Правила умножения неправильных дробей. Составление системы уравнений

) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Например:

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби . Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Деление обыкновенной дроби на дробь.

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением , переводим целое число в дробь с единицей в знаменателе. Например:

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

  • преобразовываем смешанные дроби в неправильные;
  • перемножаем числители и знаменатели дробей;
  • сокращаем дробь;
  • если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

2. В заданиях с разными видами дробей - переходите к виду обыкновенных дробей.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Умножение целого числа на дробь – несложная задача. Но есть тонкости, в которых вы, наверняка, разбирались в школе, но с тех пор забыли.

Как умножить целое число на дробь – немного терминов

Если вы помните, что такое числитель, знаменатель и чем отличается правильная дробь от неправильной – пропустите этот абзац. Он для тех, кто совсем забыл теорию.

Числитель – это верхняя часть дроби – то, что делим. Знаменатель – нижняя. Это то, на что делим.
Правильная дробь та, у которой числитель меньше знаменателя. Неправильной называется дробь, у которой числитель больше или равен знаменателю.

Как умножить целое число на дробь

Правило умножения целого числа на дробь очень простое – умножаем числитель на целое, а знаменатель не трогаем. Например: два умножить на одну пятую – получаем две пятых. Четыре умножить на три шестнадцатых – получится двенадцать шестнадцатых.


Сокращение

Во втором примере полученную дробь можно сократить.
Что это значит? Обратите внимание – и числитель, и знаменатель этой дроби делятся на четыре. Разделить оба числа на общий делитель и называется – сократить дробь. Получим три четвертых.


Неправильные дроби

Но, предположим, мы умножили четыре на две пятых. Получилось восемь пятых. Это неправильная дробь.
Её обязательно нужно привести к правильному виду. Для это нужно выделить из нее целую часть.
Здесь нужно использовать деление с остатком. Получаем единицу и три в остатке.
Одна целая и три пятых и есть наша правильная дробь.

Привести к правильному виду тридцать пять восьмых – задача чуть посложнее.Самое близкое к тридцати семи число, которое делится на восемь – это тридцать два. При делении получим четыре. Отнимем от тридцати пяти тридцать два – получим три. Итог: четыре целых и три восьмых.


Равенство числителя и знаменателя. А тут все очень просто и красиво. При равенстве числителя и знаменателя получается просто единица.

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы - доли. Доли - это равные части , на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» - разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи - Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи - просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей :

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель - произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/ b * c/ d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/ 11 =1 + 4/ 11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

a * b/ c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/ f = e/ f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях - так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя - свои достоинства, - не во власти человека, но всякий может уменьшить своего знаменателя - своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Еще одно действие, которое можно выполнять с обыкновенными дробями, – умножение. Мы попробуем разъяснить его основные правила при решении задач, покажем, как умножается обыкновенная дробь на натуральное число и как правильно выполнить умножение трех обыкновенных дробей и больше.

Запишем сначала основное правило:

Определение 1

Если мы умножим одну обыкновенную дробь, то числитель дроби, полученной в результате, будет равен произведению числителей исходных дробей, а знаменатель – произведению их знаменателей. В буквенном виде для двух дробей a / b и c / d это можно выразить как a b · c d = a · c b · d .

Посмотрим на примере, как правильно применить это правило. Допустим, у нас есть квадрат, сторона которого равна одной числовой единице. Тогда площадь фигуры составит 1 кв. единицу. Если разделить квадрат на равные прямоугольники со сторонами, равными 1 4 и 1 8 числовой единицы, у нас получится, что он теперь состоит из 32 прямоугольников (потому что 8 · 4 = 32). Соответственно, площадь каждого из них будет равна 1 32 от площади всей фигуры, т.е. 1 32 кв. единицы.

У нас получился закрашенный фрагмент со сторонами, равными 5 8 числовой единицы и 3 4 числовой единицы. Соответственно, для вычисления его площади надо умножить первую дробь на вторую. Она будет равна 5 8 · 3 4 кв. единиц. Но мы можем просто подсчитать, сколько прямоугольников входит во фрагмент: их 15 , значит, общая площадь составляет 15 32 квадратных единиц.

Поскольку 5 · 3 = 15 и 8 · 4 = 32 , мы можем записать следующее равенство:

5 8 · 3 4 = 5 · 3 8 · 4 = 15 32

Оно является подтверждением сформулированного нами правила умножения обыкновенных дробей, которое выражается как a b · c d = a · c b · d . Оно действует одинаково как для правильных, так и для неправильных дробей; с помощью него можно умножить дроби и с разными, и с одинаковыми знаменателями.

Разберем решения нескольких задач на умножение обыкновенных дробей.

Пример 1

Умножьте 7 11 на 9 8 .

Решение

Для начала подсчитаем произведение числителей указанных дробей, умножив 7 на 9 . У нас получилось 63 . Затем вычислим произведение знаменателей и получим: 11 · 8 = 88 . Составим их двух чисел ответ: 63 88 .

Все решение можно записать так:

7 11 · 9 8 = 7 · 9 11 · 8 = 63 88

Ответ: 7 11 · 9 8 = 63 88 .

Если в ответе у нас получилась сократимая дробь, нужно довести вычисление до конца и выполнить ее сокращение. Если же у нас получилась неправильная дробь, из нее надо выделить целую часть.

Пример 2

Вычислите произведение дробей 4 15 и 55 6 .

Решение

Cогласно изученному выше правилу, нам надо умножить числитель на числитель, а знаменатель на знаменатель. Запись решения будет выглядеть так:

4 15 · 55 6 = 4 · 55 15 · 6 = 220 90

Мы получили сократимую дробь, т.е. такую, у которой есть признак делимости на 10 .

Выполним сокращение дроби: 220 90 НОД (220 , 90) = 10 , 220 90 = 220: 10 90: 10 = 22 9 . В итоге у нас получилась неправильная дробь, из которой мы выделим целую часть и получим смешанное число: 22 9 = 2 4 9 .

Ответ: 4 15 · 55 6 = 2 4 9 .

Для удобства вычисления мы можем сократить и исходные дроби перед выполнением действия умножения, для чего нам надо привести дробь к виду a · c b · d . Разложим значения переменных на простые множители и одинаковые из них сократим.

Поясним, как это выглядит, используя данные конкретной задачи.

Пример 3

Вычислите произведение 4 15 · 55 6 .

Решение

Запишем вычисления, исходя из правила умножения. У нас получится:

4 15 · 55 6 = 4 · 55 15 · 6

Поскольку как 4 = 2 · 2 , 55 = 5 · 11 , 15 = 3 · 5 и 6 = 2 · 3 , значит, 4 · 55 15 · 6 = 2 · 2 · 5 · 11 3 · 5 · 2 · 3 .

2 · 11 3 · 3 = 22 9 = 2 4 9

Ответ : 4 15 · 55 6 = 2 4 9 .

Числовое выражение, в котором имеет место умножение обыкновенных дробей, обладает переместительным свойством, то есть при необходимости мы можем изменить порядок следования множителей:

a b · c d = c d · a b = a · c b · d

Как перемножить обыкновенную дробь с натуральным числом

Запишем сразу основное правило, а потом попробуем объяснить его на практике.

Определение 2

Чтобы умножить обыкновенную дробь на натуральное число, нужно умножить числитель этой дроби на это число. При этом знаменатель итоговой дроби будет равен знаменателю исходной обыкновенной дроби. Умножение некоторой дроби a b на натуральное число n можно записать в виде формулы a b · n = a · n b .

Понять эту формулу легко, если вспомнить, что любое натуральное число может быть представлено в виде обыкновенной дроби со знаменателем, равным единице, то есть:

a b · n = a b · n 1 = a · n b · 1 = a · n b

Поясним нашу мысль конкретными примерами.

Пример 4

Вычислите произведение 2 27 на 5 .

Решение

В результате умножения числителя исходной дроби на второй множитель получим 10 . В силу правила, указанного выше, мы получим в результате 10 27 . Все решение приведено в этой записи:

2 27 · 5 = 2 · 5 27 = 10 27

Ответ: 2 27 · 5 = 10 27

Когда мы перемножаем натуральное число с обыкновенной дробью, то часто приходится сокращать результат или представлять его как смешанное число.

Пример 5

Условие: вычислите произведение 8 на 5 12 .

Решение

По правилу выше мы умножаем натуральное число на числитель. В итоге получаем, что 5 12 · 8 = 5 · 8 12 = 40 12 . Итоговая дробь имеет признаки делимости на 2 , поэтому нам нужно выполнить ее сокращение:

НОК (40 , 12) = 4 , значит, 40 12 = 40: 4 12: 4 = 10 3

Теперь нам осталось только выделить целую часть и записать готовый ответ: 10 3 = 3 1 3 .

В этой записи можно видеть все решение целиком: 5 12 · 8 = 5 · 8 12 = 40 12 = 10 3 = 3 1 3 .

Также мы могли сократить дробь с помощью разложения числителя и знаменателя на простые множители, и результат получился бы точно таким же.

Ответ: 5 12 · 8 = 3 1 3 .

Числовое выражение, в котором натуральное число умножается на дробь, также обладает свойством перемещения, то есть порядок расположения множителей не влияет на результат:

a b · n = n · a b = a · n b

Как выполнить умножение трех и более обыкновенных дробей

Мы можем распространить на действие умножения обыкновенных дробей те же свойства, которые характерны для умножения натуральных чисел. Это следует из самого определения данных понятий.

Благодаря знанию сочетательного и переместительного свойства можно перемножать три обыкновенные дроби и более. Допустимо переставлять множители местами для большего удобства или расставлять скобки так, как будет легче считать.

Покажем на примере, как это делается.

Пример 6

Умножьте четыре обыкновенные дроби 1 20 , 12 5 , 3 7 и 5 8 .

Решение: для начала сделаем запись произведения. У нас получится 1 20 · 12 5 · 3 7 · 5 8 . Нам надо перемножить между собой все числители и все знаменатели: 1 20 · 12 5 · 3 7 · 5 8 = 1 · 12 · 3 · 5 20 · 5 · 7 · 8 .

Перед тем, как начать умножение, мы можем немного облегчить себе задачу и разложить некоторые числа на простые множители для дальнейшего сокращения. Это будет проще, чем сокращать уже готовую дробь, получившуюся в результате.

1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 1 · (2 · 2 · 3) · 3 · 5 2 · 2 · 5 · 5 · 7 (2 · 2 · 2) = 3 · 3 5 · 7 · 2 · 2 · 2 = 9 280

Ответ: 1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 9 280 .

Пример 7

Перемножьте 5 чисел 7 8 · 12 · 8 · 5 36 · 10 .

Решение

Для удобства мы можем сгруппировать дробь 7 8 с числом 8 , а число 12 с дробью 5 36 , поскольку при этом нам будут очевидны будущие сокращения. В итоге у нас получится:
7 8 · 12 · 8 · 5 36 · 10 = 7 8 · 8 · 12 · 5 36 · 10 = 7 · 8 8 · 12 · 5 36 · 10 = 7 1 · 2 · 2 · 3 · 5 2 · 2 · 3 · 3 · 10 = = 7 · 5 3 · 10 = 7 · 5 · 10 3 = 350 3 = 116 2 3

Ответ: 7 8 · 12 · 8 · 5 36 · 10 = 116 2 3 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Продолжим изучать действия с обыкновенными дробями. Сейчас в центре внимания умножение обыкновенных дробей . В этой статье мы дадим правило умножения обыкновенных дробей, рассмотрим применение этого правила при решении примеров. Также остановимся на умножении обыкновенной дроби на натуральное число. В заключение рассмотрим, как проводится умножение трех и большего количества дробей.

Навигация по странице.

Умножение обыкновенной дроби на обыкновенную дробь

Начнем с формулировки правила умножения обыкновенных дробей : умножение дроби на дробь дает дробь, числитель которой равен произведению числителей умножаемых дробей, а знаменатель равен произведению знаменателей.

То есть, умножению обыкновенных дробей a/b и c/d отвечает формула .

Приведем пример, иллюстрирующий правило умножения обыкновенных дробей. Рассмотрим квадрат со стороной 1 ед. , при этом его площадь равна 1 ед 2 . Разделим этот квадрат на равные прямоугольники со сторонами 1/4 ед. и 1/8 ед. , при этом исходный квадрат будет состоять из 4·8=32 прямоугольников, следовательно, площадь каждого прямоугольника составляет 1/32 долю площади исходного квадрата, то есть, она равна 1/32 ед 2 . Теперь закрасим часть исходного квадрата. Все наши действия отражает рисунок ниже.

Стороны закрашенного прямоугольника равны 5/8 ед. и 3/4 ед. , значит, его площадь равна произведению дробей 5/8 и 3/4 , то есть, ед 2 . Но закрашенный прямоугольник состоит из 15 «маленьких» прямоугольников, значит, его площадь равна 15/32 ед 2 . Следовательно, . Так как 5·3=15 и 8·4=32 , то последнее равенство можно переписать как , что подтверждает формулу умножения обыкновенных дробей вида .

Заметим, что с помощью озвученного правила умножения можно умножать и правильные и неправильные дроби, и дроби с одинаковыми знаменателями, и дроби с разными знаменателями.

Рассмотрим примеры умножения обыкновенных дробей .

Выполните умножение обыкновенной дроби 7/11 на обыкновенную дробь 9/8 .

Произведение числителей умножаемых дробей 7 и 9 равно 63 , а произведение знаменателей 11 и 8 равно 88 . Таким образом, умножение обыкновенных дробей 7/11 и 9/8 дает дробь 63/88 .

Вот краткая запись решения: .

Не следует забывать про сокращение полученной дроби, если в результате умножения получается сократимая дробь, и про выделение целой части из неправильной дроби.

Выполните умножение дробей 4/15 и 55/6 .

Применим правило умножения обыкновенных дробей: .

Очевидно, полученная дробь сократима (признак делимости на 10 позволяет утверждать, что числитель и знаменатель дроби 220/90 имеют общий множитель 10). Выполним сокращение дроби 220/90: НОД(220, 90)=10 и . Осталось выделить целую часть из полученной неправильной дроби: .

Заметим, что сокращение дроби можно проводить до вычисления произведений числителей и произведений знаменателей умножаемых дробей, то есть, когда дробь имеет вид . Для этого числа a , b , c и d заменяются их разложениями на простые множители, после чего сокращаются одинаковые множители числителя и знаменателя.

Для пояснения, вернемся к предыдущему примеру.

Вычислите произведение дробей вида .

По формуле умножения обыкновенных дробей имеем .

Так как 4=2·2 , 55=5·11 , 15=3·5 и 6=2·3 , то . Теперь сокращаем общие простые множители: .

Остается лишь вычислить произведения в числителе и знаменателе, после чего выделить целую часть из неправильной дроби: .

Следует отметить, что для умножения дробей характерно переместительное свойство, то есть, умножаемые дроби можно менять местами: .

Умножение обыкновенной дроби на натуральное число

Начнем с формулировки правила умножения обыкновенной дроби на натуральное число : умножение дроби на натуральное число дает дробь, числитель которой равен произведению числителя умножаемой дроби на натуральное число, а знаменатель равен знаменателю умножаемой дроби.

С помощью букв правило умножения дроби a/b на натуральное число n имеет вид .

Формула следует из формулы умножения двух обыкновенных дробей вида . Действительно, представив натуральное число как дробь со знаменателем 1, получим .

Рассмотрим примеры умножения дроби на натуральное число.

Выполните умножение дроби 2/27 на 5 .

Умножение числителя 2 на число 5 дает 10 , поэтому в силу правила умножения дроби на натуральное число, произведение 2/27 на 5 равно дроби 10/27 .

Все решение удобно записывать так: .

При умножении дроби на натуральное число полученную дробь часто приходится сокращать, а если она еще и неправильная, то представлять ее в виде смешанного числа.

Умножьте дробь 5/12 на число 8 .

По формуле умножения дроби на натуральное число имеем . Очевидно, полученная дробь сократима (признак делимости на 2 указывает на общий делитель 2 числителя и знаменателя). Выполним сокращение дроби 40/12: так как НОК(40, 12)=4 , то . Осталось выделить целую часть: .

Вот все решение: .

Отметим, что сокращение можно было провести, заменив числа в числителе и знаменателе их разложениями на простые множители. В этом случае решение выглядело бы так: .

В заключение этого пункта заметим, что умножение дроби на натуральное число обладает переместительным свойством, то есть, произведение дроби на натуральное число равно произведению этого натурального числа на дробь: .

Умножение трех и большего количества дробей

То, как мы определили обыкновенные дроби и действие умножение с ними, позволяет утверждать, что все свойства умножения натуральных чисел распространяются и на умножение дробей.

Переместительное и сочетательное свойства умножения позволяют однозначно определить умножение трех и большего количества дробей и натуральных чисел . При этом все происходит по аналогии с умножением трех и большего количества натуральных чисел. В частности, дроби и натуральные числа в произведении можно для удобства вычисления переставлять местами, а при отсутствии скобок, указывающих порядок выполнения действий, мы можем сами расставить скобки любым из допустимых способов.

Рассмотрим примеры умножения нескольких дробей и натуральных чисел.

Выполните умножение трех обыкновенных дробей 1/20 , 12/5 , 3/7 и 5/8 .

Запишем произведение, которое нам нужно вычислить . В силу правила умножения дробей записанное произведение равно дроби, числитель которой равен произведению числителей всех дробей, а знаменатель – произведению знаменателей: .

Прежде чем вычислить произведения в числителе и знаменателе, целесообразно заменить все множители их разложениями на простые множители и провести сокращение (можно, конечно, сократить дробь и после умножения, но во многих случаях это требует больших вычислительных усилий): .

.

Выполните умножение пяти чисел .

В этом произведении удобно сгруппировать дробь 7/8 с числом 8 , а число 12 с дробью 5/36 , это позволит упростить вычисления, так как при такой группировке очевидно сокращение. Имеем
.

.

Умножение дробей

Умножение обыкновенных дробей рассмотрим в нескольких возможных вариантах.

Умножение обыкновенной дроби на дробь

Это наиболее простой случай, в котором нужно пользоваться следующими правилами умножения дробей .

Чтобы умножить дробь на дробь , надо:

  • числитель первой дроби умножить на числитель второй дроби и их произведение записать в числитель новой дроби;
  • знаменатель первой дроби умножить на знаменатель второй дроби и их произведение записать в знаменатель новой дроби;

Прежде чем перемножать числители и знаменатели проверьте нельзя ли сократить дроби. Сокращение дробей при расчётах значительно облегчит ваши вычисления.

Умножение дроби на натуральное число

Чтобы дробь умножить на натуральное число нужно числитель дроби умножить на это число, а знаменатель дроби оставить без изменения.

Если в результате умножения получилась неправильная дробь, не забудьте превратить её в смешанное число, то есть выделить целую часть.

Умножение смешанных чисел

Чтобы перемножить смешанные числа, надо вначале превратить их в неправильные дроби и после этого умножить по правилу умножения обыкновенных дробей.

Другой способ умножения дроби на натуральное число

Иногда при расчётах удобнее воспользоваться другим способом умножения обыкновенной дроби на число.

Чтобы умножить дробь на натуральное число нужно знаменатель дроби разделить на это число, а числитель оставить прежним.

Как видно из примера, этим вариантом правила удобнее пользоваться, если знаменатель дроби делится без остатка на натуральное число.

Умножение смешанных чисел: правила, примеры, решения.

В этой статье мы разберем умножение смешанных чисел . Сначала озвучим правило умножения смешанных чисел и рассмотрим применение этого правила при решении примеров. Дальше поговорим об умножении смешанного числа и натурального числа. Наконец, научимся выполнять умножение смешанного числа и обыкновенной дроби.

Навигация по странице.

Умножение смешанных чисел.

Умножение смешанных чисел можно свести к умножению обыкновенных дробей. Для этого достаточно выполнить перевод смешанных чисел в неправильные дроби.

Запишем правило умножения смешанных чисел :

  • Во-первых, умножаемые смешанные числа нужно заменить неправильными дробями;
  • Во-вторых, нужно воспользоваться правилом умножения дроби на дробь.

Рассмотрим примеры применения этого правила при умножении смешанного числа на смешанное число.

Выполните умножение смешанных чисел и .

Сначала представим умножаемые смешанные числа в виде неправильных дробей: и . Теперь мы можем умножение смешанных чисел заменить умножением обыкновенных дробей: . Применив правило умножения дробей, получаем . Полученная дробь несократима (смотрите сократимые и несократимые дроби), но она неправильная (смотрите правильные и неправильные дроби), поэтому, для получения окончательного ответа осталось выполнить выделение целой части из неправильной дроби: .

Запишем все решение в одну строку: .

.

Для закрепления навыков умножения смешанных чисел рассмотрим решение еще одного примера.

Выполните умножение .

Смешные числа и равны соответственно дробям 13/5 и 10/9 . Тогда . На этом этапе самое время вспомнить про сокращение дроби: заменим все числа в дроби их разложениями на простые множители, и выполним сокращение одинаковых множителей.

Умножение смешанного числа и натурального числа

После замены смешанного числа неправильной дробью, умножение смешанного числа и натурального числа приводится к умножению обыкновенной дроби и натурального числа.

Выполните умножение смешанного числа и натурального числа 45 .

Смешанное число равно дроби , тогда . Заменим числа в полученной дроби их разложениями на простые множители, произведем сокращение, после чего выделим целую часть: .

.

Умножение смешанного числа и натурального числа иногда удобно проводить с использованием распределительного свойства умножения относительно сложения. В этом случае произведение смешанного числа и натурального числа равно сумме произведений целой части на данное натуральное число и дробной части на данное натуральное число, то есть, .

Вычислите произведение .

Заменим смешанное число суммой целой и дробной части, после чего применим распределительное свойство умножения: .

Умножение смешанного числа и обыкновенной дроби удобнее всего свести к умножению обыкновенных дробей, представив умножаемое смешанное число в виде неправильной дроби.

Умножьте смешанное число на обыкновенную дробь 4/15 .

Заменив смешанное число дробью , получаем .

Умножение дробных чисел

§ 140. Определения . 1) Умножение дробного числа на целое определяется так же, как и умножение целых чисел, а именно: умножить какое-нибудь число (множимое) на целое число (множитель) – значит составить сумму одинаковых слагаемых, в которой каждое слагаемое равно множимому, а число слагаемых – множителю.

Так умножить на 5 – значит найти сумму:
2) Умножить какое-нибудь число (множимое) на дробь (множитель) значит найти эту дробь множимого.

Таким образом, нахождение дроби от данного числа, рассмотренное нами перед этим, мы будем теперь называть умножением на дробь.

3) Умножить какое-нибудь число (множимое) на смешанное число (множитель) – значит умножить множимое сперва на целое число множителя, потом на дробь множителя, и результаты этих двух умножений сложить между собой.

Например:

Число, получаемое после умножения, во всех этих случаях называется произведением , т. е. так же, как и при умножении целых чисел.

Из этих определений видно, что умножение дробных чисел есть действие всегда возможное и всегда однозначное.

§ 141. Целесообразность этих определений. Чтобы уяснить себе целесообразность введения в арифметику двух последних определений умножения, возьмем такую задачу:

Задача. Поезд, двигаясь равномерно проходит в час 40 км; как узнать, сколько километров пройдет этот поезд в данное число часов?

Если бы мы остались при том одном определении умножения, которое указывается в арифметике целых чисел (сложение равных слагаемых), то наша задача имела бы три различных решения, а именно:

Если данное число часов целое (например 5 часов), то для решения задачи надо 40 км умножить на это число часов.

Если данное число часов выражается дробью (например часа), то придется найти величину этой дроби от 40 км.

Наконец, если данное число часов смешанное (например часа), то надо будет 40 км умножить на целое число, заключающееся в смешанном числе, и к результату добавить еще такую дробь от 40 км, какая есть в смешанном числе.

Данные нами определения позволяют на все эти возможные случаи дать один общий ответ:

надо 40 км умножить на данное число часов, каково бы оно ни было.

Таким образом, если задачу представить в общем виде так:

Поезд, двигаясь равномерно, проходит в час v км. Сколько километров поезд пройдет в t часов?

то, какие бы ни были числа v и t, мы можем высказать один ответ: искомое число выражается формулой v · t.

Примечание. Найти какую-нибудь дробь данного числа, по нашему определению, означает то же самое, что умножить данное число на эту дробь; поэтому, например, найти 5% (т.е. пять сотых) данного числа означает то же самое, что умножить данное число на или на ; найти 125% данного числа означает то же, что умножить это число на или на , и т. д.

§ 142. Замечание о том, когда от умножения число увеличивается и когда оно уменьшается.

От умножения на правильную дробь число уменьшается, а от умножения на неправильную дробь число увеличивается, если эта неправильная дробь больше единицы, и остается без изменения, если она равна единице.
Замечание. При умножении дробных чисел, так же как и целых, произведение принимается равным нулю, если какой-нибудь из сомножителей равен нулю так, .

§ 143. Вывод правил умножения.

1) Умножение дроби на целое число. Пусть требуется дробь умножить на 5. Это значит увеличить в 5 раз. Чтобы увеличить дробь в 5 раз, достаточно увеличить ее числитель или уменьшить ее знаменатель в 5 раз (§ 127).

Поэтому:
Правило 1-е. Чтобы умножить дробь на целое число, надо умножить на это целое число числитель, а знаменатель оставить тот же; вместо этого можно также разделить на данное целое число знаменатель дроби (если это возможно), а числитель оставить тот же.

Замечание. Произведение дроби на ее знаменатель равно ее числителю.

Так:
Правило 2-е. Чтобы умножить целое число на дробь, надо умножить целое число на числитель дроби и это произведение сделать числителем, а знаменателем подписать знаменатель данной дроби.
Правило 3-е. Чтобы умножить дробь на дробь, надо умножить числитель на числитель и знаменатель на знаменатель и первое произведение сделать числителем, а второе знаменателем произведения.

Замечание. Это правило можно применять и к умножению дроби на целое число и целого числа на дробь, если только целое число будем рассматривать как дробь со знаменателем единица. Так:

Таким образом, изложенные сейчас три правила заключаются в одном, которое в общем виде можно выразить так:
4) Умножение смешанных чисел.

Правило 4-е. Чтобы умножить смешанные числа, надо обратить их в неправильные дроби и затем умножить по правилам умножения дробей . Например:
§ 144. Сокращение при умножении . При умножении дробей, если это возможно, надо делать предварительное сокращение, как это видно из следующих примеров:

Такое сокращение возможно делать потому, что величина дроби не изменится, если числитель и знаменатель ее будут уменьшены в одинаковое число раз.

§ 145. Изменение произведения с изменением сомножителей. Произведение дробных чисел при изменении сомножителей изменится совершенно так же, как и произведение целых чисел (§ 53), а именно: если увеличить (или уменьшить) какой-нибудь сомножитель в несколько раз, то и произведение увеличится (или уменьшится) во столько же раз.

Так, если в примере:
чтобы перемножить несколько дробей, надо перемножить их числители между собой и знаменатели между собой и первое произведение сделать числителем, а второе знаменателем произведения.

Замечание. Это правило можно применять и к таким произведениям, в которых некоторые множители числа целые или смешанные, если только целое число будем рассматривать как дробь, у которой знаменатель единица, а смешанные числа будем обращать в неправильные дроби. Например:
§ 147. Основные свойства умножения. Те свойства умножения, которые были нами указаны для целых чисел (§ 56, 57, 59), принадлежат и умножению дробных чисел. Укажем эти свойства.

1) Произведение не изменяется от перемены мест сомножителей.

Например:

Действительно, согласно правилу предыдущего параграфа первое произведение равно дроби , а второе равно дроби . Но эти дроби одинаковы, потому что их члены отличаются только порядком целых сомножителей, а произведение целых чисел не изменяется при перемене мест сомножителей.

2) Произведение не изменится, если какую-либо группу сомножителей заменить их произведением.

Например:

Результаты получаются одинаковыми.

Из этого свойства умножения можно вывести такое заключение:

чтобы умножить какое-нибудь число на произведение, можно умножить это число на первый сомножитель, полученное число умножить на второй и т.д.

Например:
3) Распределительный закон умножения (относительно сложения). Чтобы умножить сумму на какое-нибудь число, можно умножить на это число каждое слагаемое отдельно и результаты сложить.

Закон этот был нами объяснен (§ 59) в применении к целым числам. Он остается верным без всяких изменений и для дробных чисел.

Покажем, в самом деле, что равенство

(a + b + c + .)m = am + bm + cm + .

(распределительный закон умножения относительно сложения) остается верным и тогда, когда буквы означают дробные числа. Рассмотрим три случая.

1) Предположим сначала, что множитель m есть число целое, например m = 3 (a, b, c – какие угодно числа). Согласно определению умножения на целое число можно написать (ограничиваясь для простоты тремя слагаемыми):

(a + b + c) * 3 = (a + b + c) + (a + b + c) + (a + b + c).

На основании сочетательного закона сложения мы можем в правой части опустить все скобки; применяя же переместительный закон сложения, а потом снова сочетательный, мы можем, очевидно, переписать правую часть так:

(a + a + a) + (b + b + b) + (c + c + c).

(a + b + c) * 3 = a * 3 + b * 3 + c * 3.

Значит, распределительный закон в этом случае подтверждается.

Деление дроби на натуральное число

Разделы: Математика

Тип урока: ОНЗ (открытие новых знаний – по технологии деятельностного метода обучения).

  1. Вывести приемы деления дроби на натуральное число;
  2. Сформировать способность к выполнению деления дроби на натуральное число;
  3. Повторить и закрепить деление дробей;
  4. Тренировать способность к сокращению дробей, анализу и решению задач.

Оборудование демонстрационный материал:

1. Задания для актуализации знаний:

2. Пробное (индивидуальное) задание.

1. Выполните деление:

2. Выполните деление, не выполняя всю цепочку вычислений: .

  • При делении дроби на натуральное число можно умножить на это число знаменатель, а числитель оставить прежним.

  • Если числитель делится на натуральное число, то при делении дроби на это число можно числитель разделить на число, а знаменатель оставить прежним.

I. Мотивация (самоопределение) к учебной деятельности.

  1. Организовать актуализацию требований к ученику со стороны учебной деятельности («надо»);
  2. Организовать деятельность учащихся по установке тематических рамок («могу»);
  3. Создать условия для возникновения у ученика внутренней потребности включения в учебную деятельность («хочу»).

Организация учебного процесса на этапе I.

Здравствуйте! Я рада видеть вас всех на уроке математики. Надеюсь, это взаимно.

Ребята, какие новые знания вы приобрели на прошлом уроке? (Делить дроби).

Верно. Что вам помогает выполнять деление дробей? (Правило, свойства).

Где эти знания нам необходимы? (В примерах, уравнениях, задачах).

Молодцы! Вы хорошо справились с заданиями на прошлом уроке. Хотите и сегодня открыть сами новые знания? (Да).

Тогда – в путь! А девизом урока возьмём высказывание «Математику нельзя изучать, наблюдая, как это делает сосед!».

II. Актуализация знаний и фиксация индивидуального затруднения в пробном действии.

  1. Организовать актуализацию изученных способов действий, достаточных для построения нового знания. Зафиксировать эти способы вербально (в речи) и знаково (эталон) и обобщить их;
  2. Организовать актуализацию мыслительных операций и познавательных процессов, достаточных для построения нового знания;
  3. Мотивировать к пробному действию и его самостоятельному выполнению и обоснованию;
  4. Предъявить индивидуальное задание для пробного действия и проанализировать его с целью выявления нового учебного содержания;
  5. Организовать фиксацию образовательной цели и темы урока;
  6. Организовать выполнение пробного действия и фиксацию затруднения;
  7. Организовать анализ полученных ответов и зафиксировать индивидуальные затруднения в выполнении пробного действия или его обоснования.

Организация учебного процесса на этапе II.

Фронтально, с использованием планшетов (индивидуальных досок).

1. Сравните выражения:

(Эти выражения равны)

Что интересного вы заметили? (Числитель и знаменатель делимого, числитель и знаменатель делителя в каждом выражении увеличились в одно и то же число раз. Т.о., делимые и делители в выражениях представлены дробями, равными между собой).

Найдите значение выражения и запишите на планшете. (2)

Как записать это число в виде дроби?

Как вы выполнили действие деления? (Дети проговаривают правило, учитель вывешивает на доску буквенные обозначения)

2. Вычислите и запишите только результаты:

3. Сложите полученные результаты и запишите ответ. (2)

Как называется число, полученное в задании 3? (Натуральное)

Как вы думаете, сможете ли дробь разделить на натуральное число? (Да, постараемся)

Попробуйте это выполнить.

4. Индивидуальное (пробное) задание.

Выполните деление: (только пример а)

По какому правилу вы выполнили деление? (По правилу деления дроби на дробь)

А теперь разделите дробь на натуральное число более простым способом, не выполняя всю цепочку вычислений: (пример б). Даю вам на это 3 секунды.

У кого не получилось выполнить задание за 3 секунды?

У кого получилось? (Нет таких)

Почему? (Не знаем способа)

Что получили? (Затруднение)

А как вы думаете, чем мы будем заниматься на уроке? (Делить дроби на натуральные числа)

Верно, откройте тетради и запишите тему урока «Деление дроби на натуральное число».

Почему эта тема звучит как новая, ведь вы уже умеете делить дроби? (Нужен новый способ)

Верно. Сегодня установим приём, упрощающий деление дроби на натуральное число.

III. Выявление места и причины затруднения.

  1. Организовать восстановление выполненных операций и зафиксировать (вербальную и знаковую) место – шага, операции, где возникло затруднение;
  2. Организовать соотнесение действий учащихся с используемым способом (алгоритмом) и фиксирование во внешней речи причины затруднения – тех конкретных знаний, умений или способностей, которых недостает для решения исходной задачи такого типа.

Организация учебного процесса на этапе III.

Какое задание вы должны были выполнить? (Разделить дробь на натуральное число, не проделывая всю цепочку вычислений)

Что вызвало у вас затруднение? (Не смогли решить за короткое время быстрым способом)

Какую цель мы ставим перед собой на уроке? (Найти быстрый способ деления дроби на натуральное число)

Что вам поможет? (Уже известное правило деления дробей)

IV. Построение проекта выхода из затруднения.

  1. Уточнение цели проекта;
  2. Выбор способа (уточнение);
  3. Определение средств (алгоритм);
  4. Построение плана достижения цели.

Организация учебного процесса на этапе IV.

Вернёмся к пробному заданию. Вы сказали, что делили по правилу деления дробей? (Да)

Для этого заменили натуральное число дробью? (Да)

Какой шаг (или шаги), на ваш взгляд, можно пропустить?

(На доске открыта цепочка решения:

Проанализируйте и сделайте вывод. (Шаг 1)

Если нет ответа, то подводим через вопросы:

Куда попал натуральный делитель? (В знаменатель)

Числитель изменился при этом? (Нет)

Так какой шаг можно «опустить»? (Шаг 1)

  • Умножить знаменатель дроби на натуральное число.
  • Числитель не изменяем.
  • Получаем новую дробь.

V. Реализация построенного проекта.

  1. Организовать коммуникативное взаимодействие с целью реализации построенного проекта, направленного на приобретение недостающих знаний;
  2. Организовать фиксацию построенного способа действия в речи и знаков (с помощью эталона);
  3. Организовать решение исходной задачи и зафиксировать преодоление затруднения;
  4. Организовать уточнение общего характера нового знания.

Организация учебного процесса на этапе V.

А теперь выполните пробный пример новым способом быстро.

Теперь вы смогли выполнить задание быстро? (Да)

Объясните, как вы это сделали? (Дети проговаривают)

Значит, мы получили новое знание: правило деления дроби на натуральное число.

Молодцы! Проговорите его в парах.

Затем один ученик проговаривает классу. Фиксируем правило-алгоритм словесно и в виде эталона на доске.

Введите теперь буквенные обозначения и запишите формулу для нашего правила.

Ученик записывает на доске, проговаривая правило: при делении дроби на натуральное число можно умножить на это число знаменатель, а числитель оставить прежним.

(Все пишут формулу в тетрадях).

А теперь ещё раз проанализируйте цепочку решения пробного задания, обратив особое внимание на ответ. Что сделали? (Числитель дроби 15 разделили (сократили) на число 3)

Что это за число? (Натуральное, делитель)

Так как еще можно разделить дробь на натуральное число? (Проверить: если числитель дроби делится на это натуральное число, то можно числитель разделить на это число, результат записать в числитель новой дроби, а знаменатель оставить прежним)

Запишите этот способ в виде формулы. (Ученик записывает на доске проговаривая правило. Все записывают формулу в тетрадях.)

Вернёмся к первому способу. Можно им пользоваться в случае, если a:n? (Да, это общий способ)

А когда второй способ удобно применять? (Когда числитель дроби делится на натуральное число без остатка)

VI. Первичное закрепление с проговариванием во внешней речи.

  1. Организовать усвоение детьми нового способа действий при решении типовых задач с их проговариванием во внешней речи (фронтально, в парах или группах).

Организация учебного процесса на этапе VI.

Вычисли новым способом:

  • №363 (а; г) – выполняют у доски, проговаривая правило.
  • №363 (д; е) – в парах с проверкой по образцу.

VII. Самостоятельная работа с самопроверкой по эталону.

  1. Организовать самостоятельное выполнение учащимися задания на новый способ действия;
  2. Организовать самопроверку на основе сопоставления с эталоном;
  3. По результатам выполнения самостоятельной работы организовать рефлексию усвоения нового способа действия.

Организация учебного процесса на этапе VII.

Вычисли новым способом:

Учащиеся проверяют по эталону, отмечают правильность выполнения. Анализируются причины ошибок и ошибки исправляются.

Учитель спрашивает тех учащихся, кто допустил ошибки, в чём причина?

На этом этапе важно, чтобы каждый учащийся самостоятельно проверил свою работу.

Перед решением задания 8) рассмотреть пример из учебника:

IX. Рефлексия учебной деятельности на уроке.

  1. Организовать фиксацию нового содержания, изученного на уроке;
  2. Организовать рефлексивный анализ учебной деятельности с точки зрения выполнения требований, известных учащимся;
  3. Организовать оценивание учащимися собственной деятельности на уроке;
  4. Организовать фиксацию неразрешённых затруднений на уроке как направления будущей учебной деятельности;
  5. Организовать обсуждение и запись домашнего задания.

Организация учебного процесса на этапе IX.

Ребята, какое новое знание вы сегодня открыли? (Научились делить дробь на натуральное число простым способом)

Сформулируйте общий способ. (Говорят)

Каким способом, и в каких случаях можно пользоваться ещё? (Говорят)

В чём преимущество нового способа?

Достигли ли мы поставленной нами цели урока? (Да)

Какие знания вы использовали для достижения цели? (Говорят)

Всё ли у вас получилось?

В чём были затруднения?