Почему ржавеют металлы. Почему железо покрывается ржавчиной

С незапамятных времен человечество использовало металлы. На промежутке существования люди учились добывать, переплавлять и применять удивительные ископаемые. Со временем процесс усовершенствовался и появились сплавы металлов, расширилась до невозможности их сфера применения.

Сегодня, наверное, и не встретить места, где бы не применялись металлические изделия и конструкции из них. Интересные факты о металлах свидетельствуют об востребованности элементов в этапы человеческого существования.

Серебро – самое древнее ископаемое. Во время раскопок археологи обнаружили серебряные изделия, которые пролежали в почве 6 000 лет. Ранние находки найдены на территории стран Древнего Междуречья и в Египте. Историками доказано, что древние монеты изготавливались из этого металла.

Факты про металлы свидетельствуют:

  • Серебро относится к металлам, которые встречаются крайне редко на нашей планете. В природных условиях элемент встречается в виде самородков или входит в состав иных соединений. Самородок-великан был найден на севере Чили. Пластина весила 1420 кг. Элемент обнаруживается в составе метеоритов, является частью морской воды. Астрологи называют серебро металлом Луны. Древние манускрипты свидетельствуют о лунном происхождении металла: изображения серебра в виде лунного серпа или женщины-Луны свидетельствуют о космическом происхождении ископаемого.

  • Индия – страна больших серебряных запасов. В этой местности металл считается народным. Коренные жители верят в чудодейственную силу элемента: металл настолько популярен, что его употребляют даже для приготовления блюд.
  • Серебро популярно в промышленности. Его используют при изготовлении электроники – практически каждый прибор содержит этот металл.

  • Серебро отличается антибактериальными свойствами. К примеру, широко используется вода, очищенная металлом. Американские первооткрыватели пошли дальше: положив серебряную монету в кувшин с молоком, они продлевали его свежесть на три дня. Впервые о его антисептических свойствах узнали в Египте: 4 000 лет назад люди использовали элементы серебра для лечения ран и порезов. Неудивительно, что древние воины всегда имели при себе серебряную пластину и при ранении прикладывали ее к пораженному месту: считалось, что с помощью изделия можно остановить кровь и исключить инфицирование раны. Сегодня использование серебра в медицине все так же стремительно развивается.
  • Удивительно, но в Японии металл применяется не только для лечения, но и для очищения воздуха: так японцы борются с загрязнением воздушных масс на континенте.

Золото – метал, почитаемый с древних времен

Золото – величественный металл, который почитался еще с давних времен. Благодаря характеристикам золото стало предметом желания культур и народов.

Особенности драгоценного металла:

  • Встречается крайне редко. К примеру, на планете за 1 час стали выплавляется в 4 раза больше, чем было добыто желтого металла за период существования человечества.

  • В мировом океане «спрятано» 10 млрд. тонн драгоценного ископаемого. Но встречается золото на всех континентах земного шара. Добыча драгоценного металла активно развивается: считается, что более 80% ископаемого все еще находится в земле.
  • Золото прекрасно плавится: температура плавления составляет 1064,43 градуса. Элемент обладает высокими показателями проводимости тепла и электрической энергии, не подвержен коррозии. Первые золотые изделия, которые найдены археологами, сохранили свою первозданную красоту.

  • Народы используют золото в процессе приготовления пищи. К примеру, население Древней Индии верили, что употребление металла раскрывает левитационные возможности, в Азии его использовали в качестве приправы для десертов, добавляли к напиткам. Начиная с 16 столетия сусальное золото помещали в дорогие горячительные напитки: Goldschlager, Danziger Goldwasser. Об этом указывают не только факты о металлах, но и закупоренные бутылки.
  • В Австралии в 1869 году золотоискателями обнаружен самородок-лидер, весивший 72 кг. Его величина составляла 31х63,5 см. До сегодняшнего дня рекорд остается в силе. Великану было присвоено имя «Здравствуй, незнакомец». Интересно, что слиток-великан находился на поверхности почвы: глубина залегания составляла 5 см.

  • Весной 2008 года, во время резкого спада показателей мировой экономики, стоимость золота резко возросла и составляла $1000 за унцию (28,55 г). Такая стоимость зафиксирована однажды за историю существования металла, хотя ценилось он во все века высоко.
  • В древние времена больше всего золота добывалось в Нубии: рабы, добывающие металл, испытывали небывалые страдания, а знать считала его божественным металлом.
  • Для изготовления ювелирных украшений используются только сплавы: чистое золото не применяется.

Медь – востребованный металл в электронике

Медь получила название благодаря первому месту, где велась добыча металла. Уже в 3 тысячелетии до н.э. на острове Кипр возделывали металл.

Особенности металла:

  • Чаще залегает в виде целостных самородков. Металл в природных условиях добывают интенсивней нежели драгоценные ископаемые. Лидирующий экземпляр меди - самородок, найденный в Северной Америке. Весил он 420 тонн.

  • Сегодня медь востребована в электротехнике. Применяют для производства электрических кабелей и проводов: применяется только чистый металл, так как комбинация с иными металлами приводит до снижения показателей электропроводимости. К примеру, если в медь добавить 0,02% алюминия теплопроводность снизится на 10%.
  • Отличается антибактериальными свойствами. Наука химия доказывает, что медь может устранять бактерии в воде и воздушных массах. Еще в древние времена в Непале медь считалась божественным металлом. С его помощью знахари исцеляли заболевания желудочно-кишечного тракта. Не удивительно, что в Непале существует храм «Медный», в котором поклоняются природному ископаемому и сегодня.

Медные браслеты используют в медицинских целях
  • Согласно утверждениям ученых с Польши, в водоеме, где обнаруживается медь, рыба растет намного больше привычных размеров. В реках и ставках, где отсутствует элемент, вода склонна к развитию грибка, плесени. Но вместе с тем, акулы не переносят присутствие меди в воде. Это доказали американские военные во время второй мировой войны: в то время ежедневно тонули корабли и необходимо было искать «антиакулье» средство. Медь превзошла все ожидания: рыбины и близко не подходили к участку, в котором содержался сульфат меди.
  • В человеческом организме содержится 80 мг меди: металл присутствует в жизненноважных органах человеческого организма. Группой ирландских и французских исследователей металлов создан медный состав, который способствует возобновлению обменных процессов в живом организме. Новшеством воспользовался кутюрье из Франции, обработав нити джинсовой одежды Gold Vision – 3000 Classic. Пояс и карманы с использованием состава сформированы с помощью «медного корсета», который благотворно влияет на функциональность жизненно необходимых систем человека.

Обобщенные интересные факты о металлах

Компания Valcambi радует почитателей драгоценных металлов своей изысканной продукцией. Она выпускает золотые, серебряные, платиновые слитки в виде плиток шоколада. Особенностью таких изделий является то, что их можно быстро разломить: квадратики часто используют в виде подарка. Вес одной «дольки» составляет 1 г.

Золотые Олимпийские медали состоят вовсе не из золота, а из серебра. Международный Олимпийский комитет при изготовлении наград требует, чтобы они были покрыты 6 граммами золота. К примеру, золотые награды за первенство Олимпиады в 2012 году имели в составе 1% драгоценного желтого металла.


  • , работая на Британском монетном дворе, впервые нанес резьбу на края монет, состоящих из драгоценных металлов. Сегодня ребристость именуется гуртом. Нанесение неровностей на края монет было связано с необходимостью бороться с мошенниками, которые срезали края монет и формировали подделку.
  • Всего за бытность люди извлекли из земных недр 161 тыс. тонн золота, в перерасчете на стоимость этот показатель составляет $9 трлн.
  • При изготовлении ювелирных золотых украшений используется специальный сплав с добавлением серебра или меди.

  • Щелочные металлы - франций, цезий, рубидий, калий, натрий, литий способны растворятся в воде, образовывая соединения. Хранят их под маслом или керосином.
  • Некоторые люди обладают свойством поглощать металлические изделия. К примеру, актер М. Лотито прославился тем, что проглатывал металлические изделия: доказано, что за все свои выступления человек съел до 9 тонн металлических сплавов.
  • Долгое время платина не использовалась как драгоценный металл. Тугоплавкий элемент ценился намного ниже серебра. В начале 17 столетия в Южной Америке монеты, изготовленные из платины, считались фальшивыми. Правительство страны даже утопили корабль с драгоценной валютой в океане, дабы монеты не попали в обиход. В Алмазном фонде Московского Кремля хранится самородок-великан платины. Его вес составляет 7 кг.

  • В Японии добывают золото нетрадиционным способом: металл извлекают из пепла. Ученые попросту сжигают канализационные отходы предприятий промышленности, которые в производстве используют золото и соединения драгоценных металлов.
  • Пластичным металлом считается ванадий, используемый в ковке. Ему отдают предпочтения профессиональные умельцы.

  • Земная кора содержит металлы, большее количество в ней алюминия – до 8%. В свою очередь, золото составляет 5% миллионных частей процента. Длительное время алюминий не использовался человеком: впервые о нем узнали в 1885 году. В то время французы отнеслись к алюминию как к драгоценному металлу.

  • Согласно записям Книги рекордов Гиннеса, самый дорогой металл - Калифорний. Элемент искусственно получен в 1950 году. В год металла производится несколько миллиграммов и стоит он $6 500 000 за грамм.

Вольфрам – тугоплавкий металл: температура кипения составляет 5900 градусов. Хром отличается прочностью, золото – мягкостью.


Титан – мистический металл, названный на честь царицы фей. Он легкий, как воздушные крылья феи. Возможно от этой особенности и произошло название элемента.


Благодаря уникальным свойствам золото, платина и серебро используются в медицине. Металлы не вступают в реакцию с теплом, а соответственно имеют неизменную температуру в независимости от внешних факторов.

Металлы используют экономно, ведь запасы ископаемого небезграничные. Благодаря уникальным свойствам они востребованы во всех отраслях промышленности. Сегодня человеческое существование невозможно уже представить без этих даров матушки природы.

Под коррозией металла следует понимать процесс самопроизвольного разъедания металла под влиянием соприкасающейся с ним среды. Процесс коррозии металла надо отличать от процесса эрозии металла; эрозия металла есть его разрушение с поверхности под влиянием механического действия (например, струи воды, несущей крупинки песка, и т. п.).

На процесс коррозии металлов человечество уже давно обратило внимание. Так, ещё Плиний (первый век нашей эры) писал: «на железо обрушилась месть человеческой крови, так как оно скорее ржавеет, когда соприкасается с нею». Народная мудрость не оставила без внимания вопросы коррозии металлов, что отражено и в литературе: например, в произведениях Горького встречается такая поговорка: «ржа ест железо».

Само собой очевидно, что от высказывания Плиния и от констатации того, что «ржа ест железо», должен был быть пройден большой путь, прежде чем действительно процессы коррозии металлов получили теоретическое объяснение. Лавуазье рассматривал, например, ржавление железа как процесс простого окисления. Когда М. Пайен (1837 г.) показал, что железо не ржавеет ниже 200"С в атмосфере сухого кислорода, то пришлось отойти от взглядов Лавуазье на процесс ржавления, и тогда стали объяснять этот процесс как обусловливаемый кислотностью раствора, соприкасающегося с железом. Надо заметить, что до тех пор, пока не была выдвинута электро-химическая теория коррозии металлов, не было по существу достаточно серьёзной теории коррозии металлов.

Масштабы потерь от коррозии в мировом хозяйстве чрезвычайно велики. Буквально миллиардные суммы тратятся в развитых индустриально странах на борьбу с коррозией металлов и на замену выведенных из строя коррозией металлических конструкций и аппаратов. Ввиду большого масштаба производства и промышленного использования металлов, вопрос о коррозии металлов является одним из серьёзнейших вопросов.

Коррозия металлов в той или иной степени происходит повсюду: в воздухе, на земле, под землёй и в воде. Вспомним, что многие ответственные детали самолётов готовятся из лёгких сплавов, содержащих главным образом в их составе магний. Подобные сплавы не так-то просто могут быть защищены от коррозии, в особенности в приморской атмосфере, содержащей взвешенные частички солей.

Вспомним, что очень много энергии надо затрачивать, чтобы предохранять от коррозии оборудование металлообрабатывающих заводов и металлоизделия этих заводов. Весьма неприятно даёт о себе знать коррозия во многих отраслях химической промышленности. Например, много беспокойства причиняет коррозия резервуаров для хранения нефти и продуктов, из неё получаемых. Коррозия проникает и на. транспорт (котлы паровозов, фермы потолочных перекрытий, страдающие от дымовых газов, и др.). Под землёй от коррозии страдают всякие нефтепроводы, водопроводы и т. д. В воде коррозия угрожает металлическим корпусам кораблей. Нет возможности перечислить все те неприятности, которые коррозия приносит во всех областях народного хозяйства.

Наиболее типичные случаи коррозии металлов

1. Наиболее типичным случаем коррозии при высоких температурах является окисление металла при высоких температурах . При окислении железа образуются, согласно современным экспериментальным данным, три оксидных слоя: закись железа FeO, магнетит Fe3О4 и оксид железа Fe2O3. В зависимости от условий охлаждения после нагревания самый глубокий слой закиси железа может уменьшаться по толщине и даже может совсем отсутствовать (например, при медленном охлаждении).

Окисление металлов на воздухе ускоряется при добавлении к воздуху сернистого газа, углекислого газа и водяных паров. По всей вероятности, при наличии упомянутых примесей в воздухе на поверхности металла образуются сульфаты, сульфиты или сульфиды, карбонаты и, возможно, гидроксиды, которые после их образования быстро разлагаются, давая некоторое количество вторичных оксидов, являющихся более пористыми и менее защищающими металл от коррозии, чем оксиды, получаемые непосредственным соединением кислорода и металла.

В настоящее время имеется большое количество сплавов, содержащих хром и никель и являющихся устойчивыми против окисления при высоких температурах.

2. При действии воздуха или некоторых газов на металл будет происходить изменение состояния поверхности металла ; характер и степень изменения будут определяться как свойствами металла, так и свойствами и составом газовой среды, соприкасающейся с металлом. В некоторых случаях при воздействии газа на металл на поверхности последнего будут образовываться только очень тонкие слои продуктов коррозии (потускнение, потемнение, побежалость). В других случаях процесс коррозии при воздействии газа на металл может пойти весьма далеко и привести к сильному разъеданию металла (например, процесс ржавления железа во влажном воздухе).

Наибольшее практическое значение, понятно, имеет процесс коррозии железа в атмосферных условиях при обычных температурах (ржавление). Ржавление железа практически не идет в сухом воздухе и весьма интенсивно может протекать во влажном воздухе. Образование на поверхности железного или стального предмета плёнки влаги, так же как и образование капелек влаги вследствие конденсации, весьма ускоряет процесс ржавления.

Сама ржавчина имеет, вероятнее всего, как это вытекает из работ проф. Н. А. Изгарышева и др., структуру геля. Оранжево-жёлтая первоначально образовавшаяся ржавчина не остаётся долго в виде геля, и постепенно происходит образование кристаллического O=Fe-0H. Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень хрупок, разрушается.

Необходимо отметить роль активных в химическом отношении газов (SO2, пары кислот, пары галоидов и т. д.). Такие газы могут в весьма сильной степени усиливать интенсивность коррозии металлов в атмосферных условиях. Растворяясь в плёнке влаги, присутствующей на поверхности металла благодаря адсорбции влаги из воздуха, такие газы создают электролит, способствующий усилению электрохимического процесса коррозии металла во влажной атмосфере.

Чрезвычайно велика роль контакта металла с другими металлами или вообще твёрдыми телами. В особенности резко сказывается присутствие пыли на поверхности металла. В пыльном воздухе коррозия идёт значительно интенсивнее, чем в свободном от пыли воздухе. Интересен, например, такой факт. Железные фермы мостов чаще всего претерпевают более интенсивное разрушение от коррозии на поверхностях, обращённых кверху, в сторону от воды. Понятно, что именно на этих поверхностях, а не на поверхностях, обращённых к воде, садится пыль, ускоряющая коррозионный процесс.

3. Коррозия в растворах электролитов , т. е. в растворах солей или кислот, во многих случаях протекает весьма интенсивно; на некоторые металлы (Al, Zn, Pb) оказывают коррозионное воздействие и растворы щелочей, железо в щелочных растворах практически не корродирует.

Железо, погружённое в раствор поваренной соли или в морскую воду, корродирует интенсивно, но в зависимости от быстроты подачи кислорода воздуха к корродирующим участкам. Наиболее интенсивно коррозия железа протекает в условиях полупогружения в раствор соли. В этом- случае коррозионному разрушению (вследствие образования гальванического элемента на поверхности железного образца) будет подвергаться участок поверхности образца железа, расположенный ниже уровня раствора. Анодом этого элемента будет часть поверхности образца, расположенная ниже уровня раствора, а катодом - часть поверхности образца непосредственно на уровне раствора и в участке, покрытом раствором, приподнятом несколько над уровнем раствора в сосуде капиллярными силами. Очень интенсивно протекает коррозия металлов также при попеременном смачивании раствором электролита и высушивании. В этих условиях доступ кислорода воздуха к поверхности образца ведет к его усиленной коррозии.

Нужно отметить, в особенности для образцов металлов, целиком погружённых в растворы электролитов, влияние движения раствора. движение раствора ускоряет коррозию как за счёт облегчения доступа кислорода воздуха к поверхности металла, так и за счёт удаления с поверхности образца продуктов коррозии, в некоторых случаях в известной степени противодействующих коррозии. Вообще же говоря, движение раствора не всегда влияет в одном направлении на коррозию находящегося в растворе металла.

Контакт корродирующего в растворе электролита металла с другими металлами или твёрдыми и жидкими телами существенно влияет на интенсивность процесса коррозии.

В некоторых случаях, например при растворении металла в растворах кислот, добавки к таким средам некоторых органических веществ (желатина, крахмал и т. д.) могут значительно снизить интенсивность коррозионного процесса.

Коррозия металлических, стальных, чугунных и железных труб, уложенных в почве, представляет сложную разновидность коррозии. Здесь играют роль как химические, так и физические свойства почв. Здесь, так же как и при полном погружении металла в раствор соли, очень важную роль играет кислород, диффундирующий через слой почвы к металлу. Химический состав находящегося в земле металла, повидимому, оказывает слабое влияние на интенсивность коррозионного процесса в почве.

Большую роль в процессах подземной коррозии металлов играют так называемые блуждающие токи, т. е. токи от посторонних по отношению к заложенному в землю металлическому сооружению (нефтепроводу, .водопроводу и т. д.) источников. В том случае, когда попадающий в подземное металлическое сооружение ток далее выходит из него, в местах выхода тока - анодах - будет наблюдаться очень интенсивная коррозия. Коррозия под влиянием блуждающих токов - «электрокоррозия» - часто приводит к полному разрушению заложенных и землю металлических сооружений в местах выхода тока. Переменный ток оказывает значительно более слабое влияние, чем постоянный ток. Во всяком случае действие переменного тока находится в зависимости от числа периодов его в секунду.

4. В некоторых случаях продукты жизнедеятельности бактерий в почве оказывают влияние на коррозию соприкасающихся с такий почвой металлических предметов.

Факторы, определяющие интенсивность коррозии металлов

1. Химический состав металла играет очень большую роль в процессах коррозии его в тех или иных условиях. В настоящее время имеется целый ряд сплавов железа (нержавеющие стали, медистые стали и т. д.), которые лучше противостоят коррозии, чем чистое железо. Устойчивость нержавеющих стилей против коррозии объясняется прочностью и однородностью пленки окислов, образующихся на их поверхностях.

В сильно восстановительных средах нержавеющие стали не являются устойчивыми против коррозии. Медистые стали при соприкосновении их с растворами солей не являются более устойчивыми, чем обычные стали. Но медистые стали устойчивы и атмосферных условиях. Повышенная стойкость медистых сталей против атмосферной коррозии обусловлена меньшей гигроскопичностью продуктов коррозии медистых сталей по сравнению с продуктами коррозии обычных сталей.

2. Структура металла также в известной степени определяет устойчивость металла против коррозии. Сплавы с однородной структурой устойчивее против коррозии, чем сплавы, неоднородные по структуре. Например, сплавы, содержащие кристаллиты различных составов, менее устойчивы против коррозии, чем сплавы, представляющие однородные твёрдые растворы. Устойчивость нержавеющих сталей против коррозии определяется их однородной структурой, в свою очередь обеспечивающей прочность и однородность поверхностной плёнки окислов.

3. Механическая деформация металла вызывает в нём внутренние напряжения, так как атомы в некоторых кристаллических зёрнах металла уже не будут расположенными в таком порядке, какой характерен для нормального металла. Поэтому понятно, почему металл в состоянии механического напряжения (в кислых средах) корродирует интенсивнее, чем тот же металл в нормальном состоянии. В растворах нейтральных солей напряжения металла практически не оказывают влияния на интенсивность его коррозии (здесь всё определяется доступом кислорода воздуха). То же самое справедливо и в отношении процессов коррозии железа и стали в атмосферных условиях. В некоторых случаях коррозия стали в напряжённом состоянии даже меньше, чем в ненапряжённом. Это объясняется тем, что ржавчина пристаёт лучше к ненапряжённой стали, чем к напряжённой; поэтому первая имеет условия для того, чтобы оставаться.влажной, между тем как вторая остаётся сухой.

4. Поверхность металла представляет собой определённую микроскопическую структуру. Она покрыта бесчисленными микроскопическими выступами, объясняющимися структурой кристаллической решётки металла. Согласно воззрениям акад. В. А. Кистяковского, такая поверхность металла должна из воздуха адсорбировать атомы кислорода. В качестве первой стадии такого процесса будет образование одноатомного слоя кислорода, покрывающего металл. На поверхности благородных металлов, по-видимому, образуется слой адсорбированного кислорода, на других металлах связь кислорода с находящимися на поверхности атомами металла будет более прочной.

Металл в активном состоянии обладает повышенной способностью корродировать. Проделаем такой опыт. Возьмём листочек алюминия, почистим его наждачной бумагой. На поверхности листочка алюминия будет тончайший слой его окиси, однако достаточный, чтобы сделать алюминий неактивным для многих веществ, приводимых с ним в контакт. Такой алюминий не амальгамируется. Если же алюминий поцарапать под ртутью и затем вынуть из ртути, то по месту царапины алюминий амальгамируется, будет поддерживаться в активном состоянии и интенсивно корродировать на воздухе с образованием хлопьев окиси алюминия.

В настоящее время имеется очень большое количество экспериментальных доказательств существования плёнок окислов на поверхности металлов.

5. Неодинаковый доступ воздуха к различным участкам поверхности металла приводит к образованию гальванического элемента, в котором участок, хуже снабжаемый кислородом, будет разъедаться, а участок, интенсивнее снабжаемый кислородам, разъеданию подвергаться не будет. Этот принцип «дифференциальной аэрации» справедлив лишь в том случае, если сопротивления ячейки и внешней цепи невелики и если все части аэрируемого электрода хорошо снабжаются кислородом. Для меди констатировано, что аэрируемый электрод является анодом, а неаэрируемый - катодом. Здесь удаление медных ионов производит больший эффект, чем аэрация.

6. Свойства и химический состав соприкасающейся с металлом среды , естественно, определяют особенности и интенсивность коррозии металла, помещённого в данную среду. В общем можно сказать, что действие каждой среды является специфическим по отношению к каждому металлу и определяется тем, как данная среда действует на поверхностную плёнку, являющуюся барьером между металлом и внешней средой. Искусственное укрепление этого барьера (применением окислителей и т. д.) уменьшает интенсивность коррозии. Неоднородность среды, соприкасающейся с металлом, благоприятствует усилению коррозии за счёт «эффекта дифференциальности», обусловливающего образование гальванических пар между участками металла, находящимися в контакте с разными веществами. Контакт в некоторых случаях обусловливает вторичные явления, усиливающие коррозионный процесс. Например, железные образцы, подвешенные на стеклянные крючки и сохраняемые во влажном воздухе, корродируют в местах контакта со стекляннымн крючками (замедление доступа кислорода).

В некоторых случаях влияние контакта металла с другим твёрдым телом может быть объяснено тем, что в месте контакта концентрация иона водорода будет другая, чем в отдалении от контакта. Разница в концентрациях иона водорода обусловит образование «местного гальванического элемента».

7. Повышение температуры увеличивает интенсивность коррозии металла. В случае коррозии металла в растворе необходимо отметить, что повышение температуры способствует нарушению пассивирующего слоя и благодаря этому усиливает интенсивность коррозии.


Общие сведения о металлах

Вам известно, что большинство химических элементов от носят к металлам - 92 из 114 известных элементов.

Металлы - это химические элементы, атомы ко торых отдают электроны внешнего (а некоторые - и предвнешнего) электронного слоя, превращаясь я положительные ионы.

Это свойство атомов металлов, как вы знаете, определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от 1 до 3) на внешнем слое.

Исключение составляют лишь 6 металлов: атомы германия, олова, свинца на внешнем слое имеют 4 электрона, атомы сурьмы, висмута -5, атомы полония - 6.

Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства, то есть способность отдавать электроны.

Вы уже знаете, что в Периодической системе химических алементов Д. И. Менделеева металлы находятся ниже диагонали бор-астат, я также выше нее в побочных подгруппах. В периодах и глинных подгруппах действуют известные вам закономерности в изменении металлических, и значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор -астат, обладают двойственними свойствами: в одних своих соединениях ведут себя как металлы, в других - проявляют свойства неметалла.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются. Сравните активность известных вам металлов I группы побочной подгруппы: Сu, Аg, Аu; II группы побочной подгруппы - и вы убедитесь в этом сами.

Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов этих металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами - металлами, н сложные металлсодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ноны) элементов-металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных, растений. Например, в крови человека найдено 76 элементов и из них только 14 не являются металлами. В организме человека некоторые элементы-металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, то есть являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден, присутствуют в небольших количествах, то есть это микроэлементы. Если вес человека 70 кг, то в его организме содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5. цинка - 3. Все металлы чрезвычайно важны, проблемы со здоровьем возникают и при их недостатке, и при избытке.

Например, ионы натрия регулируют содержание воды в организме, передачу нервного импульса. Его недостаток приводит к головной боли, слабости, слабой памяти, потери аппетита, а избыток - к повышению артериального давления, гипертонии, заболеваниям сердца. Специалисты по питанию рекомендуют потреблять в день не более 5 г (1 чайная ложка) поваренной соли (NaСl) на взрослого человека. О влиянии металлов на состояние животных и растений можно узнать из таблицы 16.



Простые вещества - металлы

С развитием производства металлов (простых веществ) и сплавов связало возникновение цивилизации («бронзовый век», железный век).

Начавшаяся примерно 100 лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до 3000 ºС. в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.


И конечно же мы не должны забывать, что в большинстве сплавов используют давно известный металл железо (рис. 37), а основу многих легких сплавов составляют сравнительно «молодые» металлы: алюминий и магний.

Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами, которые могут быть из вольфрама, молибдена, стали и других металлов и сплавов - все зависит от поставленной цели, необходимых для ее достижения свойств материала.

Вы уже имеете представление о природе химической связи в кристаллах металлов. Напомним на примере одного из них - натрия, как она образуется.
На рисунке 38 изображена схема кристаллической решетки металла натрия. В ней каждый атом натрия окружен восемью соседними. У атомов натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов.

Единственный валентный электрон атома натрия Зs 1 может занимать любую из девяти свободных орбиталей, ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристаллическая решетка, валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно нере-мещаются с одной орбитали на другую, осуществляя связь между всеми атомами кристалла металла.

Такой тип химической связи называют металлической. Металлическую связь образуют элементы, атомы которых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла.


Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически тик, как показано на рисунке узлах находятся катионы и атомы металлов. Обобществленные электроны электростатически притягивают катионы металлов, расположенные в у ал их кристаллической решетки, обеспечивая ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь - это связь в металлах и сплавах между атом-ионами металле, расположенными в уллах кристаллической решетки, которая осуществляется обобществленными валентными электронами.

Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ - существовать а нескольких кристаллических модификациях - называют полиморфизмом. Полиморфизм для простых веществ вам известен под названием аллотропия.

Олово имеет две кристаллические модификации:
альфа - устойчива ниже 13,2 ºС с плотностью р - 5.74 г/см3. Это серое олово. Оно имеет кристаллическую решетку типа алмаав (атомную):
бетта - устойчива выше 13.2 ºС с плотностью р - 6,55 г/см3. Это белое олово.

Белое олово - очень мягкий металл. При охлаждении ниже 13,2 ºС он рассыпается в серый порошок, так как при переходе |1 » п значительно увеличивается его удельный объем. Это явление получило название оловянной чумы. Конечно, особый вид химической связи и тип кристаллической решетки металлов должны определять и объяснять их физические свойства.

Каковы же они? Это металлический блеск, пластичность, высокая электрическая проводимость и теплопроводность, рост злектрн чес кого сопротивления при повышении температуры, а также такие практически значимые свойства, как плотность, температуры плавления и кипения, твердость, магнитные свойства.

Давайте попробуем объяснить причины, определяющие основные физические свойства металлов. Почему металлы пластичны?

Механическое воздействие на кристалл с металлической кристаллической решеткой вызывает смещение слоев ион-атомов относительно друг друга, в так как электроны перемещаются но всему кристаллу, разрыв связей не происходит, поэтому дли металлов характерна большая пластичность.

Аналогичное воздействие на твердое вещество с коннлент-кыми связями (атомной кристаллической решеткой) приводит к разрыву ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов (рис. 40). Поэтому вещества с атомными и ионными кристаллическими решетками хрупкие.

Наиболее пластичные металлы - это Аu, Af, Cu, Sn, РЪ, Zn. Они легко вытягиваются в проволоку, поддаются ковке, прессованию, прокатыванию в листы- Например, из золота можно изготовить золотую фольгу толщиной 0,008нм, в из 0,5 г этого металла можно вытянуть нить длинной 1 км.

Даже ртуть, к ото рея, как вы знаете, при комнатной температуре жидкая, при низких температурах я твердом состоянии становится ковкой, как свинец. Не обладают пластичностью лишь Bi и Мn, они хрупкие.

Почему металлы имеют характерный блеск, также непрозрачны?

Электроны, заполняющие межатомное пространство, отражают световые лучи (а не пропускают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой части спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют соответственно светло-желтый, желтый и медный цвета.

Хотя на практике, вы знаете, металл не всегда нам кажется светлым телом. Во-первых, его поверхность может окисляться и терять блеск. Поэтому самородная медь выглядит зеленоватым камнем. А во-вторых, и чистый металл может не блестеть. Очень тонкие листки серебра и золота имеют совершенно неожиданный вид - они имеют голубовато-зеленый цвет. А мелкие порошки металлов кажутся темно серыми, даже черными.

Наибольшую отражательную способность имеют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожекторах.

Почему металлы имеют высокую электрическую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под волдей-ствием приложенного электрического Напряжения приобретают направленное движение, то есть проводят электрический ток. При повышении температуры мета-тля возрастают амплитуды колебании находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет перемещение электронов, электрическая проводимость металла падает. При низких температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость металлов резко возрастает. Около абсолютного нуля сопротивление у металлов практически отсутствует, у большинства металлов появляется сверх проводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать.

Наибольшую электрическую проводимость имеют серебро, медь, в также золото, алюминии, наименьшую - марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов.

Они обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющимися ионами и атомами, обмениваются с ними энергией. Поэтому происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температура плавления у металлов очень сильно отличаются. Причем с увеличением числя.оекгронов. связывающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы, атомы которых имеют один валентный электрон, мягкие (режутся ножом), с небольшой плотностью (литий - самый легкий металл с р - 0.53 г/см3) и плавятся при невысоких температурах (например, температура плавления цезия 29 "С). Единственный металл, жидкий при обычных условиях. - ртуть - имеет температуру плавления, равную 38.9 "С.

Кальций, имеющий два электрона ни внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре (842º С).

Еще более арочной является кристаллическая решетка, образованная атомами скандия, которые имеют три валентных электрона.

Но самые ирочные кристаллические решетки, большие плотности и температуры плавления наблюдаются у металлов побочных подгрупп V, VI, VII, МП групп. Это объясняется тем. что для металлов побочных подгрупп, имеющих неспасенные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осуществляемой электронами внешнего слоя с s-орбиталей.

Вспомните, что самый тяжелый металл - это осмий (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл -это вольфрам (применяется для изготовления нитей накаливания ламп), самый твердый металл - это хром Сг (царапает стекло). Они входят в состав материалов, из которых изготавливают металлорежущий инструмент, тормозные колодки тяжелых машин и др.

Металлы различаются по отношению к магнитным полям. Но этому признаку их делят на три группы:

Ферромагнитные Способны намагничиваться под действием даже слабых магнитных полей (железо - альфа-форма, кобальт, никель, гадолиний);

Парамагнитные проявляют слабую способность к намагничиванию (алюминий, хром, титан, почти все лантаноиды);

Диамагнитные не притягиваются к магниту, лаже слегка отталкиваются от него (олово, мель, висмут).

Напомним, что при рассмотрении электронного строения металлов мы подразделили металлы на металлы главных подгрупп (к- и р-элементы) и металлы побочных подгрупп.

В технике принято классифицировать металлы по различным физическим свойствам:

а) плотности - легкие (р < 5 г/см3) и тяжелые (все остальные);
б) температуре плавления - легкоплавкие и тугоплавкие.

Классификации металлов по химическим свойствам

Металлы с низкой химической активностью называют благородными (серебро, золото, платина и ее аналога - осмий, иридий, рутений, палладий, родий).
По близости химических свойств выделяют щелочные (металлы I группы главной подгруппы), щелочноземельные (кальций, стронций, барий, радий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актиноиды).

Общие химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ноны, то есть окисляются. В этом, как вам известно, заключается главное общее свойство и атомов, и простых веществ-металлов.


Металлы в химических реакциях всегда восстановителе. Восстановительная способность атомов простых веществ - металлов, образованных химическими элементами одного периода или одной главной подгруппы Периодической системы Д. И. Менделеева, изменяется закономерно.

Восстановительную активность металла в химических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

1. Чем левее стоит металл я этом ряду, тем более сильным восстановителем он является.
2. Каждый металл способен вытеснять (восстанавливать) иа солен в растворе те металлы, которые в ряду напряжений стоят после него (правее).
3. Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе.
4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, определенная по электрохимическому ряду, не всегда соответствует положению его в Периодической системе. Это объясняется тем. Что при определении положения металла в ряду напряжений учитывают не только энергию отрыва электронов от отдельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов.

Например, литий более активен в водных растворах, чем натрий (хотя по положению в Периодической системе Nа - более активный металл). Дело в том, что энергия гидратации ионов Li+ значительно больше, чем энергия гидратации ионов Na+. поэтому первый процесс является энергетически более выгодным.
Рассмотрев общие положения, характеризующие восстановительные свойства металлов, перейдем к конкретным химическим реакциям.

Взаимодействие с простыми веществами-неметаллами

1. С кислородом большинство металлов образуют оксиды - основные и амфотерпые. Кислотные оксиды переходных металлов, например оксид хрома или оксид марганца не образуются при прямом окислении металла кислородом. Их получают косвенным путем.

Щелочные металлы Nа, К активно реагируют с кислородом воздуха, образуя пероксиды.

Оксид натрия получают косвенным путем, при прокаливании пероксидов с соответствующими металлами:


Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды.

Другие металлы, кроме золота и платиновых металлов, которые вообще не окисляются кислородом воздуха, взаимодействуют с ним менее активно или при нагревании.

2. С галогенами металлы образуют соли галогеноводородных кислот.

3. С водородом самые активные металлы образуют гидриды - ионные солен од обные вещества, в которых водород имеет степень окисления -1, например:
гидрид кальция.

Многие переходные металлы образуют с водородом гидриды особого типа - происходит как бы растворение или внедрение водорода в кристаллическую решетку металлов между атомами и ионами, при этом металл сохраняет свой внешний вид, но увеличивается в объеме. Поглощенный водород находится в металле, по-видимому, в атомарном виде. Существуют и гидриды металлов промежуточного характера.

4. С серой металлы образуют соли - сульфиды.

5. С азотом металлы реагируют несколько труднее, так как химическая связь в молекуле азота Г^г очень прочна, при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий.

Взаимодействие со сложными веществами

1. С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания-щелочи.

Другие металлы, стоящие в ряду напряжений до водорода, тоже могут при определенных условиях вытеснять водород из воды. Но алюминий бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку.

Магний взаимодействует с водой только при кипячении, при этом также выделяется водород. Если горящий магний внести в воду, то горение продолжается, так как протекает реакция: горит водород. Железо взаимодействует с водой только в раскаленном виде.

2. С кислотами в растворе взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород. А вот свинец (и некоторые другие металлы), несмотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, так как образующийся сульфат свинца PbSO, нерастворим и создает на поверхности металла защитную пленку.

3. С солями менее активных металлов в растворе. В результате такой реакции образуется соль более активного металла и выделяется менее активный металл в свободном виде.

Нужно помнить, что реакция идет в тех случаях, когда образующаяся соль растворима. Вытеснение металлов из их соединений другими металлами впервые подробно изучал Н. Н. Бекетов - крупный русский физикохимик. Он расположил металлы по химической активности в «вьггеснительный ряд», ставший прототипом ряда напряжений металлов.

4. С органическими веществами. Взаимодействие с органическими кислотами аналогично реакциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами.

Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалкн нов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А. Вюрца):


5. Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны.

6. Металлы могут образовывать химические соединения друг с другом, которые получили общее название - интерметаллические соединения. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Оксиды и гидроксиды металлов

Оксиды, образованные типичными металлами, относят к солеобраяующим, основным по характеру свойств. Как вы знаете, им соответствуют гидроксиды. являющиеся основаниями, которые в случае щелочиых и щелочноземельных металлов растворимы в воде, являются сильными электролитами и называются щелочами.

Оксиды и гидроксиды некоторых металлов амфотерны, то есть могут проявлять и основные, и кислотные свойства в зависимости от веществ, с которыми они взаимодействуют.

Например:


Многие металлы побочных подгрупп, имеющие в соединениях переменную степень окисления, могут образовывать несколько оксидов и гидроксидов, характер которых зависит от степени окисления металла.

Например, хром нвсоединениях проявляет три степени окисления: +2, +3, +6, поэтому он образует три ряда оксидов и гидроксидов, причем с увеличением степени окисления усивается кислотный характер и ослабляется основный.

Коррозия металлов

При взаимодействии металлов с веществами окружающей среды нн их поверхности обриауются соединения, обладающие совершенно иными свойствами, чем сами металлы. В обычной жилки мы часто употребляем слова «ржавчина», «ржавление», видя коричнево-рыжий налет на изделиях из железа и его сплавов. Ржавление зто частый случай коррозии.

Коррозия - это процесс самопроимольного разрушения металлов и сплата not) алияішсм анешней среды (от лат. - разъедание).

Однако разрушению подвергаются практически все металлы, н результате чего многие их свойства ухудшаются (или совсем теряются): уменьшаются прочность, пластичность, блеск, снижается электропроводность, л также возрастает трение между движущимися деталями мншин, изменяются размеры деталей и т. д.

Коррозия металлов бывает сплошной и местной.

Нервен не так опасна, как вторая, ее проявления могут быть учтены при проектировании конструкций и аппаратов. Значительно опаснее местная коррозия, хотя потери металла здесь могут быть и небольшими. Один из наиболее опасных ее видов - точечная. Они заключается п образовании сквозных поражений, то есть точечных полостей - питтингов, при этом снижается прочность отдельных участков, уменьшается надежность конструкций, аппаратов, сооружений.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в ре-эуньтате разрушения трубопроводов, деталей машин, судов, мостов, различного оборудования.

Коррозия приводит к уменьшению надежности работы металлоконструкций- Учитывая возможное разрушение, приходится завышать прочность некоторых изделий (например, деталей самолетов, лопастей турбин), а значит, увеличивать расход металла, а зто требует дополнительных экономических затрат.

Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции в результате разрушения гало-, нефте- и водопроводов. Нельзя не учитывать и ущерб природе, а значит, и здоровью человека, нанесенный в результате утечки нефтепродуктов и других химических веществ. Коррозия может приводить к загрязнении) продукции, а следовательно, к снижению ее качества. Затраты на возмещение потерь, связанных с коррозией, колоссальны. Они составляют около 30% годового производства металлов во всем мире.

Из всего сказанного следует, что очень важной проблемой является изыскание способов защиты металлов и сплавов от коррозии.

Они весьма разнообразны. Но для их выбора необходимо знать и учитывать химическую сущность процессов коррозии.

Но химической природе коррозия - это окнислительно-восстановительный процесс. В зависимости от среды, в которой он протекает, различают несколько видов коррозии.

Наиболее часто встречающиеся виды коррозии: химическая и электрохимическая.

I. Химическая коррозия происходит в не проводящей электрический ток среде. Такой вид коррозии проявляется в случае взаимодействии металлов с сухими газами или жидкостями - неэлектролитами (бензином, керосином и др.) Такому разрушению подвергаются детали и узлы двигателей, газовых турбин, ракетных установок. Химическая коррозия часто наблюдается в процессе обработки металлов при высоких температурах.

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связана с металлом, то она защищает металл от дальнейшего разрушения. У железа она рыхлая, пористая, легко отделяется от поверхности и потому не способна защитить металл от дальнейшего разрушения.

II. Электрохимическая коррозия происходит в токопроводящей среде (в электролите) с возникновением внутри системы электрического тока. Как правило, металлы и сплавы неоднородны, содержат включения различных примесей. При контакте их с электролитами одни участки поверхности начинают выполнять роль анода (отдают электроны), а другие - роль катода (принимают электроны).

В одном случае будет наблюдаться выделение газа (Нг). В другом - образование ржавчины.

Итак, электрохимическая коррозия - реакция, происходящая в средах, проводящих ток (в отличие от химической коррозии). Процесс происходит при соприкосновении двух металлов или на поверхности металла, содержащего включения, которые являются менее активными проводниками (это может быть и неметалл).

На аноде (более активном металле) идет окисление атомов металла с образованием катионов (растворение).

На катоде (менее активном проводнике) идет восстановление ионов водорода или молекул кислорода с образованием соответственно Н2 или гидроксид-ионов ОН-.

Катионы водорода и растворенный кислород важнейшие окислители, вызывающие электрохимическую коррозию.

Скорость коррозии тем больше, чем сильнее отличаются металлы (металл и примеси) по своей активности (для металлов - чем дальше друг от друга они расположены в ряду напряжений). Значительно усиливается коррозия при увеличении температуры.

Электролитом может служить морская вода, речная вода, конденсированная влага и конечно же хорошо известные всем электролиты - растворы солей, кислот, щелочей.

Вы, очевидно, помните, что зимой для удаления снега и льда с тротуаров используют техническую соль (хлорид натрия, иногда хлорид кальция и др.)- Образующиеся растворы стекают в канализационные трубопроводы, создавая тем самым благоприятную среду для электрохимической коррозии подземных коммуникаций.

Способы защиты от коррозии

Уже при проектировании металлических конструкций их изготовлении предусматривают меры защиты от коррозии.

1. Шлифование поверхностей изделия, чтобы на них не задерживалась влага.
2. Применение легированных сплавов, содержащих специальные добавки: хром, никель, которые ири высокой температуре на поверхности металла образуют устойчивый оксидный слой. Общеизвестны легированные стали - нержавейки, нз которых изготавливают предметы домашнего обихода (ножн. вилки, ложки), детали машин, инструменты.
3. Нанесение защитных покрытии.

Рассмотрим их виды.

Неметаллические - неокисляющиеся масла, специальные лаки, краски. Правда, они недолговечны, но зато дешевы.

Химические - искусственно создаваемые поверхностные пленки: оксидные, цитрндные, силицидные, полимерные и др. Например, все стрелковое оружие В детали многих точных приборов подвергают воронению - это процесс получения тончайшей пленки оксидов железа на поверхности стального изделия. Получаемая искусственная оксидная пленка очень прочная и придает изделию красивый черный цвет и синий отлив. Полимерные покрытия изготавливают нз полиэтилена, полихлорвинила, полиамидных смол. Наносят их двумя способами: нагретое изделие помещают в порошок полимера, который плавится и приваривается к металлу, или поверхность металла обрабатывают раствором полимера в низкокииящем растворителе, который быстро испаряется, а полимерная пленка остается на изделии.

Металлические - это покрытия другими металлами, на поверхности которых под действием окислителей образуются устойчивые защитные пленки.

Нанесение хрома на поверхность - хромирование, никеля - никелирование, цинка - цинкование, олова - лужение и т. д. Покрытием может служить и пассивный в химическом отношении металл - золото, серебро, медь.

4. Электрохимические методы защиты.

Протекторная (анодная) - к защищаемой металлической конструкции присоединяют кусок более активного металла (протектор), который служит анодом и разрушается в присутствии электролита. В качестве протектора при защите корпусов судов, трубопроводов, кабелей и других стильных изделий используют магний, алюминий, цинк;

Катодная - металлоконструкцию подсоединяют к катоду внешнего источника тока, что исключает возможность ее анодного разрушения

5. Специальная обработка электролита или той среды, в которой находится защищаемая металлическая конструкция.

Известно, что дамасские мастера для снятия окалины и
ржавчины пользовались растворами серной кислоты с добавлением пивных дрожжей, муки, крахмала. Эти принеси и были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате растворялись лишь окалина и ржавчина. Уральские оружейники применяли для этих целей травильные супы - растворы серной кислоты с добавкой мучных отрубей.

Примеры использования современных ингибиторов: соляная кислота при перевозке и хранении прекрасно «укрощается» производными бутиламина. а серная кислота - азотной кислотой; летучий диэтиламин впрыскивают в различные емкости. Отметим, что ингибиторы действуют только на металл, делая его пассивным по отношению к среде, например к раствору кислоты. Науке известно более 5 тыс. ингибиторов коррозии.

Удаление растворенного в воде кислорода (деаэрация). Этот процесс используют при подготовке воды, поступающей в котельные установки.

Способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д.

В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода, хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и горные породы, содержащие металлы и их соединения, из которых выделение чистых ме таялов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд - задача металлургии.
Металлургия - это и наука о промышленных способах получения металлов из руд. и отрасль промышленности.
Любой металлургический процесс - это процесс восстановления ионов металла с помощью различных восстановителей.

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы. В соответствии с этим существуют следующие способы получения металлов: пирометаллургический. гидрометяллургический, электрометаллургический.

Пирометаллургия - восстановление металлов из руд ори высоких температурах с помощью углерода, оксида углс-рода(П). водорода, металлов - алюминия, магния.

Например, олово восстанавливают из касситерита, а медь - из куприта прокаливанием с углем (коксом). Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем. Из карбонатных руд металлы выделяют также путем накачивания а углем, так как карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем.

Гидрометаллургия - это восстановление металлов им их солей в растворе. Процесс проходит в 2 этапа:

1) природное соединение растворяют в подходящем реагенте для получении раствори соли этого металле;
2) из полученного рахтворя данный металл вытесняют более активным или восстанавливают электролизом. Например чтобы получить медь на руды, содержащей оксид меди СиО ее обрабатывают разбавленной серной киглотой.

Затем медь извлекают из растворе соли либо:электролизом, либо вытесняют кз сульфата железом. Таким способом получают серебро, цинк, молибден, золото, уран.

Электрометаллургия - восстановление металлов в про цессе электролиза растворов или расплавов их соединений.

Электролиз

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы - к катоду (отрицательно заряженному электроду), анионы - к аноду (положительно заряженному электроду).

Па катоде катионы принимают электроны и восстанавливаются на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.
Электролиз это окислительно восстаногштель ныи процесс, протекающий на злсктроікія при прохождении электрического тока чсрсэ распяая или раствор электролита.

Простейший пример таких процессов электролиз расплавленных солей. Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации. Под дейстиием алектрического тока катионы движутся к катоду и принимают от него электроны.
На катоде образуется металлический натрий, на аноде - газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Сложнее дело обстоит в случае электролиза растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила.

1. Процесс на катоде зависит не от материала катода, на которого он сделан, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений а начале ряда (по Аl включительно), то на катоде идет процесс восстановления воды (выделяется водород). Катионы металла не восстанавливаются, они остаются в растворе.
1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ноны металла, и молекулы воды.
1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.
1.4. В растворе содержится катионы разных металлов, то скачала восстанавливается катион металла, стоящего в ряду напряжений

Эти правили отражены на схеме 10.

2. Процесс на аноде зависит от материала анода и от природы аннона (схема 11).

2.1. Коли анод растворяется (железо, цинк. медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона. 2.2. Если анод не растворяется (его называют инертным - графит, золото, платина), то:
а) при электролизе растворов солей бескислородных кислот (про ме фторидов) на аноде идет процесс окисления аниона;
б) при электролизе растворов солей кислородсодержащих кисяот и фторидов на аноде идет процесс окисления воды. Анионы не окисляются, они остаются в растворе;



Электролиз расплавов н растворов веществ широко используют в промышленности:

1. Для получения металлов (алюминии, магний, натрий, кадмий получают только электролизом).
2. Для получения водорода, галогенов, щелочей.
3. Для очистки металлов - рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
4. Для защиты металлов от коррозии - нанесения защитных покрытий в виде тонкого слоя другого металла, устойчивого к коррозии (хроме, никеля, меди, серебра, золота) - гальваностегия.
5. Получение металлических копий, пластинок - гальванопластика.

Практическое задание

1. Как связаны строение металлов к расположение их в главных и побочных подгруппах Периодической системы химических элементов Д. И. Менделеева?
2. Почему щелочные и щелочноземельные металлы имеют в соединениях единственную степень окислення: (+1) и (+2) соответственно, а металлы побочных подгрупп, как правило, проявляют в соединениях разные степени окисления?
3. Какие степени окисления может проявлять марганец? Какие оксиды к гидрокенды соответствуют марганцу в этих степенях окисления? Каков их характер?
4. Сравните электронное строение атомов элементов VII группы: марганца и хлора. Объясните различие в их химических свойствах и наличие разных степенен окисления атомов у обоих элементов.
5. Почему положение металлов в электрохимическом ряду напряжений не всегда соответствует нх положению в Периодической системе Д. И. Менделеева?
9. Составьте уравнения реакций натрия и магния с уксусной кислотой. В каком случае и почему скорость реакции будет больше?
11. Какие способы получения металлов вы знаете? В чем состоит сущность всех способов?
14. Что такое коррозия? Какие виды коррозии вы знаете? Какой из них предстппляст собой физико-химический процесс?
15. Можно ли считать коррозией следующие процессы: а) окисление железа при электросварке, б) взаимодействие цинка с соляной кислотой при получении травленой кислоты для паяния? Дайте обоснованный ответ.
17. Изделие из марганца находится в воде н контактирует с медным изделием. Сохранятся ли оба они в неизменном виде?
18. Будет ли защищена железная конструкция от электрохимической коррозии в воде, если на ней украпить пластину из другого металла: а) магния, б) свинца, в) никеля?
19. С какой целью поверхность цистерн для хранения нефтепродуктов (бензина, керосина) окрашивают серебрином - смесью алюминиевой пудры с одним из растительных масел?
20. На поверхности закисленной почвы садового учпеткл находятся железные трубы со вставленными латунными кранами. Что будет подвергаться коррозии: труба иян кран? В каком месте разрушение наиболее выражено?
21. Чем отличается электролиз расплавов от электролиза водных растворов?
22*. Какие металлы можно получить электролизом расплавов их солей и нельзя получить электролизом водных растворов этих веществ?
23*. Составьте уравнения электролиза хлорида бария в: а) расплаве, б) растворе
28. К раствору, содержащему 27 г хлорида меди(II), добавили 1-4 г железных опилок. Какая масса медн выделилась в результате этой реакции?
Ответ: 12,8 г.
29. Какую массу сульфата цинка можно получить при взаимодействии избытки цинка с 500 мл 20%-ного раствора серной кислоты с плотностью 1.14 г/мл?
Ответ: 187.3 г.
31. При обработке 8 г смеси магния и оксида магния соляной кислотой выделилось 5.6 л водорода (н, у.). Какова массовая доля (в %) ИЮНЯ в исходной смеси?
Ответ: 75%.
34. Определите массовую долю (в процентах) углерода в стали (сплав железа с углеродом), если при сжигании ее навески массой 10 г в токе кислорода было собрано 0,28 л оксида углеродя(ІV) (н. у.).
Ответ: 1.5%.
35. Образец натрии массой 0.5 г поместили в воду. Ни нейтрализацию полученного раствора израсходовали 29,2 г 1,5%-ной соляной кислоты. Какова массовая доля (в процентах) натрия в образце?
Ответ: 55.2%.
36. Сплав меди и алюминия обработали избытком раствора гидроксидя натрия, при этом выделился газ объемом 1,344 л (н. у.), Остаток после реакции растворили в азотной кислоте, затем раствор выпарили и прокалили до постоянной массы, которая оказалась равной 0.4 г. Каков состав сплава? Ответ: 1.08 г Аl 0,32 г Сu или 77,14% Аl 22.86% Сu.
37. Какую массу чугуна, содержащего 94% железа, можно получить из 1 т красного железняка (Fe2О3), содержащего 20% примесей?
Ответ: 595.74 кг.

Металлы в природе

Если вы внимательно изучали химию в предыдущих классах, то вам известно, что таблица Менделеева насчитывает более девяноста видов металлов и приблизительно шестьдесят из них можно встретить в природной среде.

Встречающиеся в природе металлы можно условно разделить на такие группы:

Металлы, которые можно встретить в природе в свободном виде;
металлы, встречающиеся в виде соединений;
металлы, которые можно встретить в смешанном виде, то есть, они могут быть, как в свободном виде, так и в виде соединений.



В отличие от других химических элементов, металлы довольно часто встречаются в природе в виде простых веществ. Они, как правило, имеют самородное состояние. К таким металлам, которые представлены в виде простых веществ, можно отнести золото, серебро, медь, платину, ртуть и другие.

Но не все металлы, встречающиеся в природной среде, представлены в самородном состоянии. Некоторые металлы можно встретить в виде соединений и их называют минералами.

Кроме того, такие химические элементы, как серебро ртуть и медь, можно встретить, как в самородном состоянии, так и в состоянии имеющих вид соединений.

Все те минералы, из которых в дальнейшем можно получить металлы, называются рудами. В природе существуют руда, в состав которой входит железо. Такое соединение получило название железной руды. А если же в составе находится медь, но соответственно, такое соединение называется медной рудой.

Конечно же, наиболее распространенными в природе являются металлы, которые активно взаимодействуют с кислородом и серой. Их принято называть оксидами и сульфидами металлов.

Таким распространенным элементом, который образует металл, является алюминий. Алюминий содержится в глине, а также входит в состав таких драгоценных камней, как сапфир и рубин.



Вторым по популярности и распространению, является такой металл, как железо. Он, как правило, встречается в природе в виде соединений, а в самородном виде его можно встретить только в составе метеоритных камней.

Следующими по распространению в природной среде, вернее в земной коре, являются такие металлы, как магний, кальций, натрий, калий.

Держа в руке монеты, вы, наверное, замечали, что от них исходит характерный запах. Но, оказывается это не запах металла, а запах, который исходит от соединений, который образуется при соприкосновении металла с человеческим потом.

А знали ли вы, что в Швейцарии налажен выпуск золотых слитков в форме шоколадной плитки, которую можно разломать на дольки и использовать в качестве подарка или платежного средства? Такие шоколадные плитки компания производит из золота, серебра, платины и палладия. Если такую плитку разломать на дольки, то каждая из них весит всего один грамм.



А еще, довольно таки интересным свойством обладает такой металлический сплав, как нитинол. Он уникален тем, что обладает эффектом памяти и при нагреве деформированное изделие из этого сплава способно возвращаться к своей первозданной форме. Такие своеобразные материалы с так называемой памятью применяют для изготовления втулок. Они обладают свойством при низких температурах сжиматься, а при комнатной температуре эти втулки распрямляются и это соединение является даже надежнее, чем сварка. А происходит такое явление благодаря тому, что эти сплавы имеют структуру термоупругости.

А задумывались ли вы над тем, почему в золотые ювелирные изделия принято добавлять сплав серебра или меди? Оказывается, это происходит потому, что золото в чистом виде очень мягкое и его легко поцарапать даже с помощью ногтя.

Урок химии в 9 классе

Тема урока: Коррозия металлов

Тип урока: урок освоения новых знаний, умений, способов действий

Цели урока: создать условия для достижения планируемых результатов:

Личностных: формирование культуры, в том числе и экологической; умения решать экологические проблемы, связанные с коррозией; развитие умения управлять своей познавательной деятельностью; развитие межличностных отношений.

Метапредметные: уметь определять учебные задачи, планировать и организовывать свою деятельность; работать в режиме ограниченного времени; поддерживать коммуникативные навыки при индивидуальной работе, в парах, коллективной работе; осуществлять межпредметный перенос знаний; осуществлять самоконтроль, взаимоконтроль, взаимопомощь; создать условия для развития умений анализировать, синтезировать, обобщать информацию; делать выводы.

Предметные: повторить химические свойства металлов; зависимость свойств металлов от местоположения металла в ряду напряжения; познакомиться с понятием «коррозия»; создать условия для освоения понятия «коррозия», классификации коррозионных процессов; познакомиться с условиями понижения коррозии металлов; способов защиты металлов от коррозии; развитие умений составлять уравнения реакций.

Задачи урока :

Проверка знаний обучающихся о химических свойствах металлов, и зависимости свойств металлов от их местоположения в ряду напряжения;

Самостоятельная формулировка обучающимися темы урока, с помощью ТСО;

Частично-поисковый метод для освоения кейса и ответов на вопросы после прочтения текста;

Выступление каждого обучающихся от команд и распределение капитаном обязанностей между членами команд;

Совместный поиск решений учащимися, дискуссия о способах защиты металлов от коррозий;

Практическое значение коррозии и способов защиты в жизни человека;

Подведение итогов урока учителем;

Пояснение домашнего задания.

Подготовка к работе учащихся

За неделю до темы «Коррозия металлов», учитель выдаёт задание: найти в Интернете, научной литературе, СМИ и т.д. статьи о коррозии. На предыдущем уроке учитель рассказывает классу, что такое кейс. Выдаётся каждому учащемуся памятка о выступлении у доски. Правила работы в команде вывешиваются в кабинете химии и выдаются капитанам команд. Капитаны заранее знакомят с правилами членов своих команд. Команды группируются заранее учителем.

Памятка капитану команд и его группе

    Прочитайте внимательно кейс.

    Ответьте на вопросы в задании.

    Запишите уравнения всех возможных реакций, которые описаны в кейсе.

    Распределите выступление между всеми членами команды.

Напоминаем! Если кто-то из участников группы не выступал, то будет снижена отметка всей команде.

Этапы урока

Основные дидактические задачи этапа

Формы организации деятельности учащихся

Методы обучения и приёмы обучения

Средства обучения

Примерное время

Организационный

этап

Подготовка к работе:

Организационная;

Психологическая.

формирование групп для работы с кейсами

фронтальная

групповая

Словесно – наглядные

Учебная презентация

1 мин.

Установление правильности, полноты и осознанности выполнения д/з: повторение химических свойств металлов.

фронтальная

беседа

3 мин

Этап освоения новых знаний и умений:

1. Информационное введение учителя

Обеспечение мотивации и принятие цели урока;

Актуализация субъектного опыта (личностных смыслов, опорных знаний и способов действий, ценностных отношений).

групповая

Частично – поисковый, словесный: беседа – дискуссия, составления плана работы группы

ТСО: мультимедийный компьютер, проектор, экран;

Учебная презентация – Слайд. Коррозия металлов

2 мин

2. Работа учащихся с кейсом

Обеспечение восприятия, осмысления и первичного запоминания изучаемого материала;

Содействие усвоению способов, средств, которые привели к определённому выводу;

Создание условий для усвоения методики воспроизведения изучаемого материала.

фронтальная

1. Частично – поисковый, словесный: беседа о видах коррозии металлов

ТСО: мультимедийный компьютер, проектор, экран;

Учебная презентация – Слайд. Виды коррозии металлов

8 мин

Этап закрепления новых знаний и умений

Обеспечение закрепления в памяти знаний и способов деятельности, необходимых для самостоятельной работы;

Обеспечение повышения уровня осмысления изученного материала, глубины его понимания.

2. Работа с кейсом «Коррозия металлов» в малых группах

Кейс «Коррозия металлов»

15 мин

Этап обобщения и систематизации

Обеспечение формирования целостной системы знаний учащихся о коррозии металлов, способах защиты металлов от коррозии;

Обеспечение формирования у учащихся умений применять знания и способы действия на уровнях: репродуктивном, продуктивном и творческом.

Групповая, коллективная

Частично – поисковый: дискуссия

12 мин

Этап рефлексии

Создание условий для осмысления и переосмысления:

Собственных знаний;

Собственных умений;

Собственной деятельности;

Взаимодействий с одноклассниками и учителем

индивидуальная

Частично – поисковый, практический: оценка собственных знаний, умений, собственной деятельности

анкеты для обучающихся

2 мин.

Этап подведения итогов

Дать качественную оценку работы класса и отдельных учащихся

Групповая

словесный

Устные вопросы учителя;

1 мин

Этап информации о домашнем задании

Обеспечение понимания учащимися целей, содержания и способов выполнения д/з;

Индивидуальный подбор содержания д/з с целью закрепления и коррекции знаний, умений и способов деятельности.

индивидуальная

Творческий: индивидуальное составление домашнего задания

1 мин

Ход урока.

    Организационный этап.

За неделю до урока учащимся было выдано задание – Найти интересные факты о коррозии металлов. Используя научную литературу, СМИ, Интернет. На основе полученной информации учителем был сформирован кейс «Коррозия металлов». На данном этапе урока формируются группы для работы с кейсом.

II . Этап проверки выполнения домашнего задания .

На предыдущем уроке учащиеся изучали тему «Химические свойства металлов». На данном этапе проверяется знание общих химических свойств металлов, электрохимического ряда напряжений металлов.

Обучающимся предлагается обсудить следующие вопросы:

1. Как условно делятся металлы в ряду активности?

2. Как это влияет на их взаимодействие?

3. С какими веществами металлы будут взаимодействовать?

4. С какими веществами не будут взаимодействовать металлы, расположенные в ряду активности после водорода?

    Этап освоения новых знаний и умений.

    Информационное введение учителя.

Учитель предлагает рассмотреть слайды с картинками коррозии металлов. Обучающимся предлагается обсудить явление коррозии металлов и сформулировать определение понятия «коррозия». А также обучающиеся вместе с учителем формулируют тему, определяют цели урока и составляют план урока. Учитель рассказывает обучающимся о видах коррозии: химической и электрохимической (Слайд. Виды коррозии). В беседе с обучающимися выясняются факторы, приводящие к химической и электрохимической коррозии.

2. Работа учащихся с кейсом.

Обучающиеся самостоятельно изучают содержимое кейса и выполняют задание по карточке, которая заранее выдаётся капитанам команд.

    Этап закрепления новых знаний и умений.

На данном этапе обучающимся предлагается работа с кейсом «Коррозия металлов» в малых группах (3-4 чел)

Кейс «Коррозия металлов»

Цель работы: закрепить знания о коррозии металлов, видах коррозии металлов, способах защиты металлов от коррозии.

Задание.

    Внимательно прочитайте интересные факты о коррозии металлов.

    Определите, в каких фактах говорится о химической коррозии. Аргументируйте свой выбор.

    Определите, в каких фактах говорится об электрохимической коррозии. Аргументируйте свой выбор.

    Выпишите химические формулы веществ, действие которых вызывает коррозию металлов.

    Составьте уравнения химических реакций.

    Предложите меры по предотвращению коррозии и способы защиты металлов от коррозии.

Кейс №1

ПРИЧИНЫ И АНАЛИЗ АВАРИЙ ИЗ-ЗА КОРРОЗИИ ОБОРУДОВАНИЯ И КОММУНИКАЦИЙ В ОАО "ОРЕНБУРГНЕФТЬ" ( _)

При рассмотрении нефтегазопромыслового оборудования коррозии , в первую очередь, подвергаются: обсадные колонны (обсадные трубы и муфтовые соединения); насосно-компрессорные трубы добывающих и нагнетательных скважин; глубинные насосы (в основном при эксплуатации скважин с помощью ШСНУ); насосные штанги при эксплуатации с помощью ШСНУ; система сбора и транспорта продукции скважин на промыслах (выкидные линии, нефте- и газопроводы); система подготовки нефти, газа и воды; оборудование системы М ИД и водоводы ; нефтепромысловые резервуары . Наибольшие проблемы, относящиеся к коррозии нефтегазопромыслового оборудования, связаны с системой сбора и транспорта продукции скважин. В ОАО "Оренбургнефть" в эксплуатации находится около 8 тыс. км трубопроводов различного назначения, в том числе: сборные нефтепроводы и выкидные линии -4925 км; нефтепроводы для транспорта нефти - 653,210 км; газопроводы для транспорта газа - 844 км; водоводы сточных вод высокого давления - 668 км; водоводы сточных вод низкого давления -1060 км. Основные трубопроводы, траспортирующие нефть и газ, имеют диаметры от 168 до 1020 мм и толщину стенок от 6 до 11 мм. Материалом труб является сталь марок СтЮ и Ст20, по ГОСТ 8731-74.

Анализ данных показывает, что треть всех трубопроводов находится в эксплуатации свыше 15 лет и две трети трубопроводов - свыше 10 лет. Многолетний срок эксплуатации коренным образом влияет на надежность трубопроводов. В 2012 г. в ОАО "Оренбургнефть" произошло 2875 порывов трубопроводов, из общего числа аварий которых приходится: на водоводы 43,5 %; на выкидные линии 28,8 %; на газопроводы 1,2 %. Около 90 % аварий на водоводах и 7 % отказов выкидных линий произошло по причине внутренней коррозии труб.

Степень воздействия нефтепромысловых сред на стальное оборудование зависит не только от самого корродирующего металла, но в основном и от состава и физико-химических свойств продукции скважин. При добыче нефти из продуктивного пласта на поверхность извлекается газожидкостная смесь, состоящая из нефти, газа и воды. К основным коррозионно-активным агентам относятся сероводород, кислород, диоксид углерода, низкомолекулярные компоненты нефти.

Нефть - неполярная жидкость, но некоторые ее компоненты: кислород, сероводород, диоксид углерода, тяжёлые металлы придают ей свойства, близкие к слабополярным диэлектрикам, которые способствуют ее коррозионной активности. Кроме состава и физико-химических свойств нефти на характер и степень коррозионного воздействия также влияют условия залегания нефти в залежи, системы и стадия разработки и способы эксплуатации скважин.

Пластовые воды нефтяных месторождений представляют собой концентрированные растворы солей и, как правило, обладают нейтральным рН.

Если в воде присутствует сероводород, диоксид углерода или кислород из различных источников, то коррозионная активность резко возрастает.

По степени агрессивности воздействия на коррозионный процесс наиболее сильное влияние оказывает сероводород и диоксид углерода, т. к. при растворении в воде в результате диссоциации, даёт кислую среду. В результате этого идет процесс разрушения металла. Практика эксплуатации водоводов системы ППД показала, что при перекачке агрессивных сточных вод срок службы водоводов до полной замены не превышает 5-6 лет, т.е. ниже нормативных сроков в два-три раза. При этом средняя за последние пять лет удельная частота порывов водоводов в два раза превышает этот показатель для нефтепроводов. При наличии в ОАО "Оренбургнефть" более 1700 км водоводов сточных вод высокого давления, по которым ежегодно перекачивается более 21000 тыс. м 3 агрессивной жидкости, проблема борьбы с коррозией водоводов принимает актуальное значение.

Ежегодно разрабатывается комплексная "Программа ингибиторной защиты нефтепромыслового оборудования и трубопроводов от коррозии", которая включает в себя: проведение научно-исследовательских работ по выбору способов борьбы с коррозией и поиску наиболее эффективных ингибиторов коррозии, применительно к условиям нефтяных месторождений Оренбургской области; проведение опытно-промысловых работ на скважинах; разработку нового оборудования и высокоэффективных технологий.

Кейс №2. Японский булат

Японский булат обладал каким-то необыкновенным качеством железа, которое после целого ряда проковок приобретало даже более высокую твердость и прочность, чем дамасская сталь. Мечи и сабли, приготовленные из этого железа, отличались удивительной вязкостью и необыкновенной остротой.

Уже в наше время был сделан химический анализ стали, из которой изготовлено японское оружие XI–XIII веков. И древнее оружие раскрыло свою тайну: в стали был найден молибден. Сегодня хорошо известно, что сталь, легированная молибденом, обладает высокой твердостью, прочностью и вязкостью. Молибден - один из немногих легирующих элементов, добавка которого в сталь вызывает повышение ее вязкости и твердости одновременно. Все другие элементы, увеличивающие твердость и прочность стали, способствуют повышению ее хрупкости.

Естественно, что в сравнении с дамасскими клинками, сделанными из железа и стали, содержащей 0,6–0,8 % углерода, японские мечи и сабли казались чудом. Но значит ли это, что японцы умели в то далекое время делать легированную сталь? Конечно, нет. Что такое легированная сталь, они даже не знали, так же как и не знали, что такое молибден. Металл молибден был открыт значительно позднее, в самом конце XVIII века шведским химиком К. В. Шееле.

По-видимому, дело обстояло так. Японские мастера получали кричное (восстановленное) железо из железистых песков рассыпных месторождений. Эти руды были бедны железом, и содержание вредных примесей в получаемой из них стали было довольно высокое. Но пески, кроме окислов железа, содержали легирующие элементы. Они-то и обеспечивали металлу высокий уровень свойств.

Очевидно, японские мастера случайно заметили: если брать руду в каком-то определенном месте, то сталь, сделанная из нее, обладает особым качеством, а клинки из такой стали получаются крепкими и острыми. Они и не подозревали, что это явление наблюдалось потому, что в железных рудах, которые они использовали, содержалась окись молибдена - молибденит - и примеси редкоземельных металлов.

Выплавленное из «песков» кричное железо проковывалось в прутья и закапывалось в болотистую землю. Время от времени прутья вынимали и снова зарывали, и так на протяжении 8–10 лет. Насыщенная солями и кислотами болотная вода разъедала пруток и делала его похожим на кусок сыра. Мастера именно к этому и стремились. Но зачем это им было надо?

Дело в том, что в процессе коррозии пористого железного прутка прежде всего разъедались и выпадали в виде ржавчины частички металла, содержащие вредные примеси. Железо с растворенными в нем легирующими добавками дольше противостояло коррозии и поэтому сохранялось. Кроме того, полученный ноздреватый пруток обладал развитой поверхностью и при последующем науглероживании обеспечивал еще до ковки сложное переплетение углеродистой стали и мягкого железа. Это переплетение еще больше усложнялось в процессе последующей многократной деформации в горячем состоянии.

Раскованный в полосу сплав мастер сгибал, складывал вдвое, расковывал в горячем состоянии и снова складывал, как слоеное тесто. В конечном счете число тончайших слоев в «слоеном пироге» достигало порой нескольких десятков тысяч. Мы уже знаем, насколько такая операция упрочняет металл за счет образования колоссального количества клубков дислокации и громадного увеличения их плотности. Последующая закалка клинков закрепляла высокие свойства, присущие молибденовой стали. Так на заре металлургии в Японии получали природно-легированную сталь, упрочненную пластической деформацией и термомеханической обработкой.

Кейс № 3 Эйфелева башня.

В 1889 году французский инженер А. Эйфель создал проект своей знаменитой башни в Париже, которую должны были соорудить из стальных ферм. Решение о ее строительстве долго не принималось, поскольку многие металлурги предсказывали, что она простоит всего 25 лет, а потом рухнет из-за коррозии стали. Эйфель же гарантировал прочность сооружения только на 40 лет. Как известно, Эйфелева башня в Париже стоит уже около 100 лет, но это только потому, что фермы ее постоянно покрыты толстым слоем краски. На покраску башни, которая производится раз в несколько лет, уходит 52 тонны краски. Стоимость ее давно превысила стоимость самого сооружения!

Покраска строительных конструкций, работающих в атмосферных условиях, - дорогое удовольствие и отвлекает много малопроизводительного рабочего времени. В то же время известны случаи, когда железные изделия очень долго служили без покраски и не подвергались никакой коррозии. О стальных балках церкви в уральском городе Катав-Ивановске мы уже рассказывали. Широко известны также перила лестниц на набережной реки Фонтанки в Ленинграде. Сделанные в 1776 году из русского сварочного железа, они простояли неокрашенными под открытым небом в условиях влажного климата более 160 лет. Академик А. А. Байков, который исследовал железные детали этих перил, пришел к выводу, что вероятной причиной высокой коррозионной стойкости металла является тонкий поверхностный слой окислов.

Аналогичное сварочное железо найдено в Свердловске. Крыша одного из зданий этого города, выложенная кровельным железом еще во времена Демидова, ни разу не обновлялась, а само железо длительное время почти не подвергалось коррозии. Химическим анализом было установлено, что ленинградские перила содержат повышенное содержание фосфора, а свердловская кровля - фосфора и меди!

Подобное железо находили и в Западной Европе. Так, в стокгольмском соборе Сторкиркан, построенном во второй половине XV века, бронзовое «семисвечье» поддерживает железный стержень. Длина его 3,5 м, поперечное сечение у основания 50Х50 мм. Стержень изготовлен из отдельных кусков кричного железа, сваренных горячей ковкой под силикатным шлаком. Исследованные образцы железа от этого стержня характеризовались высокой концентрацией фосфора (до 0,074 %). В областях с повышенной концентрацией фосфора обнаружена высокая твердость металла.

(Ю.Г. Гуревич. Загадка булатного узора)

Кейс № 4

Знаменитая железная колонна в Дели. Как известно, она создана индийскими металлургами в 415 году нашей эры в честь победы одного из императоров династии Гупта. Ее высота - 7,2 м, диаметр у основания - 420 мм и у вершины - 320 мм. Колонна стоит уже более 1500 лет, и следов коррозии (окисления) на ней не видно. Аналогичная колонна еще больших размеров, построенная в III веке, возвышается в индийском городе Дхар.

Каких только догадок ни делали металлурги, чтобы объяснить необыкновенную атмосферостойкость железа, из которого сделаны индийские колонны! Высказывалось предположение, что колонны изготовлены из цельных кусков метеоритного железа. Известно, что оно хорошо сопротивляется коррозии. Но в метеоритном железе всегда находили никель, а в железе индийских колонн никеля не обнаружили. Тогда предположили, что колонна сделана из чистейшего железа, полученного на особом топливе. Действительно, содержание железа в делийской колонне - 99,72 %, дхарской - гораздо меньше, но и она сотни лет не подвергается коррозии.

Высказывалось мнение, что стойкость индийских железных колонн объясняется сухим и чистым воздухом местности, где они установлены. Другие исследователи утверждали, что в атмосфере когда-то было повышенное содержание аммиака, которое в субтропическом климате Индии позволило получить на поверхности колонны защитный слой нитридов железа. Другими словами, колонны якобы азотированы самой природой.

Известны и более оригинальные точки зрения: поскольку колонны считались священными, их обливали благовонными маслами, и поэтому они не ржавели. Есть даже предположение, что на колонны испокон веков залезали голые индийские ребятишки, а позднее о них «терлись» туристы. Поэтому колонны постоянно смазывались кожным жиром!

По-видимому, все гораздо проще. В индийских колоннах найдено немного меди и повышенное содержание фосфора. В железе делийской колонны его 0,114–0,180 % а в дхарской еще больше - 0,280 %. В обычном сварочном железе фосфора бывает не более 0,05 %, в то время как атмосферостойкая фосфористая сталь (читатель уже знает) содержит до 0,15 % фосфора. Уж очень близко содержание фосфора в индийских колоннах к содержанию его в современной атмосферостойкой стали. Не этим ли объясняется тот факт, что на поверхности колонн образовались устойчивые окисные пленки, предохраняющие железо от дальнейшей коррозии?

Есть данные, что верхняя, не доступная человеку часть колонны имела бронзовый оттенок, благодаря чему некоторые наблюдатели принимали даже материал колонны за медный сплав. Другие говорят о синевато-коричневой или синевато-черной пленке окислов, покрывающих верх колонны. Таким образом, и окисные пленки по своему внешнему виду очень напоминают защитную оболочку атмосферостойкой стали "кор-тен".

Из приведенных фактов следует: японский булат - не единственная природно-легированная сталь, изготовлявшаяся в прошлом. Индийские и русские металлурги тоже находили железные руды, из которых получали природно-легированные чугуны и стали. Но отличаются ли механические свойства природно-легированной стали от современных сталей, легирующие элементы которых вносятся во время плавки путем добавки в жидкий металл необходимого количества твердых ферросплавов? Оказывается, отличаются. Свойства природно-легированных сталей гораздо выше.

(Ю.Г. Гуревич. Загадка булатного узора)

Кейс № 5

Морская вода – отличный электролит. Морская вода хорошо аэрирована (около 8 мг/л кислорода). Среда – нейтральная (рН = 7,2 – 8,6). В морской воде присутствуют соли кальция, калия, магния, сульфаты натрия, хлориды.

Именно из-за наличия в морской воде растворенных хлоридов (ионов-активаторов Cl - ) она обладает депассивирующим действием, по отношении к металлической поверхности (разрушает и предотвращает появление пассивных пленок на поверхности металла). Морской коррозии подвергаются: металлическая обивка днищ судов, подводные трубопроводы, морская авиация, различные металлоконструкции, находящиеся в воде, металлические конструкции в портах, прокатные валки на блюминге, которые охлаждаются морской водой и т.п.

Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим монель металлом (сплав 70% никеля и 30% меди), а киль, форштевень и раму руля изготовили из стали. В морской воде в подводной части яхты образовался гальванический элемент с катодом из монель металла, а анодом из стали. Он настолько энергично работал, что яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Интересно, что яхте было дано имя «Зов моря».

Ватерлиния

Ватерлиния – зона периодического смачивания водой. Морская коррозия вблизи ватерлинии всегда носит усиленный характер. Это связано с облегченным доступом кислорода к поверхности (усиленной аэрацией поверхности металла); агрессивным влиянием брызг (на месте высохших брызг остаются кристаллики соли, которые препятствуют образованию защитных пленок); поверхностный слой морской воды более прогретый солнечными лучами и в условиях усиленной аэрации идет усиление .

(okorrozii.com Морская коррозия)

Кейс № 6

С точки зрения коррозии автомобиль - это некая субстанция, изготовленная из тонких листов железа невысокого . Конструкционные особенности данного сооружения таковы, что по окончании сборки в нем образуется большое количество скрытых, плохо проветриваемых полостей, способных прекрасно накапливать влагу, пыль, грязь - это раз! Вся машина сверху донизу насквозь испещрена сварными и вальцованными соединениями, крепежными и дренажными отверстиями - это два! При этом не стоит забывать и про тяжело нагруженные участки конструкции, испытывающие на себе постоянное воздействие знакопеременных и пульсирующих механических напряжений, приводящих к появлению в этих местах преждевременной усталости металла с неминуемым коррозионо-ржавым финалом - три! Ну разве можно не любить автомобиль за все это? Разумеется, ржавчине и исключительно в гастрономическом смысле этого слова.

Итак, из всего вышесказанного однозначно следует то, что, даже не принимая во внимание фактор агрессивной дорожной среды, кузов любого автомобиля изобилует «слабыми» с точки зрения коррозионной устойчивости местами и требует защиты. А после того, как он отправится в путь, где его встретят грязь, вода, соль, летящие из-под колес камни, выбоины на , когда он будет вынужден стойко переносить все экологические и климатические превратности того или иного региона, справляться со всевозможными механическими и температурными перегрузками, все это вместе взятое да с учетом фактора времени способно «укатать» абсолютно любую технику.

IV . Этап обобщения и систематизации знаний.

На данном этапе обсуждаются вопросы заданий. Группы выступают с предложениями по защите металлов от коррозии.

    Этап рефлексии.

Обучающиеся индивидуально отвечают на вопрос: Могут ли пригодиться знания, полученные сегодня на уроке в вашей жизни? Приведите примеры.

    Этап подведения итогов.

На данном этапе обучающиеся и учитель оценивают работу групп.

    Этап информации о домашнем задании.

Домашнее задание. Продолжите работу по расширению кейса «Коррозия металлов»: найдите в СМИ или в сети Интернет реальный факт, в котором описывается действие коррозии на металлы. Предложите действия по предупреждению коррозии и защите металлов от коррозии.

Интересные факты о ржавчине кратко изложенные в этой статье.

Интересные факты о коррозии металлов

Практически все сплавы и металлы медленно разрушаются под действием некоторых факторов окружающей среды. Когда металл взаимодействует с атмосферными осадками и веществами воздуха на его поверхности появляется пленка, которая состоит из карбонатов, оксидов, сульфидов и подобных соединений. Они обладают противоположными металлу свойствами. В повседневной жизни такой процесс мы называем «ржавчиной» и «ржавлением» когда видим налет коричнево-рыжего цвета на металлических изделиях. Научный термин ржавление – это коррозия железа.

Коррозия является самопроизвольным процессом разрушения металлов и его сплавов под воздействием факторов окружающей среды. С латыни термин «коррозия» обозначает «corrodere», то есть «разъедать». Действию коррозии подвергаются не только металлы, но и камни, дерево, полимеры и пластмассы.

Каждый год коррозия уничтожает от 10% до 20% всего выплавленного металла.

В Швейцарии ученые сконструировали прибор, который восстанавливает металл из ржавчины. В нем корродированная вещь или изделие «бомбардируются» молекулами водорода. В процессе водород объединяется с содержащимся кислородом в ржавчине. Спустя несколько часов происходит «омоложение» изделия и ему возвращается былой вид изделия, прочного и чистого. При этом его форма остается прежней. Конечно, металл, сильно поврежденный ржавчиной, возродить не удастся.

Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры . Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Ржавчина выступает в технике как и защитное средство. К примеру, люди освоили выплавку низколегированных сталей, содержащие в малом отношении хрома, никеля и меди. Такая сталь очень быстро ржавеет, но под слоем отпавшей ржавчины видно черную плотную пленку, которая защищает металл от дальнейшего воздействия коррозии. Единственный момент – для образования защитного слоя необходимо много времени, до 4-ех лет.

Ржавчина имеет хорошую сорбционную способность к органическим веществам. После того, как ржавое железо было выкопано с органическими веществами, его нагревали в горнах, после закаливали водой путем охлаждения. В поверхностном слое металла появлялись азот и углерод, которые упрочняли изделие и придавали ему особую твердость.

Римский бог Робигус является покровителем ржавчины.

Для того, чтобы изделия из железа не ржавели, следует из покрыть суриком (особой красной краской) или лаком. Чугун покрывают эмалью, а сталь другим металлом, например, цинком.

Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. 15 декабря 1967 года Серебряный мост, соединяющий Пойнт Плезант, штат Западная Виргиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. 46 человек погибли, и 9 пострадали. Причиной обрушения стала коррозия.