поля. То, что мы представляем, как частицы – просто состояния этих полей. Классическое представление о частицах совершенно непригодно в микромире. Сразу же возникают вопросы о размерах, форме, материале и структуре элементарных частиц. На самом деле ситуации, парадоксальные для классического мышления, возникают и с одной частицей. Например, в опыте Штерна-Герлаха атом водорода пролетает через неоднородное магнитное поле, направленное перпендикулярно скорости. Спином ядра можно пренебречь из-за малости ядерного магнетона, пусть изначально спин электрона направлен вдоль скорости.

Эволюцию волновой функции атома нетрудно рассчитать. Первоначальный локализованный волновой пакет расщепляется на два одинаковых, летящих симметрично под углом к первоначальному направлению. То есть атом, тяжелая частица, обычно рассматриваемая, как классическая с классической траекторией, расщепился на два волновых пакета, которые могут разлететься на вполне макроскопические расстояния. Заодно замечу – из расчета следует, что даже идеальный эксперимент Штерна-Герлаха не в состоянии измерить спин частицы.

Если детектор связывает атом водорода, например, химически, то «половинки» - два разлетевшихся волновых пакета, собираются в один. Как происходит такая локализация размазанной частицы – отдельно существующая теория, в которой я не разбираюсь. Желающие могут найти обширную литературу по этому вопросу.

Заключение

Возникает вопрос – в чем смысл многочисленных опытов по демонстрации корреляций между частицами на больших расстояниях? Кроме подтверждения квантовой механики, в которой давно уже ни один нормальный физик не сомневается, это эффектная демонстрация, производящая впечатление на публику и дилетантов-чиновников, выделяющих средства на науку (например, разработку квантовых линий связи спонсирует Газпромбанк). Для физики эти дорогостоящие демонстрации ничего не дают, хотя позволяют развивать технику эксперимента.

Литература
1. Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). - Издание 3-е, переработанное и дополненное. - М.: Наука, 1974. - 752 с. - («Теоретическая физика», том III).
2. Eberhard, P.H., “Bell’s theorem and the different concepts of nonlocality”, Nuovo Cimento 46B, 392-419 (1978)