Как образуется углекислый газ. Большая энциклопедия нефти и газа

Cтраница 1


Молекулы углекислого газа всегда состоят из двух атомов кислорода и одного атома углерода. Получить молекулу углекислого газа из иного числа атомов углерода и кислорода невозможно.  

Молекула углекислого газа является одной из наиболее изученных молекул. Эти три частоты следует рассматривать как основные. Так как любая трехатомная молекула имеет только три основные частоты, то ими исчерпываются все возможные основные частоты. Ввиду того что ни одна из этих частот не встречается одновременно и в инфракрасном и в комбинационном спектрах, то из альтернативного запрета следует, что молекула должна иметь центр симметрии. Трехатомная молекула может обладать центром симметрии, если она линейна и симметрична.  

Молекулы углекислого газа, взаимодействующие при низкой температуре под действием дисперсионных сил, образуют кристаллы сухого льда. Иод с бензолом дает интенсивно окрашенный (от фиолетового до коричневого) комплекс, образовавшийся за счет взаимодействий, обусловленных переносом заряда. Во многих случаях наличие межмолекулярных сил в таких молекулярных ассоциатах в значительной мере отражается на их свойствах.  

Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Молекула СОа является линейной с центром симметрии. В каждой моде может быть один или несколько квантов. Колебательные состояния молекулы обозначаются количеством квантов в соответствующей фундаментальной моде колебаний.  

Молекула углекислого газа (продукта сгорания топлива) состоит из одного атома углерода и двух атомов кислорода. При недостатке воздуха, а следовательно, и при недостатке кислорода образуется продукт неполного сгорания углерода - окись углерода, молекула которой состоит из одного атома углерода и одного атома кислорода. Молекула серной кислоты состоит из двух атомов водорода, одного атома серы и четырех атомов кислорода.  

Молекулы углекислого газа имеют четыре типа нормальных колебаний с характеристическими температурами: 8м1 2 960 К, Ov3 1920 К, 0 v4 3380 К. Эти колебания возбуждаются раньше, чем в воздухе, и при полном возбуждении поглощают относительно большую (EW4RT) энергию.  

В молекуле углекислого газа СО2 обе я-связи СО расположены под прямым углом друг к другу и оставшиеся два s - электрона и двар-электрона углерода образуют две sp - орбитали.  

В молекуле углекислого газа на один четырехвалентный атом углерода приходится два двухвалентных атома кислорода. Строение молекулы углекислого газа показано на фиг.  

В молекуле углекислого газа ССЬ атомы соединены линейно: О С О.  

Из одной молекулы углекислого газа получаются две молекулы окиси углерода; если молекулы всех газов занимают равные объемы, то объем окиси углерода должен быть вдвое больше объема углекислого газа. Это подтверждается результатами, установленными опытным путем.  

Если каждая молекула углекислого газа состоит из одного атома углерода и двух атомов кислорода, то как бы ни получалась углекислота - сжиганием дерева, графита, каменного угля или алмаза, при брожении пива или дыхании животных - она всегда будет иметь один и тот же состав, ибо соединение иного числа углеродных и кислородных атомов будет уже не углекислотой, а каким-то другим веществом.  

Таким образом, молекулы углекислого газа, образующегося при горении окиси углерода, будут сначала находиться в состоянии с высокой колебательной энергией, иначе говоря, их колебания будут возбуждены.  


Пары воды, молекулы углекислого газа, озона и другие примеси, имеющиеся в атмосфере, селективно поглощают ИК излучение. Особенно интенсивно поглощают ИК излучение пары воды / Например, слой воды в несколько сантиметров является непрозрачным для ИК излучения с длиной волны более 1 мкм. Поэтому слой воды можно использовать в качестве теплозащитного экрана (фильтра), что и традиционно применяется при тушении пожаров. Молекулы азота, кислорода ослабляют ИК излучение за счет молекулярного (релеевского) рассеяния, которое значительно интенсивнее в видимом и УФ диапазонах, так как коэффициент релеевского рассеяния пропорционален А-4. Именно этим объясняется голубой цвет неба, поскольку ультрафиолетовая компонента видимого света рассеивается интенсивнее, чем другие длины волн видимого диапазона.  

Например, в молекуле углекислого газа СО2 атомы располагаются на прямой линии, а в молекуле воды Н2О - в углах треугольника. Для объяснения структуры молекул необходимо допустить, что химические валентности атомов обладают определенной направленностью.  

Без цвета и запаха. Важнейший регулятор кровообращения и дыхания. Не токсичен. Без него не было бы сдобных булочек и приятно колких газированных напитков. Из этой статьи вы узнаете, что такое углекислый газ и как он влияет на организм человека...


Большинство из нас плохо помнят школьный курс физики и химии, но знают: газы невидимы и, как правило, неосязаемы, а потому коварны. Поэтому, прежде чем ответить на вопрос, вреден ли углекислый газ для организма, давайте вспомним, что он собой представляет.

Одеяло Земли

CO2 - двуокись углерода. Он же - углекислый газ, оксид углерода (IV) или угольный ангидрид. В нормальных условиях это бесцветный не имеющий запаха газ с кисловатым вкусом.

В условиях атмосферного давления двуокись углерода имеет два агрегатных состояния: газообразное (углекислый газ тяжелее воздуха, плохо растворяется в воде) и твёрдое (при –78 °С превращается в сухой лёд).

Углекислый газ - один из главных составляющих окружающей среды. Он содержится в воздухе и подземных минеральных водах, выделяется при дыхании человека и животных, участвует в фотосинтезе растений.

Двуокись углерода активно влияет на климат. Она регулирует теплообмен планеты: пропускает ультрафиолет и блокирует инфракрасное излучение. В связи с этим углекислый газ порой называют одеялом Земли.

O2 - энергия. CO2 - искра

Двуокись углерода сопровождает человека на протяжении всей жизни. Будучи естественным регулятором дыхания и кровообращения, углекислый газ является неотъемлемым компонентом обмена веществ.



Вдыхая около 30 литров кислорода в час, человек выделяет 20–25 литров углекислого газа.

Делая вдох, человек наполняет лёгкие кислородом. При этом в альвеолах (специальных «пузырьках» лёгких) происходит двусторонний обмен: кислород переходит в кровь, а углекислый газ выделяется из неё. Человек выдыхает. CO2 - один из конечных продуктов метаболизма. Говоря образно, кислород - это энергия, а углекислый газ - искра, разжигающая её.

Углекислый газ не менее важен для организма, чем кислород. Он является физиологическим стимулятором дыхания: влияет на кору головного мозга и стимулирует дыхательный центр. Сигналом для очередного вдоха служит не недостаток кислорода, а избыток углекислого газа. Ведь обмен веществ в клетках и тканях непрерывен, и нужно постоянно удалять его конечные продукты.

Кроме того, углекислый газ влияет на секрецию гормонов, активность ферментов и скорость биохимических процессов.

Равновесие газообмена

Углекислый газ не токсичен, не взрывоопасен и абсолютно безвреден для людей. Однако для нормальной жизнедеятельности крайне важен баланс двуокиси углерода и кислорода. Недостаток и избыток углекислого газа в организме приводит к гипокапнии и гиперкапнии соответственно.

Гипокапния - недостаток СО2 в крови. Возникает в результате глубокого учащённого дыхания, когда в организм поступает больше кислорода, чем нужно. Например, во время слишком интенсивных физических нагрузок. Последствия могут быть различными: от лёгкого головокружения до потери сознания.

Гиперкапния - избыток СО2 в крови. Человек вдыхает (вместе с кислородом, азотом, водяными парами и инертными газами) 0,04% углекислого газа, а выдыхает 4,4%. Если находиться в небольшом помещении с плохой вентиляцией, концентрация двуокиси углерода может превысить норму. Как следствие, может возникнуть головная боль, тошнота, сонливость. Но чаще всего гиперкапния сопутствует экстремальным ситуациям: неисправность дыхательного аппарата, задержка дыхания под водой и другим.

Таким образом, вопреки мнению большинства людей, углекислый газ в количествах, предусмотренных природой, необходим для жизни и здоровья человека. Кроме того, он нашёл широкое промышленное применение и приносит людям немало практической пользы.

Игристые пузырьки на службе поваров

СО2 используется во многих сферах. Но, пожалуй, наиболее востребован углекислый газ в пищевой промышленности и кулинарии.

Углекислый газ образуется в дрожжевом тесте под влиянием брожения. Именно его пузырьки разрыхляют тесто, делая его воздушным и увеличивая его объём.

С помощью углекислого газа делают различные освежающие напитки: квас, минеральную воду и другие любимые детьми и взрослыми газировки. Эти напитки пользуются популярностью у миллионов потребителей во всём мире во многом из-за игристых пузырьков, которые так забавно лопаются в бокале и так приятно «колют» в носу.


Может ли углекислый газ, содержащийся в газированных напитках, способствовать гиперкапнии или нанести любой другой вред здоровому организму? Конечно, нет!

Во-первых, углекислый газ, который используется при приготовлении газированных напитков, специально подготовлен для применения в пищевой промышленности. В тех количествах, в которых он содержится в газировках, он абсолютно безвреден для организма здоровых людей.

Во-вторых, большая часть углекислого газа улетучивается сразу после откупоривания бутылки. Оставшиеся пузырьки «испаряются» в процессе питья, оставляя после себя лишь характерное шипение. В итоге в организм попадает ничтожно малое количество углекислого газа.

«Тогда почему врачи порой запрещают пить газированные напитки?» - спросите вы. По мнению кандидата медицинских наук, врача-гастроэнтеролога Алёны Александровны Тяжевой, это связано с тем, что существует ряд заболеваний желудочно-кишечного тракта, при которых предписывается специальная строгая диета. В список противопоказаний попадают не только напитки, содержащие газ, но и многие продукты питания. Здоровый же человек без проблем может включить в свой рацион умеренное количество газированных напитков и время от времени позволять себе стаканчик той же колы.

Вывод

Углекислый газ необходим для поддержания жизни как планеты, так и отдельно взятого организма. СО2 влияет на климат, являясь своеобразным одеялом. Без него невозможен метаболизм: с углекислым газом из организма выходят продукты обмена. А ещё это незаменимый компонент любимых всеми газированных напитков. Именно углекислый газ создаёт игривые пузырьки, щекочущие в носу. При этом для здорового человека он абсолютно безопасен.

— это физиологический процесс, обеспечивающий поступление в организм кислорода и удаление углекислого газа. Дыхание протекает в несколько стадий:

  • внешнее дыхание (вентиляция легких);
  • (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);
  • транспорт газов кровью;
  • обмен газов в тканях (между кровью капилляров большого круга кровообращения и клетками тканей);
  • внутреннее дыхание (биологическое окисление в митохондриях клеток).

Изучает первые четыре процесса. Внутреннее дыхание рассматривается в курсе биохимии.

2.4.1. Транспорт кровью кислорода

Функциональная система транспорта кислорода — совокупность структур сердечно-сосудистого аппарата, крови и их регуляторных механизмов, образующих динамическую саморегулирующуюся организацию, деятельность всех составных элементов которой создает диффузионные ноля и градиенты pO2 между кровью и клетками тканей и обеспечивает адекватное поступление кислорода в организм.

Целью ее функционирования является минимизация разности между потребностью и потреблением кислорода. Оксидазный путь использования кислорода , сопряженный с окислением и фосфорилированием в митохондриях цепи тканевого дыхания, является наиболее емким в здоровом организме (используется около 96-98 % потребляемого кислорода). Процессы транспорта кислорода в организме обеспечивают также и его антиоксидантную защиту .

  • Гипероксия повышенное содержание кислорода в организме.
  • Гипоксия - пониженное содержание кислорода в организме.
  • Гиперкапния — повышенное содержание углекислого газа в организме.
  • Гиперкапнемия — повышенное содержание углекислого газа в крови.
  • Гипокапния — пониженное содержание углекислого газа в организме.
  • Гипокаппемия - пониженное содержание углекислого газа в крови.


Рис. 1. Схема процессов дыхания

Потребление кислорода — количество кислорода, поглощаемое организмом в течение единицы времени (в покое 200- 400 мл/мин).

Степень насыщения крови кислородом — отношение содержания кислорода в крови к ее кислородной емкости.

Объем газов, находящихся в крови, принято выражать в объемных процентах (об%). Этот показатель отражает количество газа в миллилитрах, находящееся в 100 мл крови.

Кислород транспортируется кровью в двух формах:

  • физического растворения (0,3 об%);
  • в связи с гемоглобином (15-21 об%).

Молекулу гемоглобина, не связанную с кислородом, обозначают символом Нb, а присоединившую кислород (оксигемоглобин) — НbO 2 . Присоединение кислорода к гемоглобину называют оксигенацией (сатурацией), а отдачу кислорода — де- оксигенацией или восстановлением (десатурацией). Гемоглобину принадлежит основная роль в связывании и транспорте кислорода. Одна молекула гемоглобина при полной оксигена- ции связывает четыре молекулы кислорода. Один грамм гемоглобина связывает и транспортирует 1,34 мл кислорода. Зная содержание гемоглобина в крови, легко рассчитать кислородную емкость крови.

Кислородная емкость крови — это количество кислорода, связанного с гемоглобином, находящимся в 100 мл крови, при его полном насыщении кислородом. Если в крови содержится 15 г% гемоглобина, то кислородная емкость крови составит 15 . 1,34 = 20,1 мл кислорода.

В нормальных условиях гемоглобин связывает кислород в легочных капиллярах и отдает его в тканевых благодаря особым свойствам, которые зависят от ряда факторов. Основным фактором, влияющим на связывание и отдачу гемоглобином кислорода, является величина напряжения кислорода в крови, зависящая от количества растворенного в ней кислорода. Зависимость связывания гемоглобином кислорода от его напряжения описывается кривой, получившей название кривой диссоциации оксигемоглобина (рис. 2.7). На графике но вертикали отмечен процент молекул гемоглобина, связанных с кислородом (%НbO 2), по горизонтали — напряжение кислорода (рO 2). Кривая отражает изменение %НbO 2 в зависимости от напряжения кислорода в плазме крови. Она имеет S-образный вид с перегибами в области напряжения 10 и 60 мм рт. ст. Если рО 2 в плазме становится больше, то оксигенация гемоглобина начинает нарастать почти линейно нарастанию напряжения кислорода.


Рис. 2. Кривые диссоциации: а — при одинаковой температуре (Т = 37 °С) и различном рСО 2 ,: I- оксимиоглобина нрн нормальных условиях (рСО 2 = 40 мм рт. ст.); 2 — окенгемоглобина при нормальных условиях (рСО 2 , = 40 мм рт. ст.); 3 — окенгемоглобина (рСО 2 , = 60 мм рт. ст.); б — при одинаковом рС0 2 (40 мм рт. ст.) и различной температуре

Реакция связывания гемоглобина с кислородом является обратимой, зависит от сродства гемоглобина к кислороду, которое, в свою очередь, зависит от напряжения кислорода в крови:

При обычном парциальном давлении кислорода в альвеолярном воздухе, составляющем около 100 мм рт. ст., этот газ диффундирует в кровь капилляров альвеол, создавая напряжение, близкое к парциальному давлению кислорода в альвеолах. Сродство гемоглобина к кислороду в этих условиях повышается. Из приведенного уравнения видно, что реакция сдвигается в сторону образования окенгемоглобина. Оксигенация гемоглобина в оттекающей от альвеол артериальной крови достигает 96-98%. Из-за шунтирования крови между малым и большим кругом оксигенация гемоглобина в артериях системного кровотока немного снижается, составляя 94-98%.

Сродство гемоглобина к кислороду характеризуется величиной напряжения кислорода, при котором 50% молекул гемоглобина оказываются оксигенированными. Его называют напряжением полунасыщения и обозначают символом Р 50 . Увеличение Р 50 свидетельствует о снижении сродства гемоглобина к кислороду, а его снижение — о возрастании. На уровень Р 50 влияют многие факторы: температура, кислотность среды, напряжение СО 2 , содержание в эритроците 2,3-дифосфоглицерата. Для венозной крови Р 50 близко к 27 мм рт. ст., а для артериальной — к 26 мм рт. ст.


Из крови сосудов микроциркуляторного русла кислород но его градиенту напряжения постоянно диффундирует в ткани и его напряжение в крови уменьшается. В то же время напряжение углекислого газа, кислотность, температура крови тканевых капилляров увеличиваются. Это сопровождается снижением сродства гемоглобина к кислороду и ускорением диссоциации оксигемоглобина с высвобождением свободного кислорода, который растворяется и диффундирует в ткани. Скорость высвобождения кислорода из связи с гемоглобином и его диффузии удовлетворяет потребности тканей (в том числе высокочувствительных к недостатку кислорода), при содержании НbО 2 в артериальной крови выше 94%. При снижении содержания НbО 2 менее 94% рекомендуется принимать меры к улучшению сатурации гемоглобина, а при содержании 90% ткани испытывают кислородное голодание и необходимо принимать срочные меры, улучшающие доставку в них кислорода.

Состояние, при котором оксигенация гемоглобина снижается менее 90%, а рО 2 крови становится ниже 60 мм рт. ст., называют гипоксемией.

Приведенные на рис. 2.7 показатели сродства Нb к О 2 , имеют место при обычной, нормальной температуре тела и напряжении углекислого газа в артериальной крови 40 мм рт. ст. При возрастании в крови напряжения углекислого газа или концентрации протонов Н+ сродство гемоглобина к кислороду снижается, кривая диссоциации НbО 2 , сдвигается вправо. Такое явление называют эффектом Бора. В организме повышение рСО 2 , происходит в тканевых капиллярах, что способствует увеличению деоксигснации гемоглобина и доставке кислорода в ткани. Снижение сродства гемоглобина к кислороду происходит также при накоплении в эритроцитах 2,3-дифосфоглицерата. Через синтез 2,3-дифосфоглицерата организм может влиять на скорость диссоциации НbO 2 . У пожилых людей содержание этого вещества в эритроцитах повышено, что препятствует развитию гипоксии тканей.

Повышение температуры тела снижает сродство гемоглобина к кислороду. Если температура тела снижается, то кривая диссоциации НbО 2 , сдвигается влево. Гемоглобин активнее захватывает кислород, но в меньшей мере отдает его тканям. Это является одной из причин, почему при попадании в холодную (4-12 °С) воду даже хорошие пловцы быстро испытывают непонятную мышечную слабость. Развивается переохлаждение и гипоксия мышц конечностей по причине как уменьшения в них кровотока, так и сниженной диссоциации НbО 2 .

Из анализа хода кривой диссоциации НbО 2 видно, что рО 2 в альвеолярном воздухе может быть снижено с обычного 100 мм рт. ст. до 90 мм рт. ст., а оксигенация гемоглобина будет сохраняться на совместимом с жизнедеятельностью уровне (уменьшится лишь на 1-2%). Такая особенность сродства гемоглобина к кислороду дает возможность организму приспосабливаться к снижению вентиляции легких и понижению атмосферного давления (например, жить в горах). Но в области низкого напряжения кислорода крови тканевых капилляров (10-50 мм рт. ст.) ход кривой резко меняется. На каждую единицу снижения напряжения кислорода деоксигенируется большое число молекул оксигемоглобина, увеличивается диффузия кислорода из эритроцитов в плазму крови и за счет повышения его напряжения в крови создаются условия для надежного обеспечения тканей кислородом.

На связь гемоглобина с килородом влияют и другие факторы. На практике важно учитывать то, что гемоглобин обладает очень высоким (в 240-300 раз большим, чем к кислороду) сродством к угарному газу (СО). Соединение гемоглобина с СО называют карбоксигелюглобином. При отравлении СО кожа пострадавшего в местах гиперемии может приобретать вишнево-красный цвет. Молекула СО присоединяется к атому железа гема и тем самым блокирует возможность связи гемоглобина с кислородом. Кроме того, в присутствии СО даже те молекулы гемоглобина, которые связаны с кислородом, в меньшей степени отдают его тканям. Кривая диссоциации НbО 2 сдвигается влево. При наличии в воздухе 0,1% СО более 50% молекул гемоглобина превращается в карбоксигемогло- бин, а уже при содержании в крови 20-25% НbСO человеку требуется врачебная помощь. При отравлении угарным газом важно обеспечить пострадавшему вдыхание чистого кислорода. Это увеличивает скорость диссоциации НbСO в 20 раз. В условиях обычной жизни содержание НbСOв крови составляет 0-2%, после выкуренной сигареты оно может возрасти до 5% и более.

При действии сильных окислителей кислород способен образовывать прочную химическую связь с железом гема, при которой атом железа становится трехвалентным. Такое соединение гемоглобина с кислородом называют метгемоглобином. Оно не может отдавать кислород тканям. Метгемоглобин сдвигает кривую диссоциации оксигемоглобина влево, ухудшая таким образом условия высвобождения кислорода в тканевых капиллярах. У здоровых людей в обычных условиях из-за постоянного поступления в кровь окислителей (перекисей, нитропронзводных органических веществ и т.д.) до 3% гемоглобина крови может быть в виде метгемоглобина.

Низкий уровень содержания этого соединения поддерживается благодаря функционированию антиоксидантных ферментных систем. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитариых ферментов дегидрогеназ. При недостаточности этих систем или при избыточном попадании в кровоток веществ (например, фенацетина, противомалярийных лекарственных препаратов и т.д.), обладающих высокими оксидантными свойствами, развивается мстгсмоглобинсмия.

Гемоглобин легко взаимодействует и со многими другими растворенными в крови веществами. В частности, при взаимодействии с лекарственными препаратами, содержащими серу, может образовываться сульфгемоглобин, сдвигающий кривую диссоциации оксигемоглобина вправо.

В крови плода преобладает фетальный гемоглобин (HbF), обладающий большим сродством к кислороду, чем гемоглобин взрослого. У новорожденного в эритроцитах содержится до 70% фстального гемоглобина. Гемоглобин F заменяется на НbА в течение первого полугодия жизни.

В первые часы после рождения рО 2 артериальной крови составляет около 50 мм рт. ст., а НbО 2 - 75-90%.

У пожилых людей напряжение кислорода в артериальной крови и насыщение гемоглобина кислородом постепенно снижается. Величину этого показателя рассчитывают по формуле

рO 2 = 103,5-0,42 . возраст в годах.

В связи с существованием тесной связи между насыщением кислородом гемоглобина крови и напряжением в ней кислорода был разработан метод пульсоксиметрии , получивший широкое применение в клинике. Этим методом определяют насыщение гемоглобина артериальной крови кислородом и его критические уровни, при которых напряжение кислорода в крови становится недостаточным для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание (рис. 3).

Современный пульсоксиметр состоит из датчика, включающего светодиодный источник света, фотоприемника, микропроцессора и дисплея. Свет от светодиода направляется через ткань пальца кисти (стопы), мочки уха, поглощается оксигемоглобином. Непоглощенная часть светового потока оценивается фотоприемником. Сигнал фотоприемника обрабатывается микропроцессором и подается на экран дисплея. На экране отображается процентное насыщение гемоглобина кислородом, частота пульса и пульсовая кривая.

На кривой зависимости насыщения гемоглобина кислородом видно, что гемоглобин артериальной крови, опекающей из альвеолярных капилляров (рис. 3), полностью насыщенкислородом (SaO2 = 100%), напряжение кислорода в ней составляет 100 мм рт. ст. (рО2, = 100 мм рт. ст.). После диссоциации оксигсмоглобина в тканях кровь становится деоксигенированной и в смешанной венозной крови, возвращающейся в правое предсердие, в условиях покоя гемоглобин остается насыщенным кислородом на 75% (Sv0 2 = 75%), а напряжение кислорода составляет 40 мм рт. ст. (pvO2 = 40 мм рт. ст.). Таким образом, в условиях покоя ткани поглотили около 25% (≈250 мл) кислорода, высвободившегося из оксигсмоглобина после его диссоциации.


Рис. 3. Зависимость насыщения кислородом гемоглобина артериальной крови от напряжения в ней кислорода

При уменьшении всего лишь на 10% насыщения гемоглобина артериальной крови кислородом (SaO 2 , <90%), диссоциирующий в тканях оксигемоглобин не обеспечивает достаточного напряжения кислорода в артериальной крови для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание.

Одной из важных задач, которая решается при постоянном измерении пульсоксиметром насыщения гемоглобина артериальной крови кислородом, является обнаружение момента, когда насыщение снижается до критического уровня (90%) и пациенту необходимо оказание неотложной помощи, направленной на улучшение доставки кислорода в ткани.

Транспорт кровью углекислого газа и его связь с кислотно-щелочным состоянием крови

Углекислый газ транспортируется кровью в формах:

  • физического растворения — 2,5-3 об%;
  • карбоксигемоглобина (НbСО 2) — 5 об%;
  • бикарбонатов (NaHCO 3 и КНСO 3) — около 50 об%.

В оттекающей от тканей крови содержится 56-58 об% СО 2 , а в артериальной — 50-52 об%. При протекании через тканевые капилляры кровь захватывает около 6 об% СО 2 , а в легочных капиллярах этот газ диффундирует в альвеолярный воздух и удаляется из организма. Особенно быстро идет обмен СО 2 , связанного с гемоглобином. Углекислый газ присоединяется к аминогруппам в молекуле гемоглобина, поэтому карбоксигемоглобин называют еще карбаминогемоглобином. Большая часть углекислого газа транспортируется в виде натриевых и калиевых солей угольной кислоты. Ускоренному распаду угольной кислоты в эритроцитах при прохождении их по легочным капиллярам способствует фермент карбоангидра- за. При рСО2 ниже 40 мм рт. ст. этот фермент катализирует распад Н 2 СO 3 на Н 2 0 и С0 2 , способствуя удалению углекислого газа из крови в альвеолярный воздух.

Накопление углекислого газа в крови свыше нормы называют гиперкапнией , а понижение гипокапнией. Гиперкаппия сопровождается сдвигом рН крови в кислую сторону. Это обусловлено тем, что углекислый газ, соединяясь с водой, образует угольную кислоту:

CO 2 + H 2 O = H 2 CO 3

Угольная кислота диссоциирует согласно закону действующих масс:

Н 2 СО 3 <-> Н + + HCO 3 - .

Таким образом, внешнее дыхание через влияние на содержание углекислого газа в крови принимает непосредственное участие в поддержании кислотно-щелочного состояния в организме. За сутки с выдыхаемым воздухом из организма человека удаляется около 15 ООО ммоль угольной кислоты. Почки удаляют приблизительно в 100 раз меньше кислот.

где рН — отрицательный логарифм концентрации протонов; рК 1 — отрицательный логарифм константы диссоциации (К 1) угольной кислоты. Для ионной среды, имеющейся в плазме, рК 1 =6,1.

Концентрацию [СО2] можно заменить напряжением [рС0 2 ]:

[С0 2 ] = 0,03 рС0 2 .

Тогда рН = 6,1 + lg / 0,03 рСО 2 .

Подставив эти значения, получим:

рН = 6,1 + lg24 / (0,03 . 40) = 6,1 + lg20 = 6,1 + 1,3 = 7,4.

Таким образом, пока соотношение / 0,03 рС0 2 равно 20, рН крови будет 7,4. Изменение этого соотношения происходит при ацидозе или алкалозе, причинами которых могут быть нарушения в системе дыхания.

Различают изменения кислотно-щелочного состояния, вызванные нарушениями дыхания и метаболизма.

Дыхательный алкалоз развивается при гипервентиляции легких, например при пребывании на высоте в горах. Недостаток кислорода во вдыхаемом воздухе приводит к возрастанию вентиляции легких, а гипервентиляция — к избыточному вымыванию из крови углекислого газа. Соотношение / рС0 2 сдвигается в сторону преобладания анионов и рН крови увеличивается. Увеличение рН сопровождается усилением выведения почками бикарбонатов с мочой. При этом в крови будет обнаруживаться меньшее, чем в норме, содержание анионов HCO 3 - или так называемый «дефицит оснований».

Дыхательный ацидоз развивается из-за накопления в крови и тканях углекислого газа, обусловленного недостаточностью внешнего дыхания или кровообращения. При гиперкапнии показатель соотношения / рСО 2 , снижается. Следовательно, снижается и рН (см. выше приведенные уравнения). Это подкисление может быть быстро устранено усилением вентиляции.

При дыхательном ацидозе почки увеличивают выведение с мочой протонов водорода в составе кислых солей фосфорной кислоты и аммония (Н 2 РО 4 - и NH 4 +). Наряду с усилением секреции протонов водорода в мочу увеличивается образование анионов угольной кислоты и усиление их реабсорбции в кровь. Содержание HCO 3 - в крови возрастает и рН возвращается к норме. Это состояние называют компенсированным дыхательным ацидозом. О его наличии можно судить по величине рН и нарастанию избытка оснований (разности между содержанием в исследуемой крови и в крови с нормальным кислотно-щелочным состоянием.

Метаболический ацидоз обусловлен поступлением в организм избытка кислот с пищей, нарушениями метаболизма или введением лекарственных препаратов. Увеличение концентрации водородных ионов в крови приводит к возрастанию активности центральных и периферических рецепторов, контролирующих рН крови и ликвора. Учащенная импульсация от них поступает к дыхательному центру и стимулирует вентиляцию легких. Развивается гипокапиия. которая несколько компенсирует метаболический ацидоз. Уровень в крови снижается и это называют дефицитом оснований.

Метаболический алкалоз развивается при избыточном приеме внутрь щелочных продуктов, растворов, лекарственных веществ, при потере организмом кислых продуктов обмена или избыточной задержке почками анионов . Дыхательная система реагирует на повышение соотношения /рС0 2 гиповентиляцией легких и повышением напряжения углекислого газа в крови. Развивающаяся гиперкапния может в определенной мере компенсировать алкалоз. Однако объем такой компенсации ограничен тем, что накопление углекислого газа в крови идет не более, чем до напряжения 55 мм рт. ст. Признаком компенсированного метаболического алкалоза является наличие избытка оснований.

Взаимосвязь между транспортом кислорода и углекислого газа кровью

Имеется три важнейших пути взаимосвязи транспорта кислорода и углекислого газа кровью.

Взаимосвязь по типу эффекта Бора (увеличение рСО-, снижает сродство гемоглобина к кислороду).

Взаимосвязь по типу эффекта Холдэна . Она проявляется в том, что при деоксигенации гемоглобина увеличивается его сродство к углекислому газу. Высвобождается дополнительное число аминогрупп гемоглобина, способных связывать углекислый газ. Это происходит в тканевых капиллярах и восстановленный гемоглобин может в больших количествах захватывать углекислый газ, выходящий в кровь из тканей. В соединении с гемоглобином транспортируется до 10% от всего переносимого кровью углекислого газа. В крови легочных капилляров гемоглобин оксигенируется, его сродство к углекислому газу снижается и около половины этой легко обмениваемой фракции углекислого газа отдастся в альвеолярный воздух.

Еще один путь взаимосвязи обусловлен изменением кислотных свойств гемоглобина в зависимости от его соединения с кислородом. Величины констант диссоциации этих соединений в сопоставлении с угольной кислотой имеют такое соотношение: Hb0 2 > Н 2 С0 3 > Нb. Следовательно, НbО2 обладает более сильными кислотными свойствами. Поэтому после образования в легочных капиллярах он забирает катионы (К+) от бикарбонатов (КНСО3) в обмен на ионы Н + . В результате этого образуется H 2 CO 3 При повышении концентрации угольной кислоты в эритроците фермент карбоангидраза начинает разрушать ее с образованием СО 2 и Н 2 0. Углекислый газ диффундирует в альвеолярный воздух. Таким образом, оксигенация гемоглобина в легких способствует разрушению бикарбонатов и удалению аккумулированного в них углекислого газа из крови.

Превращения, описанные выше и происходящие в крови легочных капилляров, можно записать в виде последовательных символических реакций:

Деоксигенация Нb0 2 в тканевых капиллярах превращает его в соединение с меньшими, чем у Н 2 С0 3 , кислотными свойствами. Тогда вышеприведенные реакции в эритроците текут в обратном направлении. Гемоглобин выступает поставщиком ионов К" для образования бикарбонатов и связывания углекислого газа.

Транспорт газов кровью

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода

Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.


Рис. 4. Кривая диссоциации оксигемоглобина

Кривая диссоциации имеет S-образную форму и состоит из двух частей — крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оке и гемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина — легко насыщаться кислородом даже при небольших давлениях и легко его отдавать — очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 5).

Рис. 5. Кривые насыщения гемоглобина кислородом при разных условиях:

А — в зависимости от реакции среды (рН); Б — от температуры; В — от содержания солей; Г — от содержания углекислого газа. По оси абцисс — парциальное давление кислорода (в мм рт. ст.). по оси ординат — степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 5, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального
давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 5, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 5, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа

Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ — 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНСО, — 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина — 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НСО 3 - переходит в плазму крови. Взамен ионов НСО 3 - в эритроциты из плазмы входят ионы СI - , отрицательные заряды которых уравновешиваются ионами K+. В плазме крови увеличивается количество бикарбоната натрия (NaНСО 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Оксигемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин — более сильная кислота, чем угольная, а дезоксигемоглобин — более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНbO 2 . В тканевых капиллярах КНbО 2 , отдает кислород и превращается в КНb. Из него угольная кислота как более сильная вытесняет ионы К + :

КНb0 2 + H 2 CO 3 = КНb + 0 2 + КНСО 3

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К+), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется СО2,. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НСОГ входят в эритроциты, а ионы СI - входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.

Рис. 6. Процессы, происходящие в эритроците при поглощении или отдаче кровью кислорода и углекислого газа


Очень велика. Углекислый газ принимает участие в образовании всего живого вещества планеты и вместе с молекулами воды и метана создает так называемый «оранжерейный (парниковый) эффект».

Роль углекислого газа (CO 2 , двуокись или диоксид углерода ) в жизнедеятельности биосферы состоит прежде всего в поддержании процесса фотосинтеза, который осуществляется растениями .

Являясь парниковым газом , двуокись углерода в воздухе оказывает влияние на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучамое тепло на ряде частот, и таким образом участвует в формировании климата планеты .

В последнее время наблюдается увеличение концентрации углекислого газа в воздухе, что ведет к изменению климата Земли .

Углерод (С) в атмосфере содержится в основном в виде углекислого газа (СО 2) и в небольшом количестве в виде метана (СН 4), угарного газа и других углеводородов.

Для газов атмосферы Земли применяют понятие «время жизни газа». Это время, за которое газ полностью обновляется, т.е. время, за которое в атмосферу поступает столько же газа, сколько в нем содержится. Так вот, для углекислого газа это время составляет 3-5 лет, для метана – 10-14 лет. СО окисляется до СО 2 в течение нескольких месяцев.

В биосфере значение углерода очень велико, так как он входит в состав всех живых организмов. В пределах живых существ углерод содержится в восстановленном виде, а вне пределов биосферы – в окисленном. Таким образом, формируется химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источники углерода в атмосфере Земли.

Источником первичной углекислоты являются вулканы , при извержении которых в атмосферу выделяется огромное количество газов. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма.

Также углерод поступает в атмосферу Земли в виде метана в результате анаэробного разложения органических остатков. Метан под воздействием кислорода быстро окисляется до углекислого газа. Основными поставщиками метана в атмосферу являются тропические леса и болота .

Миграция СО 2 в биосфере.

Миграция СО 2 протекает двумя способами:

При первом способе СО 2 поглощается из атмосферы Земли в процессе фотосинтеза и участвует в образовании органических веществ с последующем захоронением в земной коре в виде полезных ископаемых: торфа, нефти, горючих сланцев.

При втором способе углерод участвует в создании карбонатов в гидросфере. СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Геохимический круговорот углерода.

Извлечение углекислого газа из атмосферы.

Углекислый газ из атмосферы Земли извлекается зелеными растениями в процессе фотосинтеза, который осуществляется посредством пигмента хлорофилла, использующего энергию солнечного излучения . Полученный из атмосферы углекислый газ растения преобразуют в углеводы и кислород. Углеводы участвуют в образовании органических соединений растений, а кислород выделяется обратно в атмосферу.

Связывание углекислого газа.

В активном круговороте углерода участвует очень небольшая часть всей его массы. Огромное количество угольной кислоты законсервировано в виде ископаемых известняков и других пород. Между углекислым газом атмосферы Земли и водой океана , в свою очередь, существует подвижное равновесие.

Благодаря высокой скорости размножения растительные организмы (особенно низшие микроорганизмы и морской фитопланктон) продуцируют в год около 1,5-10 11 т углерода в виде органической массы, что соответствует 5,86-10 20 Дж (1,4-10 20 кал) энергии.

Растения частично поедаются животными, при отмирании которых органическое вещество отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим каустобиолитам - каменным углям, нефти, горючим газам.

В процессах распада органических веществ, их минерализации огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые).

Основные запасы углерода находятся в связанном состоянии (в основном в составе карбонатов) в осадочных породах Земли, значительная часть растворена в водах океана, и относительно небольшая – присутствует в составе воздуха.

Отношение количеств углерода в литосфере, гидросфере и атмосфере Земли, по уточненным расчетам, составляет 28 570: 57: 1.

Как углекислый газ возвращается снова в атмосферу Земли?

Углекислый газ выделяется в атмосферу Земли:

В процессе дыхания живых организмов и разложения их трупов, распада карбонатов, процессов брожения, гниения и горения;

Зеленые растения, днем поглощая углекислый газ из атмосферы в процессе фотосинтеза, ночью некоторую его часть возвращают обратно;

В результате деятельности вулканов, газы которых состоят в основном из углекислого газа и паров воды. Современный вулканизм в среднем приводит к выделению 2·10 8 тонн CO 2 в год, что составляет величину менее 1 % от антропогенной эмиссии (выделенной в результате человеческой деятельности) ;

В результате индустриальной деятельности человека, в последние годы занявшей особое место в круговороте углерода. Массовое сжигание ископаемого топлива ведет к возрастанию содержания углерода в атмосфере, так как только 57% процентов производимого человечеством углекислого газа перерабатывается растениями и поглощается гидросферой. Массовая вырубка лесов также ведет к увеличению концентрации углекислоты в воздухе.