Гидроксид кальция цвет осадка. Пригородные источники карбонатов. Промышленное производство соединений кальция

Гидроксид кальция (другое название – гашеная известь, известковое молочко, известковая вода) имеет химическую формулу Са(ОН)2. Внешний вид – рыхлый белый или со светло-сероватым оттенком порошок, плохо растворим в воде. Каким образом можно получить гидроксид кальция?

Инструкция

Обладая всеми характерными свойствами оснований, гидроксид кальция легко вступает в реакцию с кислотами и кислотными оксидами. Являясь достаточно сильным основанием, он может реагировать и с солями, но только если в результате образуется малорастворимый продукт, например:
Ca(OH)2 + K2SO3 = 2KOH + CaSO3 (сульфит кальция, выпадает в осадок).

Самый распространенный способ получения этого вещества – и промышленный, и лабораторный – это реакция воды с оксидом кальция (негашеной известью). Она протекает довольно бурно, с
Н2О + СаО = Са(ОН)2. Издавна известное название этой реакции – « ».

В лабораторных условиях гидроксид кальция можно получить и некоторыми другими способами. Например, поскольку кальций – весьма активный щелочноземельный металл, он легко реагирует с водой, вытесняя водород:
Са + 2Н2О = Са(ОН)2 + Н2 Эта реакция протекает, конечно, не столь бурным образом, как в случаях с щелочными металлами первой группы.

Можно также получить гидроксид кальция, смешав раствор какой-либо его соли с сильной щелочью (например, натриевой или калиевой). Более активные металлы легко вытесняют кальций, занимая его место и, соответственно, отдавая ему взамен «свои» гидроксид-ионы. Например:
2КОН + СаSO4 = Ca(OH)2 + K2SO4
2NaOH + CaCl2 = 2NaCl + Ca(OH)2

Оксид кальция - это обычная негашеная известь. Но, несмотря на столь нехитрую природу, это вещество весьма широко используется в хозяйственной деятельности. От строительства, в качестве основы для известкового цемента, до кулинарии, в качестве пищевой добавки E-529, оксид кальция находит применение. И в промышленных и в домашних условиях можно получить оксид кальция из карбоната кальция реакцией термического разложения.

Вам понадобится

  • Карбонат кальция в виде известняка или мела. Керамический тигель для отжига. Пропановая или ацетиленовая горелка.

Инструкция

Подготовьте тигель для отжига карбоната кальция . Прочно установите его на огнеупорных подставках или специальных приспособлениях. Тигель должен быть прочно установлен и, при возможности, закреплен.

Измельчите карбонат кальция . Измельчение нужно произвести для лучшей теплопередачи внутри массы вещества. Не обязательно измельчать известняк или мел в пыль. Достаточно произвести грубое неоднородное измельчение.

Наполните тигель для отжига измельченным карбонатом кальция . Не стоит заполнять тигель полностью, поскольку при выделении углекислого газа, часть вещества может быть выброшена наружу. Заполните тигель примерно на треть или меньше.

Приступите к нагреву тигля. Хорошо установите и закрепите его. Осуществите плавный прогрев тигля с разных сторон во избежание его разрушения вследствие неравномерного термического расширения. Продолжайте нагревать тигель на газовой горелке. Через некоторое время начнется реакция термического распада карбоната кальция .

Дождитесь полного прохождения реакции термического распада. В ходе реакции верхние слои вещества в тигле могут плохо прогреваться. Их можно несколько раз перемешать стальной лопаткой.

Остудите тигель и вещество в нем. Выключите газовую горелку и дождитесь полного остывания тигля. Теперь в нем находится оксид кальция .

Обратите внимание

Будьте осторожны при работе с газовой горелкой и нагретым тиглем. При прохождении реакции тигель будет нагрет до температуры выше 1200 градусов Цельсия.

Полезный совет

Вместо попыток собственноручного производства больших количеств оксида кальция (например, для последующего получения известкового цемента), лучше купить готовый продукт на специализированных торговых площадках.

Полезный совет

Гидроксид кальция широко применяется, главным образом – в ремонтно-строительных работах, как компонент штукатурки, цемента, растворов, а также при производстве удобрений, хлорной извести. Используется в кожевенной промышленности, как дубитель, в целлюлозно-бумажной промышленности и т.д. Хорошо известен садоводам, как компонент «бордосской жидкости», применяемой в борьбе с различными вредителями растений. Используется в качестве пищевой добавки.

Процессы глобализации, захватывающие население Земли, вынуждают человеческое общество создавать новую искусственную среду обитания - мегаполисы, все больше напоминающие гигантские пчелиные соты, стремительно растущие ввысь. Строительная индустрия становится одной из самых перспективных и выгодных отраслей производства, требуя для своих нужд наиболее дешевое и легкодоступное строительное сырье. Поэтому ежегодно во всем мире увеличивается добыча известняка, мела и портландита. Многотонные грузы горнодобывающей промышленности перерабатываются химическими предприятиями. В результате получают оксид кальция, гидроксид кальция и их соли, которые затем используют в строительстве.

Пригородные источники карбонатов

Оксид кальция - CaO - является исходным веществом в цепи получения важнейших строительных материалов, таких как гидроксид кальция, портландцемент, силикатный бетон. Для его производства используют широко распространенные на Земле осадочные породы, например, такие как известняк и мел, являющиеся природными разновидностями карбоната кальция.

Мудрая природа в течение миллионов лет трудилась, откладывая и сохраняя отмершие остатки водорослей, раковины двустворчатых и брюхоногих моллюсков, известковые скелеты колониальных морских животных - мшанок. Затем все это склеивалось частицами ила. Таким образом сформировались массивы осадочных пород в Крыму, Молдове, Казахстане, странах Средиземного моря, возраст которых датируется меловым периодом Мезозойской эры.


Названий много, а вещество одно

Чем старше возраст используемого человеком химического соединения, тем больше у него появляется различных названий. Кипелка, негашёная известь, жженая известь - все эти слова относятся к одному соединению - CaO. Кипелкой его называют потому, что в реакции с водой оксид кальция кипит, выделяя водяной пар, и смесь сильно разогревается. Это химическое соединение можно погасить водой и получить гашеную известь - гидроксид кальция, также имеющий название «пушонка» или «известковое тесто». Если же вещество не взаимодействует с водой, то имеет название «негашёная известь». Раствор гидроксида кальция называют известковым молоком. Термин «жженая известь» указывает на способ получения: выжиганием известняка или мела.

Промышленное производство соединений кальция

Технология выжигания известняка практически не изменилась со времен постройки пирамид в Гизе и сооружения первых православных храмов из «белого камня» на Руси. Белым камнем наши прародители называли известняк и портландит - минерал, содержащий гидроксид кальция. В специальных шахтных печах сырье и топливо, например, антрацит или кокс, загружают слоями и поджигают снизу. Важную роль в технологическом процессе играет вентиляция, она должна быть непрерывной. Это способствует удалению ненужного диоксида углерода и снижению температуры реакции что немаловажно с точки зрения экономичности и безопасности работы шахтной печи.


Продукт выжигания известняка CaO представляет собой белое, очень тугоплавкое кристаллическое вещество, температура плавления которого составляет 2627 °C. Он служит исходным материалом, из которого можно получить гидроксид кальция.

Ранее мы уже упоминали специфическую особенность CaO: если куски этого соединения залить водой, то происходит сильное разогревание и шипение. На глазах плотные куски превращаются в рыхлый порошок белого цвета - гидроксид кальция. Уравнение экзотермической реакции:

CaO+H 2 O =Ca(OH) 2 ∆H= -64 кДж

Именно этой особенностью и объясняется название «пушонка», используемое в строительстве.

Осторожность не помешает

Прежде чем перейти к рассмотрению областей применения этих соединений кальция, самое время напомнить, что в классификационной таблице вредных химических веществ они находятся в 3 классе опасности. Это жидкости и суспензии (растворы твердых веществ с низкой растворимостью), выделяющие легковоспламеняющиеся пары, имеющие температуру вспышки 61°C и ниже. Поэтому в химических лабораториях гидроксид кальция хранят в специальных сейфах. Так как раствор обладает сильнощелочной реакцией и его рН>12, категорически запрещено попадание капель вещества на слизистую глаз, кожу лица и рук.


Если все же это произошло, следует немедленно промыть пораженный участок под струей холодной воды в течение 5-10 минут. Затем обработать его физиологическим (изотоническим) 0,9% раствором хлорида натрия NaCl или 1% раствором аскорбиновой кислоты. Если использовать во время работы защитные очки и перчатки, это может повысить безопасность и сохранить здоровье.

Применение гидроксида кальция в строительстве

Известковый строительный раствор (или, проще говоря, известь) используется в строительстве очень давно. Еще в цивилизациях ацтеков и майя, в период расцвета Вавилонского царства, древние зодчие применяли смесь извести, песка и воды для строительной кладки, связывая ею кирпичи и целые блоки, вытесанные из гранита или мрамора. Очень пластичное, жирное на ощупь известковое тесто, представляющее собой смесь Ca(OH) 2 и воды в пропорции 1:3, используется для санации архитектурных композиций Москвы, Санкт-Петербурга и городов Золотого Кольца России. Реставрационные работы, выполняемые при очень сильных повреждениях исторических памятников, также не обходятся без использования известкового теста.


Другие отрасли применения соединений кальция

Хотя приоритетной отраслью, использующей соединения кальция, можно считать строительство, тем не менее, интересно и необычно применение их в других областях человеческий жизни.

Так, (CaOH) 2 используется как пищевая добавка E 526. Например, в каждом килограмме сливочного масла присутствует 2 г этого соединения, выполняющего роль эмульгатора и регулятора кислотности, то есть предохраняющего пищевой продукт от быстрой порчи вследствие окисления. E 526 добавляют с такой же целью в фруктовые соки, вино, замороженные овощи, вяленую рыбу.

Врачи-стоматологи используют Ca(OH) 2 в составе временных или постоянных пломб, а бактерицидные свойства позволяют применять его в качестве внутриканального наполнителя, а также для профилактики и лечения кариозных полостей.

Незаменима гашеная известь для удаления карбонатной жесткости питьевой воды, обусловленной присутствием в ней растворимых гидрокарбонатов. Их реакции с гидроксидом кальция в молекулярной и ионной форме имеют такой вид:

Ca(HCO 3) 2 +Ca(OH) 2 = 2CaCO 3 ↓+2H 2 O

Ca 2+ +2HCO 3 - + Ca(OH) 2 →CaCO 3 ↓+2H 2 O

Научно-технический прогресс не стоит на месте. С каждым годом ученые изобретают все больше новых и современных материалов на основе соединений кальция, например, композитов, обладающих более ценными качествами и свойствами.



План:

    Введение
  • 1 Тривиальные названия
  • 2 Получение
  • 3 Свойства
  • 4 Применение
  • 5 Источники и литература

Введение

Гидрокси́д ка́льция - химическое вещество, сильное основание. Представляет собой порошок белого цвета, плохо растворимый в воде.


1. Тривиальные названия

  • гашёная известь - так как получают путём «гашения» (то есть взаимодействия с водой) «негашёной» извести оксида кальция;
  • известковая вода - прозрачный (близкий к насыщенному) водный раствор;
  • известковое молоко - водная суспензия.
  • пушонка - сухой гидроксид кальция.

Часто называют просто известь или извёстка (так же называют и оксид кальция).

2. Получение

Получают путём взаимодействия оксида кальция (негашёной извести) с водой (процесс получил название «гашение извести»):

CaO + H 2 O → Ca(OH) 2

Эта реакция экзотермическая, идёт с выделением 16 ккал (67 кДж) на моль.

3. Свойства

Внешний вид - белый порошок, мало растворимый в воде:

Гидроксид кальция является довольно сильным основанием, из-за чего водный раствор имеет щелочную реакцию. Растворимость падает с ростом температуры.

Как и все гидроксиды, реагирует с кислотами (см. реакция нейтрализации) с образованием соответствующих солей кальция:

Ca(OH) 2 + H 2 SO 4 → CaSO 4 + 2H 2 O,

по этой же причине раствор гидроксида кальция мутнеет на воздухе, так как гидроксид кальция, как и другие сильные основания, реагирует с растворённым в воде углекислым газом:

Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O

Если продолжить барботацию углекислого газа, выпавший осадок растворится, так как образуется кислая соль - гидрокарбонат кальция:

CaCO 3 + CO 2 + H 2 O → Ca(HCO 3) 2 ,

причём при нагревании раствора гидрокарбонат снова разрушается и выпадает осадок карбоната кальция:

Ca(HCO 3) 2 (t°) → CaCO 3 ↓ + CO 2 + H 2 O

Гидроксид кальция реагирует с угарным газом при температуре около 400 °C:

Ca(OH) 2 + CO (t°) → CaCO 3 + H 2

Как сильное основание реагирует с солями, но только если в результате реакции выпадает осадок:

Ca(OH) 2 + Na 2 SO 3 →CaSO 3 ↓ + 2NaOH

4. Применение

  • При побелке помещений.
  • Для приготовления известкового строительного раствора. Известь применялась для строительной кладки с древних времён. Смесь обычно приготавливают в такой пропорции: к одной части смеси гидроксида кальция (гашёной извести) с водой добавляют три-четыре части песка (по массе). При этом происходит затвердевание смеси по реакции: Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O. Это экзотермическая реакция, выделение энергии составляет 27 ккал (113 кДж). Одновременно происходит и образование силиката кальция: CaCO 3 + SiO 2 → CaSiO 3 + CO 2 . Как видно из реакции, в ходе её выделяется вода. Это является отрицательным фактором, так как в помещениях, построенных с помощью известкового строительного раствора, долгое время сохраняется повышенная влажность. В связи с этим, а также благодаря ряду других преимуществ перед гидроксидом кальция, цемент практически вытеснил его в качестве связующего строительных растворов.
  • Для приготовления силикатного бетона. Состав силикатного бетона одинаков с составом известкового строительного раствора, однако он готовится другим методом - смесь оксида кальция и кварцевого песка обрабатывается не водой, а перегретым (174,5-197,4 °C) водяным паром в автоклаве при давлении 9-15 атмосфер.
  • Для устранения карбонатной жёсткости воды (умягчение воды). Реакция идёт по уравнению: Ca(HCO 3) 2 + Ca(OH) 2 → 2CaCO 3 ↓ + 2H 2 O.
  • Для производства хлорной извести.
  • Для производства известковых удобрений.
  • Каустификация карбоната натрия и калия.
  • Дубление кож.
  • Получение других соединений кальция, нейтрализация кислых растворов (в том числе сточных вод производств), получение органических кислот и проч.
  • В пищевой промышленности зарегистрирован в качестве пищевой добавки E526.
  • Известковая вода - прозрачный раствор гидроксида кальция. Она используется для обнаружения углекислого газа. При взаимодействии с ним она мутнеет, так как образуется нерастворимый карбонат кальция: Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O.
  • Известковое молоко - взвесь (суспензия) гидроксида кальция в воде, белая и непрозрачная. Она используется для производства сахара и приготовления смесей для борьбы с болезнями растений, побелки стволов.
  • В стоматологии - для дезинфекции корневых каналов зубов.

5. Источники и литература

  • Монастырев А. Производство цемента, извести. - М ., 2007.
  • Штарк Йохан, Вихт Бернд Цемент и известь / пер. с нем. - Киев, 2008.

Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 17:13:18
Похожие рефераты:

L.A. Kazeko, I.N. Fyodorova

Calcium hydroxide: yesterday, today, tomorrow

Гидроксид кальция Ca(OH) 2 - сильное основание, мало растворимое в воде. Насыщенный раствор гидроксида кальция называется известковой водой и имеет щелочную реакцию. На воздухе известковая вода быстро становится мутной вследствие поглощения ею диоксида углерода и образования нерастворимого карбоната кальция .

Гидроксид кальция («гашеная известь») представляет собой белый, очень мелкий порошок, малорастворимый в воде (1,19 г/л), растворимость можно увеличить за счет глицерина и сахарозы. Водородный показатель (pH) - около 12,5. Гидроксид кальция очень чувствителен к соприкосновению с атмосферным углекислым газом, который трансформирует его в карбонат кальция. Препарат должен храниться в герметичной упаковке вдали от света, может сохраняться в перенасыщенном водном растворе (дистиллированная вода) в герметичном флаконе.

Основанием для применения гидроксида кальция в эндодонтии стали сведения об этиологии и патогенезе пульпита и апикального периодонтита. Наиболее распространенная причина этих заболеваний - микроорганизмы в системе корневых каналов зуба. Kakehashi et al. (1965), Moller et al. (1981) в экспериментах показали, что периапикальное воспаление и деструктивные процессы вокруг верхушки зуба развиваются только при участии микроорганизмов корневого канала . Благоприятными факторами для существования микрофлоры являются сложная анатомия корневых каналов, способность бактерий проникать в дентинные канальцы на глубину до 300 мкм, анаэробные условия развития, возможность питаться от живой или некротизированной пульпы, белков слюны, тканевой жидкости периодонта. Таким образом, качество эндодонтического лечения предопределяется качеством проведения дезинфекции системы корневых каналов .

Поломка эндодонтического инструмента, перфорация корня, уступы, чрезмерное или недостаточное пломбирование считаются главными причинами эндодонтических неудач. Однако в большинстве случаев эти ошибки не влияют на результат эндодонтического лечения, пока не присоединяется сопутствующая инфекция. Безусловно, грубые ошибки препятствуют или делают невозможным завершение внутриканальных процедур, но шансы успешного лечения значительно возрастают, если инфекционно-токсическое содержимое корневых каналов эффективно удаляется перед пломбированием.

Микроорганизмы, сохранившиеся после инструментальной обработки и ирригации, быстро размножаются и вновь заселяют корневые каналы, которые остаются пустыми между посещениями . Вероятность реинфекции зависит от качества пломбирования корневого канала и полноценности коронковой реставрации. Однако во всех случаях, когда бактерии остаются в системе корневых каналов, существует риск дальнейшего развития пери-апикальных изменений .

В нелеченных зубах с первичной внутриканальной инфекцией обычно встречается один или несколько видов бактерий, без очевидного преобладания факультативных или анаэробных форм. При вторичном инфицировании при неудачном лечении присутствует смешанная инфекция, доминируют грамотрицательные анаэробные штаммы .

Существуют разные мнения в отношении необходимого количества этапов лечения пациентов с периапикальными проблемами. Так, одни авторы обосновывают необходимость лечения инфицированных корневых каналов в несколько посещений, с использованием временных внутриканальных повязок, что позволяет постепенно и контролируемо добиваться уничтожения микроорганизмов в них. Другие предлагают предотвращать рост оставшихся микроорганизмов, лишая их питания и жизненного пространства путем полноценной обработки, дезинфекции и трехмерного пломбирования корневых каналов во время первого и единственного посещения.

Противовоспалительная и антибактериальная активность гидроксида кальция

Инструментальная обработка корневого канала уменьшает количество микроорганизмов в 100-1000 раз, но полное их отсутствие наблюдается только в 20-30% случаев. Антибактериальное орошение 0,5% раствором гипохлорита натрия увеличивает этот эффект до 40-60% . Добиться полной дезинфекции инфицированных корневых каналов даже после полной механической очистки и ирригации антисептическими растворами на практике очень сложно. Уничтожить сохранившихся в корневом канале бактерий можно, используя временное заполнение корневого канала противомикробными средствами до следующего посещения. Такие препараты должны иметь широкий спектр антибактериального действия, быть нетоксичными и обладать физико-химическими свойствами, позволяющими им диффундировать через дентинные канальцы и латеральные каналы корневой системы зуба .

В качестве временного внутриканального средства в эндодонтии широко используется гидроксид кальция, который в водном растворе распадается на ионы кальция и гидроксид-ионы. Основные биологические свойства гидроксида: бактерицидная активность, противовоспалительные свойства, тканевая растворимость, кровоостанавливающее действие, торможение резорбции тканей зуба, стимулирование процессов регенерации кости .

Гидроксид кальция обладает бактерицидной активностью благодаря своей высокой щелочности и высвобождению в водной среде гидроксид-ионов - высокоактивных свободных радикалов. Их воздействие на бактериальные клетки объясняется следующими механизмами:

- повреждением цитоплазматической мембраны бактериальной клетки, играющей важную роль в сохранении клетки. Именно клеточная мембрана обеспечивает избирательную проницаемость и транспорт веществ, окислительную фосфориляцию в аэробных штаммах, выработку ферментов и транспорт молекул для биосинтеза ДНК, клеточных полимеров и мембранных липидов. Гидроксид-ионы из гидроксида кальция вызывают липидное окисление, что приводит к образованию свободных липидных радикалов и деструкции фосфолипидов, являющихся структурными компонентами клеточных мембран. Липидные радикалы инициируют цепную реакцию, в результате чего теряются ненасыщенные жирные кислоты и клеточные мембраны повреждаются;

- денатурацией белков вследствие того, что щелочная среда гидроксида кальция вызывает разрушение ионных связей, обеспечивающих структуру протеинов. В щелочной среде полипептидные цепи ферментов хаотично соединяются и трансформируются в беспорядочные образования. Эти изменения часто приводят к потере биологической активности ферментов и нарушению клеточного метаболизма;

- повреждением микробной ДНК, с которой реагируют гидроксид-ионы, вызывая ее расщепление и приводя к по-вреждению генов вследствие нарушения репликации ДНК. Кроме этого, свободные радикалы самостоятельно могут вызывать разрушающие мутации.

Бактерицидное действие гидроксида кальция зависит от концентрации гидроксид-ионов, высокой только в зоне непосредственного контакта с препаратом. Когда гидроксид кальция диффундирует глубже в дентин, концентрация гидроксид-ионов уменьшается из-за действия буферных систем (бикарбонатной или фосфатной), кислот, протеинов и СО 2 , антибактериальная активность препарата может снижаться или замедляться . Нейтрализация высокого рН гидроксида кальция может происходить также в результате коронкового микроподтекания, просачивания тканевой жидкости через верхушку корня, присутствия некротических масс в канале, продуцирования кислых веществ микробами. В корневом канале рН бывает 12-12,5, в прилегающем дентине, где имеется плотный контакт с гидроксидом, рН варьирует от 8 до 11, а в глубине дентина значения рН составляют 7-9. Самые верхние значения рН были получены в период от 7 до 14 дней после внесения в канал водной суспензии гидроксида кальция .

Микроорганизмы отличаются по стойкости к изменениям рН, большинство их размножается при рН 6-9. Некоторые штаммы могут выживать при рН 8-9, именно они обычно являются причиной вторичной инфекции. Энтерококки (Е. faecalis ), устойчивые к рН 9-11, в норме не обнаруживаются в корневых каналах или в небольших количествах присутствуют в нелеченных зубах. Они играют важную роль при неудачном эндодонтическом лечении и часто (в 32-38% случаев) присутствуют в зубах с апикальным периодонтитом.

Одной из важных составляющих эффективного дезинфицирующего действия препарата в эндодонтии является его способность растворяться и проникать в систему корневых каналов. Щелочи (NaOH и КОН) обладают высокой растворимостью и могут диффундировать глубже, чем гидроксид кальция. Данные вещества обладают выраженной антибактериальной активностью. Но высокая растворимость и активная диффузия усиливают цитотоксический эффект на клетки организма. Из-за высокой цитотоксичности они не используются в эндодонтии. Гидроксид кальция является биосовместимым, так как благодаря его слабой водорастворимости и диффузии происходит медленное повышение рН, необходимое для уничтожения бактерий, локализующихся в дентинных канальцах и других труднодоступных анатомических образованиях. Из-за этих особенностей гидроксид кальция относится к эффективным, но медленно действующим антисептикам .

Время, необходимое для оптимальной дезинфекции корневого канала гидроксидом кальция, до сих пор точно не определено. Клинические исследования дают противоречивые результаты. Cwikla et al. (1998) обнаружили, что в 90% случаев после 3 месяцев применения гидроксида бактериальный рост не отмечается . В исследовании Bystrom et al. (1999) гидроксид кальция эффективно уничтожил микроорганизмы за 4 недели применения. Reit и Dahlen применяли препарат 2 недели - инфекция сохранилась в 26% корневых каналов . В эксперименте Basrani et al. после одной недели применения гидроксида кальция в 27% случаев в каналах остались бактерии .

Механизмы устойчивости микроорганизмов к действию внутриканальных дезинфектантов

Факторы, определяющие устойчивость микроорганизмов к действию дезинфектантов, способность выживать после применения внутриканальных (временных и постоянных) пломбировочных материалов:

Нейтрализация препарата буферными системами или продуктами бактериальных клеток;

Недостаточная для уничтожения микроорганизмов экспозиция дезинфектанта в корневом канале;

Низкая антибактериальная эффективность препарата по отношению к микроорганизмам корневого канала;

Воздействие препарата на микроорганизмы ограничено по анатомическим причинам;

Способность микроорганизмов к изменению своих свойства (генов) после изменения окружающей среды .

Важный механизм устойчивости бактерий - существование их в виде биопленки. Биопленка - это микробиологическая популяция (бактериальная экосистема), связанная с органическим или неорганическим субстратом, окруженная продуктами жизнедеятельности бактерий. Собранные в биопленке различные штаммы микроорганизмов способны к организации ассоциаций для совместного выживания, обладают повышенной устойчивостью к антимикробным средствам и защитным механизмам . Свыше 95% существующих в природе бактерий находятся в биоплёнках.

Уничтожать бактерии в составе биопленок труднее, чем в планктонных суспензиях, если дезинфицирующее средство не обладает свойством растворять ткани. При повторном лечении инфицированных зубов гидроксид кальция не может на 100% уничтожать стойкие бактерии (Е. faecalis ), которые в состоянии размножаться между посещениями стоматолога. Большое значение имеет полноценное препарирование, очищение канала от всех микроорганизмов в первое посещение (с использованием обильных промываний гипохлоритом натрия). Предупреждение повторного инфицирования корневого канала достигается путем полноценной герметизации коронки зуба с помощью качественных временных пломб .

Влияние растворителей на антибактериальную активность гидроксида кальция

Вещества, применяющиеся в качестве среды для гидроксида кальция, обладают различной водорастворимостью. Оптимальная среда не должна изменять рН гидроксида кальция. Многие растворители не обладают антибактериальной активностью, например дистиллированная вода, физиологический раствор и глицерин. Феноловые производные, такие как парамонохлорфенол, камфорный фенол, имеют выраженные антибактериальные свойства и могут использоваться в виде среды для гидроксида. Гидроксид кальция с парамонохлорфенолом имеет большой радиус действия, уничтожает бактерии в участках, отдаленных от мест нанесения пасты .

Siqueira et al. выявили, что гидроксид кальция в физиологическом растворе не уничтожает Е. faecalis и F. nucleatum в дентинных канальцах в течение недели применения. А паста гидроксида кальция с парамонохлорфенолом и глицерином эффективно уничтожала бактерии в канальцах, включая Е. faecalis , за 24 часа применения. То есть парамонохлорфенол усиливает антибактериальную активность гидроксида кальция .

Результаты исследования дезинфекции дентинных канальцев с помощью трех препаратов гидроксида кальция (Са(ОН) 2 в дистиллированной воде, Са(ОН) 2 с йодидом калия и Са(ОН) 2 с йодоформом (Metapex)) показали, что Са(ОН) 2 в чистом виде менее эффективен для уничтожения микробов в дентинных канальцах. В каналах с гидроксидом кальция наблюдался рост некоторых микроорганизмов (Е. faecalis , С. albicans ) на глубину 250 мкм в течение 7 дней. Это объясняется тем, что у Са(ОН) 2 низкая степень проницаемости и его высокий рН (12) частично нейтрализуется буферными системами дентина. Са(ОН) 2 с йодидом калия эффективнее, чем чистый гидроксид. Но самой действенной оказалась паста Metapex (Ca(OH) 2 с йодоформом): кроме Е. faecalis она обезвредила другие микробы и проникла в канальцы на глубину более 300 мкм (Cwikla et al.) .

Abdullah et al. (2005) изучали эффективность различных внутриканальных средств (гидроксид кальция, 0,2% хлоргексидин, 17% ЭДТА, 10% повидон-йодин, 3% гипохлорит натрия) в отношении штаммов Е. faecalis , находящихся в составе бактериальных биопленок. В составе биопленки Е. faecalis в 100% случаев был уничтожен 3%-ным гипохлоритом натрия через 2 минуты и 10%-ным повидон-йодином через 30 минут. Гидроксид кальция устранил эти бактерии частично .

Поскольку некоторые микроорганизмы, особенно Е. faecalis , устойчивы к гидроксиду кальция, оправдана комбинация его с другими антимикробными средствами, которые повышают его активность, например с йдоформом, камфорным парамонохлорфенолом. Имеющие низкое поверхностное натяжение, жирорастворимые фенолы проникают глубоко в ткани зуба.

В эндодонтии к широкому использованию в качестве ирриганта и внутриканальной повязки рекомендован хлоргексидин, эффективный против многих бактерий, определяющих эндодонтическую инфекцию. Молекула хлоргексидина, взаимодействуя с фосфатными группами стенки бактериальной клетки, проникает в бактерию и оказывает внутриклеточное токсическое действие .

Гидроксид кальция в сочетании с 2% гелем хлоргексидина обладает повышенной антимикробной активностью, особенно против резистентных микроорганизмов. Хлоргексидин в форме геля имеет такие положительные свойства, как низкая токсичность для периодонтальных тканей, вязкость, которая позволяет удерживать активные вещества в постоянном контакте со стенками корневого канала и дентинными канальцами, водорастворимость. Установлена высокая эффективность комбинации геля хлоргексидина и гидроксида кальция против Е. faecalis в инфицированном корневом дентине . Высокий рН (12,8) в первые два дня увеличивает проникающую способность препаратов.

Эффективен против Е. faecalis после 1, 2, 7 и 15 дней применения 2% гель хлоргексидина. По данным Gomes et al., 2% гель хлоргексидина обладает большей антибактериальной активностью в отношении Е. faecalis , чем гидроксид кальция, но эта способность теряется при использовании его в течение длительного времени. Это подтверждают и другие исследования, даже при использовании хлоргексидина в виде раствора или геля в концентрациях 0,05%, 0,2% и 0,5%. Комбинация хлоргексидина и гидроксида кальция на 100% ингибирует рост Е. faecalis после 1-2 дней контакта .

Гидроксид кальция как физический барьер

Вторичные внутриканальные инфекции вызываются микроорганизмами, которые проникают в канал во время лечения, между посещениями или после лечения зуба. Основные источники вторичной инфекции: зубные отложения на зубах, кариес, инфицированные эндодонтические инструменты. Причинами инфицирования между посещениями могут быть микроподтекание через временную пломбу из-за ее разрушения; перелом зуба; задержка при замещении временной пломбы постоянной, когда зуб остается открытым для дренажа. Вторичное инфицирование позволяет появиться новым, вирулентным микроорганизмам, вызывающим острое периапикальное воспаление .

Внутриканальные препараты уничтожают оставшиеся после хемомеханической обработки канала бактерии, а также используются как физико-химический барьер, который предотвращает размножение микроорганизмов и сокращает риск реинфекции со стороны полости рта. Реинфицирование канала возможно вследствие того, что препарат растворяется слюной, слюна просачивается в пространство между медикаментом и стенками канала. Однако, ecли препарат обладает антибактериальным эффектом, сначала произойдет его нейтрализация и только потом бактериальная инвазия.

Для предотвращения реинфекции более важна герметизирующая способность гидроксида кальция, чем его химическая активность, так как он имеет низкую водорастворимость, медленно растворяется в слюне, остается в канале на длительный срок, задерживая продвижение бактерий по направлению к апексу . Несмотря на использование растворителей, гидроксид кальция действует как эффективный физический барьер, уничтожает часть оставшихся бактерий и предотвращает их рост, ограничивая пространство для размножения .

В качестве надежного изолирующего барьера при различных эндодонтических проблемах (перфорация дна полости, корня зуба, резорбция корня и др.) предложен новый класс материалов - минеральный триоксидный агрегат (ПроРут МТА). Основу МТА составляют соединения кальция .

Влияние гидроксида кальция на качество постоянного пломбирования корневого канала

Перед постоянной обтурацией гидроксид кальция удаляется из корневого канала с помощью гипохлорита натрия, физиологического раствора и эндодонтических инструментов.

Lambrianidis et al. (1999) исследовали возможность удаления некоторых препаратов гидроксида кальция из корневых каналов: Calxyl (42% гидроксида кальция) и водную суспензию (95% гидроксида кальция). Процентное содержание гидроксида кальция не влияло на эффективность очищения стенок корневого канала. Остатки пасты могут влиять на механические свойства силера и ухудшать апикальный герметизм. Есть мнение о невозможности полностью удалить пасту со стенок корневого канала .

Остаточный гидроксид кальция отрицательно влияет па затвердевание цинк-оксид-эвгенольных силеров, так как взаимодействует с эвгенолом пасты с образованием эвгенолата кальция. В клинике это может проявляться блокированием продвижения гуттаперчевого штифта на всю рабочую длину канала. Если остатки гидроксида кальция не удаляются полностью, они уплотняются апикально или в углублениях канала, что механически мешает эффективному пломбированию каналов, затрудняет апикальный герметизм и может повлиять на результат эндодонтического лечения. Апикальную пробку из гидроксида кальция предпочтительно удалить.

Гидроксид кальция эффективно удаляется со стенок канала ручными инструментами с промыванием гипохлоритом натрия и 17% ЭДТА . Сложности очищения корневых каналов после временного пломбирования обусловливают пастообразующие вещества и наполнители, а не гидроксид кальция. Препараты гидроксида кальция на водной основе (особенно готовящиеся ex tempore ) абсолютно лишены данных недостатков. Более того, материалами выбора для постоянной обтурации корневых каналов после их временного пломбирования гидроксидом кальция следует считать силеры на основе гидроксида кальция.

Показания к временному пломбированию корневых каналов

Применение нетвердеющих паст на основе гидроксида кальция показано в качестве временного внутриканального средства для лечения острых форм апикального периодонтита, деструктивных форм хронического апикального периодонтита, кистогранулем, радикулярных кист, прогрессирующей резорбции корня, зубов с несформированной верхушкой корня в детской практике.

Методика применения гидроксида кальция:

1) гидроксид кальция в виде порошка замешивается до пастообразного состояния на дистиллированной воде либо глицерине;

2) в тщательно инструментально и медикаментозно обработанный корневой канал паста вводится с помощью каналонаполнителя;

3) для обеспечения прилегания к дентину корня паста уплотняется при помощи бумажного штифта, закрывается герметичной повязкой.

Особенности применения гидроксида кальция при разных состояниях апикального периодонта. При острых формах апикального периодонтита временное пломбирование гидроксидом кальция преследует цель оказать противовоспалительное и антимикробное действие. Гидроксид кальция вводится в корневой канал рыхло, без уплотнения, сначала на сутки, затем повторно на 1-3-7 дней в зависимости от клинической картины. При остром периапикальном абсцессе по показаниям проводится периостотомия.

При хронических деструктивных процессах в апикальном периодонте преследуется цель оказать не только противовоспалительное и антимикробное действие, но и стимулировать репаративные процессы в кости. Гидроксид кальция вводится в корневой канал с уплотнением к стенкам, на 3-8 недель, время обновления материала зависит от клинической картины. Лечение рассчитано на период от 0,5 до 1 года, его продолжительность зависит от степени инфицирования корневого канала, резистентности организма, возраста пациента, мотивации к сотрудничеству. Восстановление зоны деструкции апикального периодонта продолжается после постоянного пломбирования корневого канала силером на основе гидроксида кальция в течение 3-5 лет.

Пломбирование зубов с апикальным периодонтитом в первое посещение не приводит к ликвидации острого воспаления. Резорбция цемента и дентина сохраняется даже спустя 9 месяцев после пломбирования. При этом в 80% случаев формируется хронический процесс. Если же канал после дренирования заполняли гидроксидом кальция на 7 дней до обтурации, происходило замещение периапикального дефекта новой костной тканью, хотя в 18,8% случаев воспаление прогрессировало .

Острые реакции при герметичном закрытии коронковой полости сохранялись лишь у 5% зубов при наличии периапикального абсцесса. Временная повязка и герметичная пломба предотвращают повторное инфицирование канала и увеличивают успех консервативного лечения до 61,1% (по сравнению с 22,2% без антибактериальной повязки) .

При применении гидроксида кальция в качестве временной повязки через 3 года наблюдается полная регенерация кости 82% периапикальных очагов даже крупного размера. В 18% случаев дефекты кости сохранялись или слегка уменьшались в размерах. Наиболее активное сокращение размеров дефекта отмечалось в первый год лечения. Первые положительные признаки обнаруживались на рентгенограммах через 12 недель после введения повязки с Са(ОН) 2 , а на цифровых рентгенограммах - уже через 3-6 недель .

«Вчера» гидроксида кальция. Информационные материалы, научные статьи о препаратах гидроксида кальция 20-30-летней давности убеждали (и убедили) нас в его уникальных способностях: пасты на основе гидроксида кальция обладают сильнощелочной реакцией, неограниченным бактерицидным действием, способностью стимулировать репаративные процессы в костной ткани.

Применение гидроксида кальция в эндодонтии расширило показания к консервативному лечению деструктивных процессов в апикальном периодонте. Появилась возможность полноценного сохранения зубов, ранее считавшихся безнадежными. «Биосовместимость гидроксида кальция превратила его в поливалентный препарат, адаптированный почти ко всем клиническим ситуациям, встречающимся в эндодонтии» . Появились рекомендации об обязательности этапа временного пломбирования корневых каналов при эндодонтическом лечении: «Это полезно!».

«Сегодня» накоплен багаж клинических наблюдений, которые подтверждают очень высокую эффективность гидроксида кальция (рис. 1-4; из собственных наблюдений авторов). Качественное выполнение всех этапов эндодонтического лечения в сочетании с временным пломбированием корневых каналов гидроксидом кальция позволяет признать данный метод лечения органосберегающим.

Но сегодня в стоматологической литературе дискутируются вопросы широты антибактериального действия препаратов гидроксида кальция, прицельного воздействия на наиболее устойчивые и агрессивные штаммы микроорганизмов, обусловливающих развитие периапикальных очагов деструкции, повторное инфицирование и развитие обострений.

Так, А.А. Антанян пишет : «Многосторонний анализ научной литературы последних лет (2003-2006) показал, что гидроксид кальция имеет множество недостатков, которые ставят под сомнение его рутинное и массовое применение в эндодонтии. В современной эндодонтии важнейшее значение имеет полноценное препарирование, очищение канала от инфекции в первое посещение (с использованием обильных промываний гипохлоритом натрия) и предупреждение повторного инфицирования канала полноценной герметизацией коронки зуба с помощью качественных временных пломб. Следовательно, во многих клинических ситуациях дополнительная дезинфекция гидроксидом кальция не обязательна».

«Завтра» гидроксида кальция. Опыт клинического использования гидроксида кальция показывает, что необходимость его применения в эндодонтии не может быть обоснована только его противомикробной эффективностью, на которую в прошлые годы возлагали основную ответственность за результат лечения. С появлением чувствительных методов микробиологического исследования, с расширением спектра высокоэффективных средств для ирригации корневых каналов возможности и свойства гидроксида кальция как материала для временного пломбирования могут быть переосмыслены и переоценены. Но не уценены! В непростых клинических ситуациях по эндодонтическому лечению и перелечиванию зубов благодаря препаратам гидроксида кальция удается сохранить пациенту зубы и здоровье.

ЛИТЕРАТУРА

1. Антанян А. А. // Эндодонтия today. - 2007. - № 1. - С. 59-69.

2. Беер Р., Бауман М.А. Иллюстрированный справочник по эндодонтологии. - М., 2006. - 240 с.

3. Глинка Н.Л. Общая химия: Учеб. пособие для вузов. - 20-е изд., испр. / Под ред. Рабиновича В.А. - Л., 1979. - С. 614-617.

4. Гутман Дж. Л., Думша Т.С., Ловдэл П.Э. Решение проблем в эндодонтии: Профилактика, диагностика и лечение / Пер. с англ. - М., 2008. - 592 с.

5. Полтавский В.П. Интраканальная медикация: Современные методы. - М., 2007. - 88 с.

6. Симакова Т.Г., Пожарицкая М.М., Синицына В.И. // Эндодонтия today. - 2007. - № 2. - С. 27-31.

7. Соловьева А.Б. // Новости Dentsplay. - 2003. - № 8. - С. 14-16.

8. Холина М.А. // Новости Дентсплай. - 2007. - №14. - С. 42-45.

9. Abdullah M., Yuan-Ling N., Moles D., Spratt D. // J. Endod. - 2005. - V. 31, N 1. - P. 30-36.

10. Allais G. // Новое в стоматологии. - 2005. - № 1. - С. 5-15.

11. Athanassiadis B., Abbott P.V., Walsh L.J. // Austr. Dent. J. - 2007. - Mar; 52 (Suppl 1). - S. 64-82.

12. Basrani B., Santos J.M., Tjäderhane L. et al. // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. - 2002. - Aug; 94(2). - P. 240-245.

13. Cwikla S., Belanger M., Giguere S., Vertucci F. // J. Endod. - 2005. - V. 31, N 1. - P. 50-52.

14. Ercan E., Ozekinci T., Atakul F., Gül K. // J. Endod. - 2004. - Feb; 30(2). - P. 84-87.

15. Gomes B., Souza S., Ferraz C. // Intern. Endod. J. - 2003 - V. 36. - P. 267-275.

16. Heckendorff M., Hulsmann М . // Новое в стоматологии. - 2003. - № 5. - С. 38-41.

17. Lambrianidis T., Margelos J., Beites P. // Intern. Endod. J. - 1999. - V. 25, N 2. - P. 85-88.

18. Regan J.D., Fleury A.A. // J. Ir. Dent. Assoc. - 2006. - Autumn; 52 (2) - P. 84-92.

19. Sathorn C., Parashos P., Messer H. // Intern. Endod. J. - 2007. - V. 40, Issue 1. - P. 2-10.

20. Siqueira J.F., Paiva S.S., Rôças I.N. // J. Endod. - 2007. - May; 33 (5). - P. 541-547.

Современная стоматология. - 2009. - №2. - С. 4-9.

Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.