В каком веке появился термин электрическое поле. Изобретения последних веков. Как выглядит билет

. (история открытия явления)

До 1600 г. знания европейцев об электричестве оставалось на уровне древних греков, что повторяло историю развития теории паровых реактивных двигателей ("Элеопил" А. Герона).

Основоположником науки об электричестве в Европе стал выпускник Кембриджа и Оксфорда английский физик и придворный врач королевы Елизаветы - Уильям Гилберт (1544-1603). С помощью своего "версора" (первого электроскопа) У. Гильберт показал, что способностью притягивать легкие тела (соломинки) обладает не только натертый янтарь, но и алмаз, сапфир, карборунд, опал, аметист, горный хрусталь, стекло, сланцы и др., которые он назвал "электрическими" минералами.

Кроме того, Гильберт заметил, что пламя "уничтожает" электрические свойства тел, приобретенные при трении, и впервые исследовал магнитные явления, установив, что:

Магнит всегда имеет два полюса - северный и южный;
- одноименные полюса отталкиваются, а разноименные притягиваются;
- распиливая магнит, нельзя получить магнит только с одним полюсом;
- железные предметы под влиянием магнита приобретают магнитные свойства (магнитная индукция);
- природный магнетизм может быть усилен с помощью железной арматуры.

Изучая магнитные свойства намагниченного шара с помощью магнитной стрелки, Гильберт пришел к выводу, что они соответствуют магнитным свойствам Земли, а Земля является самым большим магнитом, что и объясняет постоянное наклонение магнитной стрелки.

1650 г.: Отто фон Герике (1602-1686) создает первую электрическую машину, извлекавшую из натираемого шара, отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако тайна свойств «электрической жидкости» , как в то время называли это явление, не получила тогда никакого объяснения.

1733 г.: французский физик , член Парижской Академии наук, Шарль Франсуа Дюфе (Dufay, Du Fay, 1698-1739) открыл существование двух видов электричества, которые назвал "стеклянным" и "смоляным". Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п.

После многочисленных экспериментов Ш. Дюфе впервые электризовал тело человека и "получил" из него искры. В область его научных интересов входил магнетизм, фосфоресценция и двойное лучепреломление в кристаллах, ставшее впоследствии основой для создания оптических лазеров. Для обнаружения измерения электричества пользовался версором Гилберта, сделав его намного более чувствительным. Впервые высказал мысль об электрической природе молнии и грома.

1745 г.: выпускник Лейденского университета (Голландия) физик Питер ван Мушенбрук (Musschenbroek Pieter van, 1692-1761) изобрел первый автономный источник электроэнергии - лейденскую банку и провел с ней ряд опытов, в ходе которых установил взаимозвязь электрического разряда с его физиологическим действием на живой организм.

Лейденская банка представляла собой стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой, и являлась первым электрическим конденсатором. Если обкладки прибора, заряженного от электростатического генератора О. фон Герике соединяли тонкой проволокой, то она быстро нагревалась, а иногда и плавилась, что указывало на наличие в банке источника энергии, которую можно было транспортировать далеко от места ее зарядки.

1747 г.: член Парижской Академии наук, французский физик-экспериментатор Жан Антуан Нолле (1700-1770) изобрел первый прибор для оценки электрического потенциала - электроскоп , зарегистрировал факт более быстрого "стекания" электричества с острых тел и впервые сформировал теорию действия электричества на живые организмы и растения.

1747–1753 гг.: американский государственный деятель, ученый и просветитель Бенджамин (Вениамин) Франклин (Franklin, 1706-1790) публикует цикл работ по физике электричества, в которых:
- ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «–» ;
- объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки;
- установил тождество атмосферного и получаемого с помощью трения электричества и привел доказательство электрической природы молнии;
- установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил молниеотвод;
- выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил;
- впервые применил электрическую искру для взрыва пороха.

1759 г.: В России физик Франц Ульрих Теодор Эпинус (Aepinus, 1724-1802),впервые выдвигает гипотезу о наличии связи между электрическими и магнитными явлениями.

1761 г.: Швейцарский механик, физик и астроном Леонард Эйлер (L. Euler, 1707-1783) описывает новую электростатическую машину, состоящую из вращающегося диска из изоляционного материала с радиально наклеенными кожаными пластинами. Для съема электрического заряда к диску надо было подвести шелковые контакты, присоединенные к медным стержням со сферическими окончаниями. Приближая сферы друг к другу, можно было наблюдать процесс электрического пробоя атмосферы (искусственная молния).

1785-1789 гг.: Французский физик Шарль Огюстен Кулон (S. Coulomb, 1736-1806) публикует семь работ. в которых описывает закон взаимодействия электрических зарядов и магнитных полюсов (закон Кулона), вводит понятие магнитного момента и поляризации зарядов и доказывает, что электрические заряды всегда располагаются на поверхности проводника.

1791 г.: В Италии издается трактат Луиджи Гальвани (L. Galvani, 1737-1798), «De Viribus Electricitatis In Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении»), в котором доказывалось, что электричество вырабатывается живым организмом и наиболее эффективно проявляется в контакте разнородных проводников. В настоящее время этот эффект лежит в основе принципа действия электрокардиографов.

1795 г.: Итальянский профессор Александр Вольта (Alessandro Guiseppe Antonio Anastasio Volta, 1745-1827) исследует явление контактной разности потенциалов различных металлов и с помощью электрометра собственной конструкции дает численную оценку этому явлению. Результаты своих опытов А.Вольта впервые описывает 1 августа 1786 г. в письме своему другу. В настоящее время эффект контакной разности потенциалов используется в термопарах и системах анодной (электрохимической) защиты металлических сооружений.

1799 г:. А. Вольта изобретает источник гальванического (электрического) тока - вольтов столб . Первый вольтов столб состоял из 20 пар медных и цинковых кружочков, разделенных суконными кусочками, смоченными соленой водой, и предположительно мог давать напряжение 40-50 В и ток до 1 А.

В 1800 г. в журнале «Philosophical Transactions of the Royal Society, Vol. 90» под названием «On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds» («Электричество, получаемое в результате простого контакта разных веществ») было описано устройство, названное «электродвижущий аппарат», А. Вольта считал, что в основе принципа действия его источника тока лежит контактная разность потенциалов, и только спустя много лет было установлено, что причиной возникновения э.д.с. в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью - электролитом. Осенью 1801 г. в России была создана первая гальваническая батарея, состоящая из 150 серебряных и цинковых дисков. Через год, осенью 1802 г., была изготовлена батарея из 4200 медных и цинковых дисков, дающая напряжение в 1500 В.

1820 г.: датский физик Ханс Кристиан Эрстед (Ersted, 1777-1851) в ходе опытов по отклонению магнитной стрелки под действием проводника с током, установил связь между электрическими и магнитными явлениями. Сообщение об этом явлении, опубликованное в 1820 г., стимулировало исследования в области электромагнетизма, что, в конечном счете, привело к формированию основ современной электротехники.

Первым последователем Х.Эрстеда стал французский физик Андре Мари Ампер (1775-1836) сформулировавший в том-же году правило определения направления действия электрического тока на магнитную стрелку, названное им "правилом пловца" (правило Ампера или правой руки), после чего были определены законы взаимодействия электрических и магнитных полей (1820 г.), в рамках которых впервые была сформулирована идея об использовании электромагнитных явлений для дистанционной передачи электрического сигнала.

В 1822 г. А. Ампер создает первый усилитель электромагнитного поля - многовитковые катушки из медного провода, внутри которых помещались сердечники из мягкого железа (соленоиды), ставшие технологической основой для изобретенного им в 1829 г. электромагнитного телеграфа, открывшего эру современной электросвязи.

821 г.: английский физик Майкл Фарадей (М. Faraday, 1791-1867) познакомился с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820) и после исследования взаимосвязи электрических и магнитных явлений установил факт вращения магнита вокруг проводника с током и вращения проводника с током вокруг магнита.

В течение последующих 10 лет М. Фарадей пытался «превратить магнетизм в электричество», результатом чего стало открытие в 1831 электромагнитной индукции , что привело к формированию основ теории электромагнитного поля и появлению новой отрасли промышленности - электротехники. В 1832 г. М. Фарадей публикует работу, в которой выдвигается идея о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий в атмосфере с конечной скоростью, что стало основой для появления новой отрасли знаний - радиотехники.

Стремясь установить количественные соотношения между различными видами электричества, М. Фарадей начал исследования по электролизу и в 1833–1834 гг. сформулировал его законы. В 1845 г., исследуя магнитные свойства различных материалов, М. Фарадей открывает явления парамагнетизма и диамагнетизма и установливает факт вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Это было первое наблюдение связи между магнитными и оптическими явлениями, которое позднее было объяснено в рамках электромагнитной теории света Дж. Максвелла.

Примерно в это-же время свойства электричества изучал немецкий физик Георг Симон Ом (G.S. Ohm, 1787-1854). Проведя серию экспериментов, Г. Ом в 1826 г. сформулировал основной закон электрической цепи (закон Ома) и в 1827 г. дал его теоретическое обоснование, ввел понятия «электродвижущая сила», падение напряжения в цепи и «проводимость».

Закон Ома устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника т.е. RI = U . Коэффициент пропорциональности R , получивший в 1881 г. название омическое сопротивление или просто сопротивление зависит от температуры проводника и его геометрических и электрических свойств.

Исследования Г. Ома завершают второй этап развития электротехники, а именно фомирования теоретической базы для расчета характеристик электрических цепей, что стало основой современной электроэнергетики.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

Содержание:

Совершенно невозможно представить жизнь современных людей без электричества. Однако так было далеко не всегда. Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Поэтому вопрос, когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны. Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих , которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление , и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

Современная жизнь невозможна без освещения, автомобилей, оборудования, цифровой и другой техники, в их основу заложен единый ресурс, в связи с этим многие люди задаются вопросом кто изобрел используемое повсеместно электричество. Кем был тот человек, с которого началось развитие науки и производства, и стала потенциально возможной нынешняя комфортабельность жизни?

Изобретения электричества как такового не было, поскольку это явление природное и изучение его началось еще в Древней Греции в 7 веке до нашей эры. Философ и естествоиспытатель Фалес Милетский обратил внимание на то, что если янтарь натереть шерстью овцы, то у камня появляется способность притягивать к себе некоторые легкие предметы. Он же и сформулировал термин. Поскольку по-гречески янтарь называется «электрон», то выявленная сила была означена Фалесом «электричеством».

Научные изыскания

Реальные научные исследования электрической природы начинались только в XVII веке в эпоху Возрождения. В Магдебурге в то время служил бургомистром Отто фон Герике, но власть не была настоящим увлечением чиновника. Все свободное время он проводил в своей лаборатории, где после тщательного изучения трудов Фалеса Милетского изобрел первую в мире электрическую машину. Правда ее применение было не практическим, а скорее научным, она позволяла изобретателю исследовать эффекты притяжения и отталкивания посредством электрической силы. Машина представляла собой стержень, на котором кружился шарик серы, в данной конструкции он заменял янтарь.

Основатель электротехники

Также в конце XVII века при английском дворе трудился придворный медик и физик Уильям Гилберт. Его также вдохновили труды древнегреческого мыслителя, и он перешел к собственным исследованиям по данной тематике. Этот изобретатель разработал прибор для изучения электричества – версор. С его помощью он смог расширить знания об электрических явлениях. Так он установил, что подобными янтарю свойствами обладают сланцы, опал, алмаз, карборунд, аметист и стекло. Кроме этого, Гилберт установил взаимосвязь между пламенем и электричеством, а так же сделал ряд других открытий, которые позволили современным ученым называть его основоположником электротехники.

Передача электричества на расстояние

В XVIII веке исследования по теме были успешно продолжены. Два ученых из Англии Гренвилл Уилер и Стивен Грей установили, что электричество проходит через одни материалы (их назвали проводниками) и не проходит через другие. Они же поставили первый опыт по передаче электрической силы на расстояние. Ток прошел небольшую дистанцию. Так 1729 год можно назвать первой датой, при ответе на вопрос, в каком году изобрели промышленное электричество. Далее открытия последовали одно за другим:

  • профессор математики из Голландии Машенбрук изобрел «лейденскую банку», которая по своей сути явилась первым конденсатором;
  • французский естествоиспытатель Шарль Дюфе классифицировал электрические силы на стеклянные и смоляные;
  • Михаил Ломоносов доказал, что молнии получаются из-за разности потенциалов, и изобрел первый громоотвод;
  • профессор из Франции Шарль Кулон открыл закон взаимосвязи между неподвижными зарядами точечного формата.

Все установленные факты были собраны под одной обложкой Бенджамином Франклином, он же предложил несколько перспективных теорий, например, то, что заряды могут быть, как положительными, так и отрицательными.

От теории к практике

Все установленные факты были верны, и легли в основу практических разработок. В XIX веке научные изыскания одно за другим находили практические воплощения:

  • итальянский ученый Вольт разработал источник постоянного электрического тока;
  • ученый из Дании Эрстед установил электрические и магнитные взаимосвязи между предметами;
  • ученый из Санкт-Петербурга Петров разработал схему, которая позволяла использовать электрический ток для освещения помещений;
  • англичанин Деларю изобрел первую в мире лампу накаливания

  • Ампер вывил факт, что магнитное поле формируется не статическими зарядами, а электрическим полем;
  • Фарадей открыл электромагнитную индукцию и спроектировал первый двигатель;
  • Гаусс разработал теорию электрического поля;
  • итальянский физик Гальвани установил наличие электричества в организме человека, в частности выполнении движений мышцами посредством электротока.

Работы каждого из вышеназванных ученых мужей послужили основой для тех или иных направлений, поэтому любого их них смело можно назвать первым в мире ученым, кто изобрел электричество.

Эпоха «Великих открытий»

Сделанные открытия и осуществленные разработки позволили выполнить системный анализ явления и его возможностей, после которого сделались возможными проекты различных электрических систем и устройств. Кстати, к чести России можно сказать, что первым населенным пунктом на планете, который был освещен электричеством, стало Царское Село в 1881 году. Так, в результате труда нескольких поколений мы можем жить в максимально комфортном мире.

История электричества: видео

Электричество – это чрезвычайно полезная форма энергии. Оно легко превращается в другие формы, например в свет или тепло. Его можно без труда передавать по проводам. Слово «электричество» происходит от греческого слова «электрон» — «янтарь». При трении янтарь приобретает электрический заряд и начинает притягивать кусочки бумаги. Статическое электричество известно с древнейших времен, но лишь 200 лет назад люди научились создавать электрический ток. Электричество приносит нам тепло и свет, на нем работают разнообразные машины, в том числе ЭВМ и калькуляторы.

Что такое электричество

Электричество существует благодаря частицам, имеющим электрические заряды. Заряды есть во всяком веществе - ведь атомные ядра имеют положительный заряд, а вокруг них обращаются отрицательно заряженные электроны (см. статью « «). Обычно атом электрически нейтрален, но когда он отдает свои электроны другим атомам, он обретает положительный заряд, а атом, получивший дополнительные электроны, заряжен отрицательно. можно сообщить некоторым предметам электрический заряд, называемый статическим электричеством . Если потереть воздушный шар о шерстяной джемпер, часть электронов перейдет с джемпера на шар, и тот приобретет положительный заряд. Джемпер теперь заряжен положительно, и шарик прилипает к нему, так как противоположные заряды притягиваются друг к другу. Между заряженными телами действуют электрические силы, и тела с противоположными (положительными и отрицательными) зарядами притягивают друг друга. Предметы с одинаковыми зарядами, напротив, отталкиваются. В генераторе Ван-де-Граафа при трении резиновой ленты о валик возникает значительный статический заряд. Если человек дотронется до купола, его волосы встанут дыбом.

В некоторых веществах, например в , электроны могут свободно передвигаться. Когда что-то приводит их в движение, возникает поток электрических зарядов, называемый током . Проводники - это вещества, способные проводить, электрический ток. Если вещество не проводит ток, его называют изолятором . Дерево и пластмасса - изоляторы. В целях изоляции электрический выключатель помещают в пластмассовый корпус. Провода, как правило, делают из меди и покрывают пластиком для изоляции.

Впервые статическое электричество обнаружили древние греки более 2000 лет назад. Сейчас статическое электричество используется для получения фотокопий, факсов, распечаток на лазерных принтерах. Отраженный зеркалом лазерный луч создает на барабане лазерного принтера точечные статические заряды. Тонер притягивается к этим точкам и прижимается к бумаге.

Молния

Молнию вызывает статическое электричество, накапливающееся в грозовой туче в результате трения капелек воды и кристалликов льда, друг о друга. При трении друг о друга и о воздух капли и кристаллики льда приобретают заряд. Положительно заряженные капли собираются в верхней части тучи, а внизу накапливается отрицательный заряд. Большая искра, называемая лидером молнии, устремляется к земле, к точке, имеющей противоположный заряд. Перед возникновением лидера разность потенциалов в верхней и нижней областях тучи может составить до 100 млн. вольт. Лидер вызывает ответный разряд, устремляющийся тем же путем от к туче. внутри этого разряда в пять раз горячее поверхности Солнца - он нагревается до 33 000 °С. Разогретый разрядами молнии воздух быстро расширяется, создавая воздушную волну. Мы воспринимаем ее как гром.

Электрический ток

Электрический ток - это поток заряженных частиц, перемещающихся из области высокого электрического потенциала в область низкого потенциала. Частицы приводит в разность потенциалов, которая измеряется в вольтах . Для протекания тока между двумя точками необходима непрерывная «дорога» - цепь. Между двумя полюсами батарейки существует разность потенциалов. Если соединить их в цепь, возникнет ток. Сила тока зависит от разности потенциалов и сопротивления элементов цепи. Все вещества, даже проводники, оказывают току некоторое сопротивление и ослабляют его. Единица силы тока названа ампером (А) в честь французского ученого Андре-Мари Ампера (1775 - 1836).

Для разных устройств нужен ток разной . Электроприборы, например лампочки, превращают электрическую тока в другие формы энергии, в тепло и свет. Эти устройства могут быть включены в цепь двумя способами: последовательно и параллельно. В последовательной цепи ток проходит по всем компонентам по очереди. Если один из компонентов перегорает, цепь размыкается и ток пропадает. В параллельной цепи ток идет по нескольким путям. Если один компонент цепи выходит из строя, по другой ветви ток идет по-прежнему.

Батареи

Батарея - это хранилище химической энергии, которую можно превратить в электричество. Наиболее типичная батарея, используемая в обиходе, называется сухим элементом . В ней находится электролит (вещество, содержащее способные двигаться заряженные частицы). В результате противоположные заряды разделяются и двигаются к противоположным полюсам батарейки. Ученые обнаружили, что жидкость в теле мертвой лягушки действует как электролит и проводит электрический ток.

Алессандро Вольта (1745-1827) создал первую в мире батарею из стопки картонных дисков, пропитанных кислотой, и пропитанных кислотой, и проложенных между ними цинковых и медных дисков. В его честь единица напряжение названа вольтом . Батарейка в 1,5 В называется элементом. Большие батареи состоят из нескольких элементов. Батарея в 9 В содержит 6 элементов. Сухие называют первичными элементами . Когда компоненты электролита израсходуются, срок службы батарейки заканчивается. Вторичные элементы - это батареи, которые можно перезаряжать. Автомобильный аккумулятор - вторичный элемент. Он подзаряжается током, произведенным внутри машины. Солнечная батарея превращает энергию Солнца в электрическую. При освещении солнечным светом слоев кремния электроны в них начинают двигаться, создавая разность потенциалов между слоями.

Электричество у нас дома

Напряжение в электросети в одних странах составляет 240 В, в других 110 В. Это высокое напряжение, и удар током может быть смертельным. Параллельные цепи подводят электричество в различные части дома. Все электронные приборы снабжены предохранителями. Внутри них находятся очень тонкие проволочки, которые плавятся и разрывают цепь, если сила тока чересчур велика. Каждая параллельная цепь обычно имеет три провода: под напряжением и заземляющий. По первым двум идет ток, а заземляющий провод нужен для безопасности. Он отведет электрический ток в землю в случае пробоя изоляции. Когда вилку включают в розетку, разъёмы соединяются с проводом под напряжением и нейтральным проводом, замыкая цепь. В некоторых странах используют вилки с двумя разъёмами, без заземления (см. рис.).