Иммунологический статус животных, иммунопатологические реакции, иммунодефициты. Ярилин - иммунология

Введение

2 ОБЗОР ЛИТЕРАТУРЫ 10

2.1 Иммунодефицитное состояние животных. Причина возникновения первичных и вторичных иммунодефицитов 10

2.2 Иммуномодуляторы для коррекции иммунодефицитов 23

2.3 Влияние иммуномодуляторов на фоне иммунодефицитного состояния при иммунизации животных против инфекционных болезней 40

3 СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ 48

3.1 Материалы и методы 48

3.1.1 Материалы 48

3.1.2 Методы определения состояния естественной резистентности животных 51

3.1.3 Методы определения специфического иммунного статуса животных 54

3.2 Результаты собственных исследований 57

3.2.1 Создание экспериментального иммунодефицита у белых крыс 57

3.2.2 Результаты клинико-гемотологических показателей крови у белых крыс на фоне экспериментального иммунодефицита... 57

3.2.3 Иммунологические показатели крови у белых крыс на фоне экспериментального иммунодефицита 59

3.2.4 Проведение скрининга иммунотропных препаратов для иммуноориентированной терапии при экспериментальном иммунодефиците 63

3.2.5 Вакцинация крыс на фоне индуцированного иммунодефицита 77

3.2.5.1 Иммунный ответ при вакцинации белых крыс против болезни Ауески после терапии экспериментального иммунодефицита 77

3.2.5.2 Изучение влияния фоспренила и ронколейкина на клинико-гематологические и иммунологические показатели крови белых крыс в сочетании с вакциной против болезни Ауески на фоне экспериментального иммунодефицита 91

3.2.6 Влияние совместного применения вакцины и иммуномодуляторов на поствакцинальный иммунитет иммунодефицитных поросят 94

3.2.6.1 Результаты отбора и определения иммунодефицитного состояния поросят-сосунов 94

3.2.6.2 Результаты влияния фоспренила и ронколейкина на показатели крови у иммунодефицитных поросят вакцинированных против болезни Ауески 97

4 ВЫВОДЫ 111

5 ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ 112

6 СПИСОК ЛИТЕРАТУРЫ 113

7 ПРИЛОЖЕНИЯ 146

Введение к работе

Актуальность темы. В настоящее время одной из важнейших проблем ветеринарной науки и практики является разработка эффективных мер профилактики и лечения иммунодефицитных состояний у животных.

Интерес исследователей и практических специалистов к проблеме иммунодефицитов у животных объясняется тем, что им сопутствуют различные патологические процессы, в том числе инфекционные заболевания, вызываемые вирусами, бактериями, грибами и простейшими (Федоров Ю.Н., 2006; Бочкарев В. Ы., 2003). Иммуносупрессивными свойствами на организм обладают как антибиотики, так и классические иммунодепрессанты и цитостатики. (Шубина Н.Г. с соавт., 1998; Ратников В.Я. ссоавт. 1999).

Проблема применения иммуномодулирующих препаратов при лечении и профилактике вторичных иммунодефицитных состояний животных остается актуальной, несмотря на то, что в ветеринарной практике используется достаточно много различных иммуномодуляторов узкого спектра действия природного и синтетического происхождения. На сегодняшний день известен сравнительно небольшой круг препаратов, обладающих широким спектром. (Ожерелков СВ. и др., 2004). Это связано с целым рядом обстоятельств. Наиболее существенным из них является недостаток сведений об особенностях иммунного ответа при многих вирусных инфекциях, сравнительно небольшое количество известных природных и синтетических соединений, обладающих свойством повышения иммунной активности и не обладающих при этом токсичностью (Ершов Ф.И., 1997; Саватеева Т.Н., 1998), аллергенностью или другими побочными эффектами (Ершов Ф.И., 2006). В связи с этим актуальным представляется выявление научно обоснованных подходов к применению тех или иных иммуномодуляторов для профилактики и лечения иммунодефицитных состояний (Хаитов P.M. с соавт., 1999).

С этим связан необычный интерес врачей практически всех специальностей к проблеме иммунотерапии (Слабнов Ю.Д. с соавт., 1997; Пинегин Б.В., 2000; Деева А.В. с соавт., 2007).

Разнообразие иммунологических эффектов иммуномодуляторов природного и синтетического происхождения позволяет высказаться в пользу наличия у препарата механизмов влияния на универсальные звенья клеточной и гуморальной регуляции. Подобный механизм действия способен привести к восстановлению нарушенной функциональной активности иммунокомпетентных клеток и органов и может служить обоснованием их применения как в иммунотерапии, так и в вакцинопрофилактике (Ильясова Г.Ф., 2000; Цибулькин А.П. с соавт., В настоящее время успешность профилактики многих инфекционных болезней контролируется благодаря массовой иммунизации. Большую практическую значимость имеет выяснение возможности и эффективности одновременного применения вакцин и средств с иммуностимулирующей активностью (Павлишин В.В. с соавт., 1984; Ильясова Г. X. с соавт., 2001; Юсупов Р.Х. с соавт., 2004; Ездакова И.Ю. с соавт., 2004; Иванов А. В. с соавт., 2005; Шахов А. Г., 2006; Дементьева В.А. с соавт., 2007), с одной стороны и изыскание доступных и эффективных препаратов для стимуляции иммуногенеза, с другой.

Исходя из выше изложенного, представляется весьма актуальным изыскание средств эффективной иммунопрофилактики и иммуноориентированной терапии с целью восстановления нарушенных функций иммунной системы и обеспечения устойчивости животных к отрицательному многофакторному воздействию окружающей среды.

Цель и задача исследований. Целью работы явилось изучение влияния иммуномодуляторов на гематологические и иммунологические показатели крови иммунодефицитных животных при вакцинации против болезни Ауески.

В соответствии с целью работы были поставлены следующие задачи:
1. Экспериментально создать иммунодефицит у крыс, изучить клиникогематологические и иммунологические показатели крови.

2. Провести иммунотерапию и скрининг иммунотропных препаратов при экспериментальном иммунодефиците.

3. Изучить иммунный ответ при вакцинации против болезни Ауески после иммунотерапии экспериментального иммунодефицита крыс.

4. Изучить влияние фоспренила и ронколейкина на клиникогематологические и иммунологические показатели крови белых крыс и поросят - сосунов в сочетании с вирусвакциной против болезни Ауески на фоне экспериментального и естественного иммунодефицитов.

Научная новизна. Создана экспериментальная модель иммунодефицита крыс путем введения препарата циклофосфана в дозе 50 мг/кг, трехкратно через три дня.

При сравнительном изучении риботана, фоспренила, ронколейкина, циклоферона установлена высокая лечебная эффективность фоспренила и ронколейкина при экспериментальном иммунодефиците крыс.

Иммунизация леченых крыс фоспренилом и ронколейкином повышает показатели гуморальных и клеточных факторов иммунитета.

Впервые показано, что одновременное введение вакцины против болезни Ауески как с фоспренилом, так и с ронколейкином увеличивает выработку специфических факторов защиты организма иммунодефицитных животных.

Практическая ценность работы. Экспериментальный иммунодефицит, вызванный предельной дозой циклофосфана (50 мг/кг трехкратно через три дня) позволяет в лабораторных условиях создать и провести скрининг наилучших иммунотерапевтических препаратов.

Изучение изменения иммунологических параметров, характерных для иммунодефицитного состояния, позволяет рекомендовать фоспренил и ронколейкин как высокоэффективные иммуномодуляторы с длительным иммунотропным действием для стимуляции иммунитета и сохранения поголовья животных, а также как средство повышения эффективности вакцинопрофилактики болезни Ауески.

Апробация работы. Основные положения диссертации доложены и обсуждены на Всероссийских научно-практической конференциях, Казань (2007, 2008); Международных конференциях, Казань (2008), Покров(2008); Научно-практической конференции молодых ученых, Казань (2007).

Основные положения, выносимые на защиту:
. Оценка влияния циклофосфана на организм и показатели крови белых крыс в условиях моделированного иммунодецицита;
. Механизм формирования специфического иммунитета, устраняющего иммунодефицит животных путем иммунотерапии и вакцинации против болезни Ауески применением таких иммуномодуляторов, как: риботан, фоспренил, ронколейкин и циклоферон;
. Применение фоспренила и ронколейкина совместно с вакциной против болезни Ауески при экспериментальном и естественном иммунофефиците белых крыс и поросят.

Структура и объем диссертации. Диссертация изложена на 146 страницах печатного текста и включает: введение, обзор литературы, материалы и методы, результаты собственных исследований, обсуждение результатов исследований, выводы, практические предложения, список используемой литературы и приложения. Список литературы содержит 264 источника (219 отечественных и 45 иностранных). Диссертация иллюстрирована 10 таблицами и 22 рисунками.

Иммунодефицитное состояние животных. Причина возникновения первичных и вторичных иммунодефицитов

В связи с широким распространением количества иммунодефицитных животных, определение иммунного статуса имеет большое значение.

Иммунодефицитные состояния или недостаточность иммунитета обуславливаются качественными изменениями защитных факторов или их компонентов. Они могут быть результатом генетических дефектов развития определенных звеньев иммунной системы или следствием различных воздействий на организм: неполноценное кормление, влияние иммунодепрессантов, ионизирующего излучения и др. Врожденные, генетически детерминированные нарушения защитных систем организма на генетической основе классифицируют как первичные иммунодефициты, приобретенные нарушения - как вторичные иммунодефициты. Первичные иммунодефицитные состояния могут зависеть от дефицита Т- и В-системы иммунитета и вспомогательных клеток и бывают комбинированными.

При недостаточности гуморального иммунитета преобладают бактериальные инфекции, а при недостаточности клеточного - вирусные и грибковые (Богданова Е.И., 1980; Карпуть И.М., 1999; Жаров А.В., 2002). Недостаточность гуморального иммунитета связана с нарушением со стороны В-клеток и проявляется в склонности к гнойновоспалительным заболеваниям. Некоторые организмы не способны вообще продуцировать гамма-глобулины и вырабатывают преимущественно неполные антитела.

Различают три типа недостаточности антител: физиологическую, наследственную (первичную) и приобретенную.

Физиологическая недостаточность наблюдается у молодняка до 3 мес. В здоровом организме при рождении в крови содержатся материнские IgG и небольшое количество собственных IgG, IgM, IgA (Ярилин А.А., 1997).

Наследственная недостаточность - гипо- или агаммаглобулинемия - встречается чаще. Молодняк с агаммаглобулинемией обычно погибает от инфекции в раннем возрасте (Гюлинг Э.В. 1989; Костына М.А., 1999).

Приобретенная недостаточность антител является результатом патологических изменений в постнатальном периоде и встречается чаще, чем наследственная. У сельскохозяйственных животных наиболее часто встречается возрастная и приобретенная иммунная недостаточность (Крыжановский Г.Н.,1985; Кульберг А.Я.,1986; Шахов А.Г., 2006).

Все виды приобретенной недостаточности антител разделяют на 5 категорий: физиологическая, катаболическая, костно-мозговые нарушения; недостаточность, зависящая от токсических факторов, и первичная ретикулоэндотелиальная неоплазия. При нарушении первых трех категорий снижается преимущественно уровень IgG, а при нарушениях последних двух происходит снижение уровня IgA, затем и IgG (Wood, С, 1977; Горбатенко С. К., 2006).

При недостаточности клеточного иммунитета отсутствуют или снижены иммунные реакции замедленного типа, наблюдаются повторные заболевания вирусными инфекциями и др. Как правило, синдром недостаточности клеточного иммунитета сочетается с поражением тимуса, шиловидной железы (Osoba D., 1965; Вагралик М.В., 1982; Deschaux Р., 1987). Молодняк с дефицитом Т-системы иммунитета тяжело переносит вирусные инфекции. Инфекции с Т-дефицитным состоянием организма развиваются вскоре после рождения. При одновременной недостаточности клеточного и гуморального иммунитета гибель наступает в первые недели жизни от вирусной, бактериальной или грибковой инфекции (Фомичев Ю.П., 1979; Голиков A.M., 1985).

Иммунодефицитные состояния необходимо учитывать при селекции, разработке лечебно-профилактических мероприятий в хозяйстве. Дефект иммунной системы выявляют, используя объективные и чувствительные методы оценки состояния иммунной системы (Колычев Н.М, Госманов Р.Г., 2006).

В последние годы для многих хозяйств актуальной становится проблема иммунодефицита животных, особенно новорожденных телят и поросят, что связано с низким качеством кормов, недостатком витаминов и микро-элементов, средств профилактики болезней. Это приводит к повышению количества ослабленных животных, которые значительно тяжелее переносят инфекционные болезни (Меерсон Ф.З., 1986; Калиниченко Л.А. с соавт., 1998; Кабиров Г.Ф. с соавт., 2002).

В современных условиях ведения животноводства важную роль в развитии болезней животных играют иммунные дефициты. В настоящее время особую актуальность приобретает изучение особенностей состояния животных в экологически неблагополучных зонах. Диапозон патогенных экологических воздействий на организм животных чрезвычайно широк (Селиванов А. В., 1984; Юсупов Р.Х., 2002).

Перечисленные изменения снижают общую резистентность организма, обуславливает широкое распространение неспецифических заболеваний. Вообще нет такого патологического состояния или болезни, при которых иммунная система не вовлекалась бы в болезненный или защитный процесс, к тому же она и сама может «болеть». Иммунопатологические процессы и болезни возникают в результате иммунологического конфликта и нарушений иммунного гомеостаза. Токсические влияния малой интенсивности вызывают явление псевдоадаптации, при которой временно компенсируются скрытые патологические процессы (Шкуратова И.А., 1997).

Иммуномодуляторы для коррекции иммунодефицитов

В настоящее время одним из фундаментальных направлений современной биологии и медицины является поиск веществ, обладающих иммунокорригирующим эффектом. Они могут выступать как потенциальные высокоактивные корректоры нарушений иммунных функций организма (Прокопенко Н.В., 2005).

Иммунодефицита, колостральный иммунитет, бессистемное применение антибиотиков и пр. указывают на необходимость иммуностимуляции организма телят при прививках (Степанов Г. В., 1991). Необходимость иммуностимуляции объясняется наличием широко распространенных иммунодефицитных состояний с разной степени выраженности, особенно у молодняка сельскохозяйственных животных (Апатенко В. М., 1991).

Развитие средств иммунологической защиты идет в двух главных направлениях: продолжаются и расширяются усилия в области традиционного вакцинного дела и одновременно быстро развивается новый раздел иммунологии - регуляция иммунологической реактивности с помощью неспецифических препаратов - иммуномодуляторов.

Специфическое лечение и профилактика, основанные на вакцинации, действенны при ограниценном числе инфекции. Сами вакцины в определенные фазы иммунизации способны подавлять сопротивляемость организма к инфекциям (Гаврилов Е.Д., и др. 2005; Гриненко Т.С., 2005).

В последнее время в связи с возрастанием роли инфекционной патологии в заболеваемости наблюдается рост интереса к средствам, направленным на повышение неспецифической резистентности организма с помощью иммуномодуляторов. Термином «иммуномодуляторы» обозначают препараты, которые в диапазоне обычно применяемых доз и схем стабильно проявляют надежный депрессивный или стимулирующий эффект.

Арсенал иммуномодуляторов достаточно широк, поэтому выбор их в каждом отдельном случае определяется тем звеном иммуногенеза, на которое должно быть направлено его действие (Т-, В- системы иммунитета). Отличительной особенностью использования иммуномодуляторов в инфекционной патологии является трудность определения той системы (специфическая и неспецифическая), на которую направлены конкретные иммуномодуляторы.

На отдельные популяции клеток иммунной системы можно воздействовать с помощью иммуномодуляторов и таким образом стимулировать иммунологические механизмы выздоровления. Данные литературы убедительно свидетельствуют о важнейшей роли иммунодепрессивного фона для реализации действия иммуномодуляторов (Цибулькин А.П., и др. 1989; 1999). Иммуномодуляторы представляют большую группу гетерогенных по природе, свойствам и механизму действия веществ. В качестве иммуномодуляторов могут выступать также вакцины (Земсков A.M., 1996).

Весьма перспективны для усиления вакцины иммуномодуляторы микробного происхождения. Наибольший практический интерес представляют пептидогликаны и глюканы, экстрагируемые из различных видов бактерий, дрожжей и грибов (Ермольева Е.В., 1976; Скляр Л. Ф. и др., 2002; Молчанов О. Е. и др., 2002).

Ряд иммуномодуляторов применяют в иммунотерапии злокачественных новообразований. Чем выше доза применяемого иммуномодулятора и чем короче интервал между его введением и инфицированием, тем сильнее выражена негативная фаза действия, что ведет в большинстве случаев к ранней гибели животных.

Если иммуномодулятор применяется с целью стимулировать иммунный ответ на антиген, то его надо ввести вместе с антигеном (т. е. в этом случае иммуномодуляторы будут действовать как адъюванты). Наиболее высокая иммуностимулирующая активность полиэлектролитов обнаружена именно при совместном введении их с антигеном в виде ковалентного конъюгата (Воробьев В.Г. и др., 1969; Хаитов Р. М. и др., 1986; Придыбайло Н.Д., 1991).

Одновременное применение иммуномодуляторов и антигенов обеспечивает наилучшие условия для проявления условий антителообразования. Если иммуномодулятор и антиген вводят в разное время, то иммунный ответ не усиливается, а ослабляется (Игнатов П.Е., 1997; Ильясова Г.Ф. и др., 1999).

Материалы и методы

Работа выполнялась в 2005-2008 г.г. на кафедре микробиологии, вирусологии и иммунологии в ФГОУ ВПО «Казанская государственная академия ветеринарной медицины им. Н.Э. Баумана» и лаборатории иммунологии в ФГУ «Федеральный центр токсикологической и радиационной безопасности животных» / № гос. регистрации 01200202602/ (г. Казань) и в свиноводческом хозяйстве КТ «ВАМИН ТАТАРСТАН и КОМПАНИЯ», расположенное в Лаишевском районе Республики Татарстан.

Для решения поставленных задач в экспериментах были использованы белые крысы, белые мыши, поросята крупной белой породы.

Характер исследований и объем проведенной работы с указанием серий опытов, вида и количества, использованных животных представлены в таблице 1.

Подопытных животных отбирали по возрасту, живой массе, полу, соблюдая принципы аналогов. Во всех сериях опытов животных взвешивали перед постановкой эксперимента, проведением гематологических исследований. В течение опытов проводили клиническое наблюдение за общим состоянием животных (упитанность, подвижность, пищевая возбудимость, характер шерстного покрова).

Для изучения гематологических и иммунобиохимических показателей у животных брали кровь, которую получали у крыс из сердца и у поросят из хвостовой вены.

Для создания экспериментального иммунодефицита у лабораторных белых крыс нами применен препарат циклофосфан в различных дозах и кратностью введения.

Циклофосфан (циклофосфамид) является алкилирующим цитостатическим препаратом. Производитель: ОАО «Биохимик», г. Саранск. Этот препарат применяли для создания экспериментального иммунодефицита крыс.

При иммунизации животных использовали вирусвакцину против болезни Ауески свиней и овец, культуральная из маркированного штамма «ВК». Производитель: ФГУ «ВНИИЗЖ», г.Владимир, серия №12, контроль №149, годен до марта 2009 г.

Для стимуляции иммунной системы крыс и поросят нами были использованы иммуномодуляторы:

Риботан - комплексный иммуномодулятор, состоящий из смеси низкомолекулярных (0,5 - 1,0 кД) полипептидов и низкомолекулярных фрагментов РНК. Производитель: ЗАО «ВЕТЗВЕРОЦЕНТР»

Ронколейкин - лекарственная форма рекомбинантного интерлейкина-2 человека (рИЛ-2), выделенный и очищенный из клеток дрожжей Saccharomyces cerevisiae, солюбилизатор - додецилсульфат натрия (ДСН), стабилизатор - D-манит и восстановитель - дитиотреитол (ДТТ). Производитель: ООО БИОТЕХ, г. Санкт-Петербург.

Фоспренил представляет собой 0,4% раствор продукта фосфорилирования полипренолов - полиизопреноидных спиртов, относящихся к классу терпеноидов и выделяемых из хвои. В качестве лекарственной формы используется 0,25% коллоидный раствор натрия полипренилфосфата двузамещенного в комплексном растворителе, фоспренил не влияет негативно на репродуктивную функцию животных, не обладает мутагенными, эмбриотоксическими и иммунотоксическими свойствами. В соответствии с классификацией токсичности веществ, принятой в РФ, фоспренил является практически безвредным препаратом. Он не является ксенобиотиком. Производство и сырье для него экологически безопасно и широко доступно. Производитель: ЗАО «Микро-Плюс» г. Москва.

Возрастные особенности иммунологического статуса животных

В эмбриональный период иммунологический статус организма плода характеризуется синтезом собственных защитных факторов. При этом синтез факторов естественной резистентности опережает развитие механизмов специфического реагирования.

Из факторов естественной резистентности первыми появляются клеточные элементы: вначале моноциты, затем нейтрофилы и эозинофилы. В эмбриональный период они функционируют как фагоциты, обладая захватывающей и переваривающей способностью. Причем переваривающая способность преобладает и существенно не изменяется даже после приема новорожденными животными молозива. К концу эмбрионального периода в кровотоке плода накапливаются лизоцим, пропердин и в меньшей степени комплемент. По мере развития плода уровень этих факторов постепенно повышается. В предплодный и плодный периоды в фетальной сыворотке крови появляются иммуноглобулины в основном класса М и реже класса G . Они обладают функцией преимущественно неполных антител.

У новорожденных животных содержание всех факторов защиты повышается, но соответствует уровню материнского организма лишь лизоцим. После приема молозива в организме новорожденных и их матерей содержание всех факторов, за исключением комплемента, выравнивается. Концентрация комплемента не достигает уровня материнского организма даже в сыворотке 6-месячных телят.

Насыщение кровотока новорожденных животных иммунными факторами происходит лишь колостральным путем. В молозиве содержатся в убывающем количестве IgG 1, IgM , IgA , IgG 2. Иммуноглобулин Gl примерно за две недели до отела селективно переходит из кровотока коров и накапливается в вымени. Остальные молозивные иммуноглобулины синтезируются молочной железой. В ней же образуются лизоцим и лактоферрин, которые вместе с иммуноглобулинами представляют гуморальные факторы локального иммунитета вымени. Молозивные иммуноглобулины переходят в лимфо-, а затем кровоток новорожденного животного путем пиноцитоза. В криптах тонкого отдела кишечника специальные клетки избирательно транспортируют молекулы молозивных иммуноглобулинов. Иммуноглобулины активнее всего всасываются при выпаивании молозива телятам в первые 4..5 ч после рождения.

Механизм естественной резистентности изменяется в соответствии с общим физиологическим состоянием организма животных и с возрастом. У старых животных отмечается снижение иммунологической реактивности за счет аутоиммунных процессов, так как в этот период происходит накопление мутантных форм соматических клеток, при этом иммунокомпетентные клетки сами могут мутировать и становиться агрессивными против нормальных клеток своего организма. Установлено снижение гуморального ответа за счет уменьшения количества образующихся плазматических клеток в ответ на введенный антиген. Также снижается активность клеточного иммунитета. В частности, с возрастом количество Т-лимфоцитов в крови значительно меньше, наблюдается снижение реактивности на введенный антиген. В отношении поглотительной и переваривающей активности макрофагов не установлено различий между молодыми животными и старыми, хотя процесс освобождения крови от чужеродных субстанций и микроорганизмов у старых замедлен. Способность макрофагов кооперировать с другими клетками с возрастом не изменяется.

Иммунопатологические реакции.

Иммунопатология изучает патологические реакции и болезни, развитие которых обусловлено иммунологическими факторами и механизмами. Объектом иммунопатологии являются разнообразные нарушения способности иммунокомпетентных клеток организма различать «свое» и «чужое», собственные и чужеродные антигены.

Иммунопатология включает в себя три типа реакций: реакция на собственные антигены, когда иммунокомпетентные клетки распознают их как чужеродные (аутоиммуногенные); патологически сильно выраженная иммунная реакция на аллерген снижение способности иммунокомпетентных клеток к развитию иммунного ответа на чужеродные вещества (иммунодефицитные заболевания и др.).

Аутоиммунитет. Установлено, что при некоторых болезнях наступает распад тканей, сопровождающийся образованием аутоантигенов. Аутоантигенами являются компоненты собственных тканей, возникающие в этих тканях под воздействием бактерий, вирусов, лекарственных веществ, ионизирующей радиации. Кроме того, причиной аутоиммунных реакций может служить введение в организм микробов, обладающих общими антигенами с тканями млекопитающих (перекрестные антигены). В этих случаях, организм животного, отражая атаку чужеродного антигена, попутно поражает компоненты собственных тканей (чаще сердца, синовиальных оболочек) в виду общности антигенных детерминант микро- и макроорганизмов.

Аллергия . Аллергия (от греч. alios - другой, ergon - действие) - измененная реактивность, или чувствительность, организма по отношению к тому или иному веществу, чаще при повторном поступлении его в организм. Все вещества, изменяющие реактивность организма, называют аллергенами. Аллергенами могут быть различные вещества животного или растительного происхождения, липоиды, сложные углеводы, лекарственные вещества и др. В зависимости от типа аллергенов различают инфекционную, пищевую (идиосинкразия), лекарственную и другие аллергии. Аллергические реакции проявляются благодаря включению факторов специфической защиты и развиваются, как и все другие иммунные реакции, в ответ на проникновение аллергена в организм. Реакции эти могут быть повышены по сравнению с нормой - гиперергия, могут быть понижены - гипоергия или полностью отсутствовать - анергия.

Аллергические реакции подразделяют по проявлению на гиперчувствительностьнемедленноготипа(ГНТ) и гиперчувствительность замедленного типа (ГЗТ). ГНТ возникает после повторного введения антигена (аллергена) спустя несколько минут; ГЗТ проявляется спустя несколько часов (12...48), а иногда и дней. Оба типа аллергии отличаются не только быстротой клинического проявления, но и механизмом их развития. К ГНТ относят анафилаксию, атопические реакции и сывороточную болезнь.

Анафилаксия (от греч. ana - против, phylaxia - защита) - состояние повышенной чувствительности сенсибилизированного организма на повторное парентеральное введение чужеродного белка. Анафилаксия впервые была открыта Портье и Рише в 1902г. Первая доза антигена (белка), вызывающая повышенную чувствительность, называется сенсибилизирующей (лат. sensibilitas - чувствительность), вторую дозу, после введения которой развивается анафилаксия, - разрешающей, причем разрешающая доза должна в несколько раз превышать сенсибилизирующую.

Пассивная анафилаксия. Анафилаксию можно искусственно воспроизвести у здоровых животных пассивным путем, т. е. введением иммунной сыворотки сенсибилизированного животного. В результате у животного через несколько часов (4...24) развивается состояние сенсибилизации. При введении такому животному специфического антигена проявляется пассивная анафилаксия.

Атопии (греч. atopos - странный, необычный). К ГНТ относят атопии, которые представляют собой естественную сверхчувствительность, спонтанно возникающую у предрасположенных к аллергии людей и животных. Атопические заболевания более изучены у людей - это бронхиальная астма, аллергический ринит и конъюнктивит, крапивница, пищевая аллергия к землянике, меду, яичному белку, цитрусовым и др.Пищевая аллергия описана у собак и кошек на рыбу, молоко и другие продукты, у крупного рогатого скота отмечена атопическая реакция типа сенной лихорадки при переводе на другие пастбища. В последние годы очень часто регистрируют атопические реакции, вызванные лекарственными препаратами - антибиотиками, сульфаниламидами и др.

Сывороточная болезнь . Сывороточная болезнь развивается через 8... 10 суток после однократного введения чужеродной сыворотки. Болезнь у людей характеризуется появлением сыпи, напоминающей крапивницу, и сопровождается сильным зудом, повышением температуры тела, нарушением сердечно-сосудистой деятельности, опуханием лимфатических узлов и протекает без смертельных исходов.

Гиперчувствительность замедленного типа (ГЗТ). Впервые этот тип реакции обнаружил Р. Кох в 1890 г. у больного туберкулезом при подкожном введении туберкулина. В дальнейшем было установлено, что существует ряд антигенов, которые стимулируют преимущественно Т-лимфоциты и обусловливают главным образом формирование клеточного иммунитета. В организме, сенсибилизированном такими антигенами, на основе клеточного иммунитета формируется специфическая гиперчувствительность, которая проявляется в том, что через 12...48 ч на месте повторного введения антигена развивается воспалительная реакция. Ее типичным примером является туберкулиновая проба. Внутрикожное введение туберкулина больному туберкулезом животному вызывает на месте инъекции отечную болезненную припухлость, повышение местной температуры. Реакция достигает максимума к 48 ч.

Повышенную чувствительность к аллергенам (антигенам) патогенных микробов и продуктам их жизнедеятельности называют инфекционной аллергией. Она играет важную роль в патогенезе и развитии таких инфекционных болезней, как туберкулез, бруцеллез, сап, аспергиллез и др. При выздоровлении животного гиперергическое состояние еще долго сохраняется. Специфичность инфекционных аллергических реакций позволяет использовать их с диагностической целью. Промышленным способом на биофабриках готовят различные аллергены - туберкулин, маллеин, бруцеллогидролизат, тулярин и др.

Следует отметить, что в некоторых случаях аллергическая реакция отсутствует у больного (сенсибилизированного) животного, это явление получило название анергии (ареактивности). Анергия может быть положительной и отрицательной. Положительная анергия отмечается, когда иммунобиологические процессы в организме активированы и контакт организма с аллергеном быстро приводит к его элиминации без развития воспалительной реакции. Отрицательная анергия обусловливается ареактивностью клеток организма и возникает, когда защитные механизмы подавлены, что свидетельствует о беззащитности организма.

При диагностике инфекционных болезней, сопровождающихся аллергией, иногда отмечают явления парааллергии и псевдоаллергии. Парааллергия - явление, когда сенсибилизированный (больной) организм дает реакцию на аллергены, приготовленные из микробов, имеющих общие или родственные аллергены, например микобактерии туберкулеза и атипичные микобактерии.

Псевдоаллергия (гетероаллергия) - наличие неспецифической аллергической реакции в результате аутоаллергизации организма продуктами распада тканей при развитии патологического процесса. Например, аллергическая реакция на туберкулин у крупного рогатого скота, больного лейкозом, эхинококкозом или другими болезнями.

В развитии аллергических реакций выделены три стадии:

· иммунологическая - соединение аллергена с антителами или сенсибилизированными лимфоцитами, эта стадия специфична;

· патохимическая - результат взаимодействия аллергена с антителами и сенсибилизированными клетками. Из клеток выделяются медиаторы, медленно реагирующая субстанция, а также лимфокины и монокины;

· патофизиологическая - результат действия различных биологически активных веществ на ткани. Характеризуется расстройством кровообращения, спазмом гладких мышц бронхов, кишечника, изменением проницаемости капилляров, отечностью, зудом и др.

Таким образом, при аллергических реакциях мы наблюдаем клинические проявления, характерные не для прямого действия антигена (микробов, чужеродных белков), а довольно однотипные, свойственные аллергическим реакциям симптомы.

Иммунодефициты

Иммунодефицитные состояния характеризуются тем, что иммунная система не способна реагировать полноценным иммунным ответом на различные антигены. Иммунный ответ – это не просто отсутствие или снижение иммунного ответа, а неспособность организма осуществлять то или иное звено иммунного реагирования. Проявляются иммунодефициты снижением или полным отсутствием иммунного ответа вследствие нарушения одного или нескольких звеньев иммунной системы.

Иммунодефициты могут быть первичными (врожденными) и вторичными (приобретенными).

Первичные иммунодефициты характеризуются дефектом клеточного и гуморального иммунитета (комбинированный иммунодефицит), либо только клеточного, либо только гуморального. Возникают первичные иммунодефициты в результате генетических дефектов, а также в результате неполноценного кормления матерей в период беременности первичные иммунодефициты могут наблюдаться у новорожденных животных. Такие животные рождаются с признаками гипотрофии и обычно нежизнеспособны. При комбинированном иммунодефиците отмечают отсутствие или гипоплазию тимуса, костного мозга, лимфоузлов, селезенки, лимфопению и низкое содержание иммуноглобулинов в крови. Клинически иммунодефициты могут проявляться в виде задержки физического развития, пневмонии, гастроэнтериты, сепсис, обусловленные условно-патогенной инфекцией.

Возрастные иммунодефициты наблюдаются у молодых и старых организмов. У молодых чаще встречаются дефицит гуморального иммунитета в результате недостаточной зрелости иммунной системы в период новорожденности и до второй-третьей недели жизни. У таких особей в крови отмечается недостаток иммуноглобулинов, В-лимфоцитов, слабая фагоцитарная активность микро- и макрофагов. В лимфатических узлах и селезенке мало вторичных лимфоидных фолликулов с крупными реактивными центрами и плазматических клеток. У животных возникают гастроэнтериты, бронхопневмонии, обусловленные действием условно-патогенной микрофлоры. Дефицит гуморального иммунитета в период новорожденности компенсируется полноценным молозивом матери, а в более позднее время – полноценным кормлением и хорошими условиями содержания.

У старых животных иммунодефицит обусловлен возрастной инволюцией тимуса, уменьшением в лимфоузлах и селезенке количества Т-лимфоцитов. У таких организмов часто возникают опухоли.

Вторичные иммунодефициты возникают в связи с болезнью или в результате лечения иммунодепрессантами. Развитие таких иммунодефицитов наблюдается при инфекционных заболеваниях, злокачественных опухолях, длительном применении антибиотиков, гомонов, неполноценном кормлении. Вторичные иммунодефициты обычно сопровождаются нарушением клеточного и гуморального иммунитета, т.е. являются комбинированными. Они проявляются инволюцией тимуса, опустошением лимфоузлов и селезенки, резким уменьшением количества лимфоцитов в крови. Вторичные дефициты, в отличие от первичных, при ликвидации основного заболевания могут полностью исчезать. На фоне вторичных и возрастных иммунодефицитов лекарственные препараты могут быть неэффективными, а вакцинация не создает напряженного иммунитета против заразных болезней. Таким образом, иммунодефицитные состояния необходимо учитывать при селекции, разработке лечебно-профилактических мероприятий в хозяйстве. Кроме того, на иммунную систему можно воздействовать с целью коррекции, стимуляции или угнетения определенных иммунных реакций. Такое воздействие возможно с помощью иммунодепрессантов и иммуностимуляторов.

Медицина для всех!!!

Вторичные иммунодефициты

Вторичные иммунодефицитные состояния (ВИДС) .

Иммунодефицитными состояниями называют постоянные (стойкие) или временные (транзиторные) состояния, характеризующиеся неадекватным иммунным ответом на антигены микробного или какого-либо иного происхождения.

Иммунодефициты делятся на первичные (врожденные), физиологические и вторичные (приобретенные). Первичные иммунодефицитные состояния являются генетически обусловленными и проявляются на уровне генотипа. Вторичные иммунодефицитные состояния формируются у контингентов с исходно нормальной иммунной системой под действием окружающей среды или других факторов. Они проявляются на уровне фенотипа.

Вторичные иммунодефициты, возникающие при инфекционных заболеваниях.
Инфекции - наиболее частые причины развития вторичных иммунодефицитов.

Вирусные и др. инфекции.
В соответствии с критериями ВОЗ вторичные иммунодефициты могут формироваться при острых вирусных инфекциях - кори , краснухе , гриппе , эпидпаротите, ветряной оспе , вирусном гепатите, персистирующих вирусных инфекциях - хроническом гепатите В, С, ЦМВИ, герпетической инфекции, врожденных вирусных инфекциях - краснухе, ЦМВИ, герпесе , также токсоплазмозе и т.д.

Механизмы формирования: некоторые вирусы обладают тропностью к иммунокомпетентным клеткам - лимфоцитам и макрофагам. Размножаясь в Т- и В- лимфоцитах, вирусы подавляют их функциональную активность, способность к синтезу цитокинов, антител, разрушению клеток-мишеней. Инфицируя макрофаги, вирусы нарушают процессы презентации антигена, а также способность макрофагов к поглощению и перевариванию чужеродных антигенов.
Сами иммунокомптентные клетки могут быть резервуаром для размножения вирусов.

Самыми частыми при вирусных инфекциях являются нарушения Т-клеточного звена иммунитета. Снижение количества Т-лимфоцитов и их функциональной активности может наблюдаться при кори, краснухе, инфекционном мононуклеозе, гриппе, РС-инфекции, полиомиелите, гепатите В, ВИЧ-инфекции. Иммунодефицитное состояние при этом может длиться от нескольких недель (грипп, краснуха) до нескольких месяцев (корь, гепатит В) и даже лет (инфекционный мононуклеоз).
При ВИЧ-инфекции иммунологические нарушения постепенно прогрессируют и становятся причиной гибели больного.

Выраженные нарушения Т-клеточного звена иммунитета возникают при хронических и длительно персистирующих вирусных инфекциях (герпес, ЦМВ, хронический гепатит В, С, Д). В ряде случаев они сохраняются пожизненно.
Некоторые вирусы обладают способностью вызывать дефекты нейтрофильных гранулоцитов, уменьшать их бактерицидную и переваривающую активность, что наблюдается при гриппе, парагриппе, РС-инфекции, ЦМВ, герпесе, ветряной оспе, гепатите В, краснухе, ВИЧ-инфекции . Роль нейтрофилов в защите от этих инфекций не является определяющей. Однако эти клетки осуществляют основную защиту организма от бактериальных и грибковых антигенов и их дефекты являются главной причиной бактериальных осложнений при вирусных инфекциях (отиты, пневмонии, синдром токсического шока , сепсис, менингит).
Дефициты гуморального звена иммунитета (гипогаммаглобулинемии) часто связаны с внутриутробными инфекциями (краснуха , ЦМВ , герпес). У детей с ВУИ может наблюдаться снижение иммуноглобулинов вплоть до формирования первичных дефицитов гуморального звена. Для таких детей характерен селективный дефицит IgA, поздний «иммунологический старт».

Бактериальные инфекции

В соответствии с критериями ВОЗ вторичные иммунодефициты могут формироваться при лепре, туберкулезе, сифилисе, пневмококковой, менингококковой, стафилококковой инфекциях.

Механизмы развития: Острые бактериальные инфекции редко ведут к развитию стойкой иммунной недостаточности. Возникающие нарушения чаще всего имеют транзиторный характер и отражают активность бактериального воспаления. При хронических и рецидивирующих бактериальных инфекциях, сопровождающихся накоплением в организме большого количества бактериальных антигенов, токсико-инфекционными перегрузками, может наблюдаться истощение компонентов системы комплемента, иммуноглобулинов, снижение функциональной активности фагоцитирующих клеток.
Хронические бактериальные инфекции могут сопровождаться снижением активности системы комплемента, его отдельных компонентов, уровня пропердина. Снижение поглотительной активности фагоцитов при бактериальных процессах наблюдается редко и встречается преимущественно при генерализованных инфекциях, сепсисе, перитоните .
Бактерицидная активность фагоцитов крови снижается при длительных бактериальных инфекциях. Ослабление кислородзависимой бактерицидности предрасполагает к вторичному инфицированию кожи и слизистых стафилококком, кишечной палочкой, грибами Aspergillus, Candida albicans.
Снижение переваривающей активности нейтрофилов и незавершенный фагоцитоз связаны со способностью ряда бактерий размножаться внутри фагоцитирующих клеток. Это характерно для сальмонеллеза, иерсиниоза, брюшного тифа , паратифа , менингококковой, стафилококковой и стрептококковой инфекции. Является одной из основных причин возникновения затяжных и хронических форм бактериальных инфекций, длительного бактерионосительства.
При острых бактериальных инфекциях нарушений Т-клеточного звена иммунитета, как правило, не возникает. Исключение составляют внутриклеточные бактериальные инфекции (сальмонеллез, туберкулез, листериоз, бруцеллез , туляремия). В иммунологическом статусе при этих инфекциях может наблюдаться: снижение количества Т-лимфоцитов (CD3), повышение уровня Т-цитотоксических (CD8), НК-клеток (CD16). Снижение уровня Т-хелперов (CD4) характерно для пневмококковой, менингококковой инфекций.

Грибковые инфекции
Почти все слизисто-кожные и висцеральные микозы возникают на фоне недостаточности Т-клеточного звена иммунитета и/или недостаточности фагоцитирующих клеток. Прогрессирование грибковых инфекций может вызывать дальнейшее снижение количества Т-лимфоцитов и их функциональной активности.

В целом, иммунологические нарушения являются важным звеном в патогенезе инфекционных заболеваний. Максимальные изменения в иммунологическом статусе, как правило, соответствуют острому периоду заболевания и нормализуются к периоду клинического выздоровления. Однако восстановление иммунного статуса может затянуться на месяцы. Последствием формирующейся иммунологической недостаточности является затяжной характер инфекционных заболеваний, склонность к рецидивам, хронизации, длительному выделению микробных агентов. С иммунологическими нарушениями связывают и развитие вторичных инфекционных осложнений, возбудителями которых часто являются условно-патогенные микроорганизмы разных классов: бактерии, вирусы, грибы, простейшие. Вторичные инфекции проявляются в виде отитов, синуситов, пневмоний, синдрома токсического шока , менингита , сепсиса . Нередко именно они определяют клиническое течение и исход инфекционного процесса.

Дефицит белкового питания (нефротический синдром, энтеропатии, синдром мальабсорбции).
У детей раннего возраста неполноценное питание ведет к снижению массы тимуса, часто с отсутствием или истончением коры. Может наблюдаться нарушение нормального становления иммунологической реактивности.
Потери белка приводят к снижению уровня иммуноглобулинов, компонентов системы комплемента. При синдроме мальабсорбции может наблюдаться снижение количества Т-лимфоцитов, их функциональной активности.

Дефицит микроэлементов .
Дефицит цинка и железа часто вызывают Т-клеточный иммунодефицит. Дефицит магния может вызывать снижение количества НК-клеток, нарушать процессы адгезии и взаимодействия иммунокомпетентных клеток. Дефицит селена ведет к формированию Т-клеточной недостаточности. Селен - важный антиоксидант, при его недостатке могут возникать различные нарушения неспецифических факторов защиты, клеточного и гуморального звеньев иммунитета.

Онкологические заболевания .
Индукторами опухолевого роста могут быть неблагоприятные физические, химические, лучевые факторы. Однако, при адекватной работе иммунитета функционирует мощная система иммунобиологического надзора, основными компонентами которой являются натуральные киллеры и тканевые макрофаги. Они обладают способностью быстро элиминировать опухолевые, мутантные, разрушенные клетки организма. Опухоль, как правило, возникает на фоне нарушений иммунобиологического надзора. С другой стороны, онкологические заболевания (особенно опухоли лимфоидной ткани) сами обладают мощным иммунодепрессивным действием, усугубляющим имеющийся иммунодефицит.
Опухоли лимфоидной ткани:
При онкологических заболеваниях может наблюдаться нарушение всех звеньев иммунитета: снижение количества Т-лимфоцитов и их субпопуляций, снижение функциональной активности Т-лимфоцитов, снижение или повышение уровня иммуноглобулинов, снижение факторов неспецифической защиты.
Вторичные ИДС при опухолях проявляются в виде бактериальных, микотических, вирусных инфекций с преимущественным поражением кожи, слизистых, органов дыхания, ЖКТ. Очень часто у иммунокомпрометированного хозяина развиваются рецидивирующие пневмонии, кожно-слизистый кандидоз, инфекции ЖКТ, сепсис. Типичным является развитие оппортунистических инфекций.

Эмоциональное перенапряжение, депрессия, стрессы .
Оказывают угнетающее влияние на большинство показателей клеточного и гуморального иммунитета. Клинически это проявляется снижением резистентности к инфекциям и развитием опухолей.

Посттравматический и послеоперационный периоды .
Часто осложняется развитием вторичного иммунодефицитного состояния. Нарушаются преимущественно неспецифические факторы защиты (барьерная функция кожи, система фагоцитирующих клеток). Результатом формирующейся иммунодепрессии является развитие послеоперационных нагноений, послеоперационный сепсис. Возбудителями гнойной инфекции, как правило, являются представители условно-патогенной микрофлоры.
Спленэктомия сопровождается развитием вторичного иммунодефицитного состояния. После спленэктомии наблюдается нарушение фильтрующей функции макрофагов селезенки, снижение в сыворотке крови IgM, (в селезенке синтезируется значительная часть сывороточного IgM), нарушение механизмов активации системы комплемента, активности естественных киллеров. Удаление селезенки в детском возрасте часто способствует развитию септических инфекций.

Ожоги .
Нарушение функции иммунной системы при ожоговой болезни обусловлено следующими факторами:
-повреждение пограничных тканей (нарушение барьерных функций кожи и слизистых)
-мощное стрессорное воздействие
-повышенная антигенная нагрузка за счет денатурированных и дегидратированных тканевых белков и ферментного аутолиза тканей.
-интенсивная потеря иммуноглобулинов с плазмой.

На 1 этапе вследствие потери иммуноглобулинов развивается В-клеточный иммунодефицит с повышенной чувствительностью к бактериальным инфекциям. Вторичный Т-клеточный дефицит развивается при значительной площади ожогового поражения (более 30% поверхности кожи). На фоне ожогов может наблюдаться снижение функции нейтрофильных гранулоцитов, снижение опсонизирующей активности сыворотки за счет потери иммуноглобулинов и компонентов комплемента. Следствием этого является присоединение инфекций.

Ионизирующая радиация .
Выраженность вторичного пострадиационного иммунодефицита связана с высокой чувствительностью лимфоцитов и их костно-мозговых предшественников к повреждающему действию ионизирующей радиации. Под действием облучения может наблюдаться нарушение всех звеньев иммунитета: неспецифических факторов защиты, системы Т- и В-лимфоцитов, макрофагов.

Загрязняющее действие окружающей среды химическими веществами .
Воздействие вредных химических веществ вызывает повреждение иммунной системы и формируют ИДС, на фоне которых снижается устойчивость организма к инфекциям, нарушается течение воспалительных, репаративных процессов, нарушается обмен веществ, повышается риск возникновения злокачественных новообразований, аллергических и аутоиммунных заболеваний. Различные звенья иммунной системы обладают различной чувствительностью к действиям окружающей среды. В первую очередь повреждаются неспецифические формы защиты, в дальнейшем, на фоне развивающейся интоксикации может возникать недостаточность Т-системы иммунитета.

Другие причины .
Сахарный диабет сопровождается угнетением Т-клеточного звена иммунитета, нарушениями в системе комплемента, фагоцитирующих клеток, что сопровождается развитием частых нагноений, неблагоприятным течением хронических инфекций.

Уремия ведет к развитию Т-клеточной иммунодепрессии (снижению количества Т-лимфоцитов, нарушение их функций). Нарушается также переваривающая активность фагоцитирующих клеток за счет снижения продукции активных форм кислорода.

Болезни печени (острый и хронический гепатит, цирроз) сопровождаются нарушением синтеза компонентов комплемента, снижением количества Т-лимфоцитов, их функциональной активности, уменьшением переваривающей активности фагоцитирующих клеток.

Иммуномодулирующие препараты.
Препараты, действующие преимущественно на неспецифические факторы защиты.
1. Лизоцим. Применяют с заместительной целью для повышения антибактериальной активности сыворотки крови и секретов. Показания к применению: хронические очаговые инфекции, особенно инфекции слизистой полости рта и ЛОР- органов (стоматиты, риниты, гаймориты, отиты); раны, ожоги. Назначают в/м по 2-3мг/кг 2-3 р. в сутки 2-6 недель чаще - ингаляционно или интраназально 0,2% р-ор - 15 процедур.
Для лечения инфекционно-воспалительных заболеваний ЛОР-органов используют препараты, содержащие лизоцим в сочетании с антисептиками: гексализ, лизобакт, ларипронт.

2. Препараты интерферонов.
Препараты интерферона-альфа:
эгиферон (Венгрия)
реаферон (Россия)
интрон-А (США)
реальдирон (Литва)
роферон-А
велферон

Препараты интерферона-бетта
ребиф (Швейцария)
ферон (Япония)
фрон-Швейцария
бетаферон (Англия)

Препараты интерферона-гамма
Мега-Д-гамма-интерферон (Англия)
гамма интерферон рекомбинантный («Биомед», «Интеркор»-Россия)

Механизм действия:
-прямое противовирусное
-повышают количество молекул HLA на различных типах клеток, усиливают функцию антигенпредставляющих макрофагов
-стимулируют активность натуральных киллеров
-усиливают подвижность, переваривающую активность макрофагов
-повышают синтез антител

Общие показания к назначению для в/м и п/к введения:
1. Заболевания вирусной этиологии
-тяжело протекающие вирусные инфекции (грипп , аденовирусная , энтеровирусная, герпетическая , паротит)
-острые, рецидивирующие и хронические кератоконъюнктивиты, вызванные аденовирусом, вирусом герпеса
-вирусно-бактериальный и микоплазменный менингоэнцефалит
-генитальный герпес
-опоясывающий лишай
-паппиломатоз гортани
-плоскоклеточные и остроконечные кондиломы
-острый вирусный гепатит В (тяжелые формы)
-хронический гепатит В
-хронический гепатит С
-ВИЧ
2. некоторые злокачественные новообразования
-меланома, неходжкинские лимфомы, остеосаркома, рак молочной железы, плоскоклеточный рак кожи, базально-клеточный рак кожи, карциноме почки и мочевого пузыря и т.д.).

Препараты интерферона для местного применения :
1. Интерферон человеческий лейкоцитарный (капли в нос, глазные капли, свечи). Для профилактики ОРВИ: 1 ампулу интерферона для интраназального применения разводят в 2 мл кипяченой воды. Закапывают по 0,25 мл (5 кап) в каждый носовой ход 4-5 раз в сутки. Используют пока сохраняется опасность заражения. Для лечения ОРВИ: закапывают по 5 кап. в каждый носовой ход ч/з 2 часа 2-3 дня. Можно использовать аэрозольно: содерожимое ампулы растворяют в 10 мл воды, используют 1-2 ампулы за сеанс, частота ингаляций - 2 р. в день.
КИП-фероновая мазь. Содержит А2 интерферон и комплексный иммуноглобулиновый препарат.
При гриппе, ОРВИ, смазывают полость носа 2-3 раза/сут. 5-7 дней, при остальных заболеваниях 1-2 раза/сут. 7-14 дней.
Профилактически: 2 раза в сутки и перед посещением детских учреждений, общественных мест.
Показания к применению:
-грипп , ОРВИ , профилактика и лечение
-простой герпес кожи и слизистых, опоясывающий лишай
-остроконечные кондиломы и папиломы
-хламидиоз
-урогенитальный микоплазмоз
-дисбактериоз влагалища, вульвовагинит, цервицит
-экземы бактериально-вирусной этиологии
-длительно незаживающие раны, свищи, трофические язвы кожи
-трещины анального отверстия
-фурункулез
-пиодермия

2. Виферон (суппозитории, мазь). Комплексный препарат, включающий рекомбинантный интерферон, витамин Е, аскорбиновую кислоту.
В лечении новорожденных и детей до 7 лет используют виферон-1 (150000 МЕ), для детей старше 7 лет и взрослых - виферон-2 (500000 МЕ) и виферон-3 (1 000000 МЕ). Препарат получен генно-инженерным способом, не является препаратом крови. Начальный курс: по 1 свече - 2р./сутки 5-10 дней.
Поддерживающая терапия: по 1 свече -2р/сутки - 3 раза в неделю от 1 до 12 месяцев.

Показания к применению:
-ОРВИ, пневмония, менингит, сепсис, хламидиоз, герпес, ЦМВИ, уреаплазмоз, микоплазмоз у новорожденных, в том числе недоношенных
-ОРВИ, пиелонефрит, бронхопневмония, неспецифические заболевания легких, урогенитальные инфекции у беременных
-острые и хронические вирусные гепатиты В, С у детей и взрослых
-предепреждение и лечение послеоперационных гнойных осложнений
-паротит
-герпес, хламидиоз, ЦМВИ, уреаплазмоз у детей и взрослых
-вирусассоциированные гломерулонефриты у детей
-комплексная терапия простатитов, эндометриоза и хронических вульвовагинитов
-дисбактериозы у детей и взрослых

Препараты интерлейкинов
Ронколейкин. Рекомбинантная форма интерлейкина-2 человека Способ применения: в/в капельно от 1 до 2 млн МЕ. В 400 мл изотонического р-ра NaCl 2-3 введения с перерывом 3 дня.
Механизм действия:
-стимулирует пролиферацию, дифференцировку, активацию Т-киллеров, НК-клеток, В-лимфоцитов.
Усиливает антибактериальный, противовирусный, антигрибковый, противоопухолевый иммунитет.

Показания к применению:
-посттравматический, хирургический,
-акушерско-гинекологический ожоговый, раневой сепсис
-острый деструктивный перитонит , остеомиелит, эндометрит, гайморит, абсцесс, флегмона
-хронический гепатит С
-поверхностные и системные микозы
-герпес
-хламидиоз
-меланома, рак мочевого пузыря, колоректальный рак

Беталейкин. Препарат рекомбинантного ИЛ-1 человека.
Способ применения: в/в капельно по 5-10 нг/кг в 500 мл изотонического р-ра NaCl - 5 дней
Механизм действия:
-индуцирует синтез колониестимулирующих факторов
-стимуляция пролиферации и дифференцировки Т- и В- лимфоцитов
-активация нейтрофилов
-усиление резорбции поврежденных тканей, активация регенерации

Показания к применению:
-стимуляция лейкопоэза при токсической лекопении (как лейкомакс) во время химиорадиотерапии опухолей, для защиты лейкопоэза при проведении химиотерапии на фоне лейкопении

Индукторы интерферона

1.Дибазол (Россия)
Способ применения: взрослые: 0,02 г. - 3 р. в день - 12 дней дети - 1 мг га год жизни однократно 3-4 недели
Механизм действия:
-повышает синтез интерферона
-стимулирует фагоцитоз
Показания к применению:
профилактика острых респираторных вирусных инфекций

Неовир
Способ применения: 250 мг (4-6 мг/кг массы) 5-6 в/м или в/в инъекций с интервалом в 48 ч.

Циклоферон
Способ применения: 250-500 мг в/м или в/в 5-7 инъекций с интервалом в 48 часов. У детей: 6-10 мг/кг в/м – 2 дня, затем ч/з день 5 инъекций. Перорально: 4-6 лет по 150 мг (1т.), 7-11 лет по 300 мг (2 т.), старше 12 лет – 450 мг (3 т.) 1 р/сутки за 30 мин. до еды, не разжевывая. Профилактически: 1,2,4,6,8, затем 5 приемов с интервалом 72 часа.

Амиксин
Способ применения: 0,125-0,250 г после еды в сутки - 2 дня, затем по 0,125 г с интервалом в 48 ч. У детей с 7 до 14 лет по 0,06 г. При гриппе и ОРВИ курс лечения - 2 недели, гепатите В-3 недели, нейроинфекциях - 3-4 недели, герпесе, ЦМВ, хламидиях - 4 недели. Для профилдактики ОРВИ и гриппа - по 0,125 г - 1 р. в неделю - 4 недели.

Механизм действия индукторов интерферона:
-индуцируют синтез интерферонов
-активируют стволовые клетки костного мозга, Т-лимфоциты, макрофаги, НК-клетки
-стимулирует синтез IgA, IgM, IgG.

Показания к применению:
1. Профилактика и лечение тяжелых форм гриппа, острых респираторных инфекций у лиц с признаками иммунной недостаточности
2. Инфекции, вызванные H. Simplex, H. soster, H. Varicella zoster
3. Тяжелые формы генитального герпеса
4. Хронический гепатит В
5. Хронический гепатит С
6. ЦМВ
7. Энцефалиты герпетической этиологии
8. Тяжелые формы острого вирусного гепатита В и С
9. Уретриты, простатиты, цервициты, сальпингиты хламидийной этиологии
10. Радиационные иммунодефициты
11. Приобретенные иммуодефициты с угнетением системы интерферона
12. Кандидозы кожи и слизистых
13. Нейровирусные инфекции

Метаболические препараты :

Метилурацил (Россия).
Способ применения: взрослые - 0,5 г. (1т) - 3 р. в день после еды 4 недели, дети 3-8 л - 0,25 г. - 3 р. в день, дети после 8 лет - 0,3 г. - 3 р. в день

Пентоксил (Россия)
Способ применения: взрослые 0,2-0,4 г - 3 р. день после еды
до 1 г - 0,015 г. - 3 р. день
до 8 лет - 0,05 г. - 3 р. день
до 12 лет - 0,075 г. - 3 р. день
старше 12 лет - 0,1-0,2 г. день

Механизм действия:

-усиливают поглощение и переваривание микроорганизмов фагоцитирующими клетками
-стимулируют синтез лизоцима, фибронектина, интерферонов

Показания к применению:
1.Хронические бактериальные инфекции, протекающие с нейтропенией, угнетением лейкоцитоза
2.Интенсивная антибактериальная, радио-, химиотерапия
3.Агранулоцитарная ангина
4.Легкие формы лейкопении
5.
6.Длительно незаживающие ожоги, раны

Активаторами неспецифических факторов защиты являются адаптогены (малые иммунокорректоры) .

Препараты эхинацеи.
Иммунал (препарат эхинацеи, содержит липополисахариды растительного происхождения). Способ применения: Взрослые по 30 кап. 3 раза в сутки от 1 до 8 недель, дети 1-6 лет пол 5-10 кап. 3 раза в сутки, 6-12 лет 10-15 кап. 3 раза в сутки от 1 до 8 недель.
Эхинабене. Взрослые и подростки для профилактики инфекций по 20 кап. 3 раза в день. При острых заболеваниях сначала 30 кап. затем по 15 кап. через каждый час. Дети для профилактики инфекций по 10 кап. 3 раза в день. При острых заболеваниях сначала 20 кап., затем пол 10 кап. через каждый час после еды. Курс лечения 8 недель.
Эхинацеи отвар. Взрослые по 1/3 стакана 3 раза в день (отвар из расчета - 1 стол. ложка на 1 стакан воды), дети - по 1 стол. ложке 3 раза в день. Курс лечения: 2-3 месяца.

Механизм действия:
-стимулируют костно-мозговое кроветворение, увеличивают количество нейтрофилов и макрофагов
-увеличивают хемотаксис, поглотительную, переваривающую активность нейтрофилов
-повышают синтез цитокинов

Показания к применению:
1.Профилактика простудных заболеваний и гриппа
2.Хронические воспалительные заболевания носоглотки и ротовой полости
3.Хронические неспецифические воспалительные заболевания легкх и мочевыводящих путей
4.Вторичные дефициты фагоцитирующих клеток, возникающие под действием ионизирующей радиации, УФ-лучей, химиотерапии, длительной антибактериальной терапии, токсических соединений воздуха, пестицидов.

Элеутерококк (взрослые - по 2 мл спиртового р-ра за 30 мин. до еды - 3 р. в день, дети - 1 кап. на 1 год жизни - 1-3 р. в день - 3-4 недели). Спиртовый экстракт или водяная вытяжка женьшеня ((взрослые - по 2 мл спиртового р-ра за 30 мин. до еды - 2 р. в день, дети - 1 кап. на 1 год жизни - 1-2 р. в день - 3-4 недели).
Тонзилгон (взрослые по 2 драже (25 кап), грудным детям и детям до 5 лет - по 1 кап. на кг веса, детям 5-10 лет - 10-15 кап., 10-16 лет - по 20 кап. или 1 драже. Принимают 5-6 р. в день 4-6 недель.
Радиола розовая (золотой корень).Принимают в виде водных и спиртовых настоев. Схема применения: начинают прием с 5 кап. с добавлением 1 кап. на каждый последующий прием (до 30 кап). После достижения максимальной дозы количество капель уменьшается на 1 кап. в каждый прием и доводится до первоначальной дозы - 5 кап. Принимают 3 р. в день до еды. Курс повторяют 2 раза в год в начале зимы и весной. Аралия маньчжурская. Суточная доза 10-20 кап., принимают 2-3 р. в день - 2-4 недели.
Чеснок в виде экстракта, первые 6 нед. по 5 г. в день, в последующие 6 недель по 10 г.
Настойка катийского лимонника. По 20-30 кап. до еды 3 р. в день 3-6 месяцев Апилак. Внутрь по 1 таб. 3-5 раз в день под язык до полного рассасывания 20-30 суток, повторный курс через 10 дней.
Алоэ, ФИБС. По 1 мл в/м до 20 дней.
Эсберитокс. Взрослые по 1 таб. 3 раза в день после еды. Курс 1-2 месяца Дети 1/4-2/3 табл. 3 раза в день после еды. Курс 1-3 недели. Апилак. Внутрь по 1 таблетке 3-5 раз в день под язык до полного растворения 20-30 суток.

Препараты микробного происхождения .
Нуклеинат натрия (Россия). Дрожжевая РНК.
Способ применения. Взрослые: 0,1-0,5 г. сухого порошка 3-4 раза в день после еды 10-20 дней или 5-10 мл 2% новокаинового р-ра в/м или п/к 1 раз в день. Курс лечения - 10 дней. дети до 1 года - 0,01 г. 2-5 лет 0,01- 0,05 г. 5-7 лет 0,05-0,1 г. после 7 лет - доза взрослых. Нуклеинат натрия принимают 3-4 раза в день после еды с большим количеством жидкости. Курс лечения 10 дней.

Механизм действия:
-увеличивает количество лейкоцитов
-усиливает основные фазы фагоцитозы: хемотаксис, поглощение, переваривание
-усиливает синтез антител
-увеличивает синтез лизоцима, интерферонов, компонентов комплемента.

Показания к применению:
1.Хронические бактериальные, в меньшей степени вирусные инфекции, сопровождающиеся лейкопенией, снижением показателей фагоцитоза.
2.Хронические бронхиты.
3.Хронический паротит.
4.Интенсивная антибактериальная, радио-, химиотерапия.
5.Легкие формы лейкопении.
6.Острая и хроническая лучевая болезнь

Ликопид (Россия).
Механизм действия:
-увеличивают количество лейкоцитов
-увеличивают показатели поглотительной, переваривающей активности нейтрофилов, макрофагов
-усиливают процессы обработки и презентации антигенов
-усиливают антителообразование
-действуют на центральные механизмы терморегуляции, создают температурный оптимум для работы иммунокомпетентных клеток.

Показания к применению:
1.Хронические инфекции верхних и нижних дыхательных путей 1 мг (1 табл) 1 раз в сутки - 10 дней
2.Гнойничковые поражения кожи 1 мг 1 раз в сутки - 10 дней
3. Герпесвирусные инфекции 1 мг 3 раза в сутки - 10 дней
4. Хронические гепатиты В и С 1 мг 3 раза в сутки - 20 дней
5.Затяжные инфекции у новорожденных (пневмония, бронхит, энтероколит, сепсис) 0,5 мг (1/2 табл) 2 раза в сутки - 10 дней.

Полиоксидоний (Россия).
Механизм действия:
-повышает функциональную активность макрофагов тканей, моноцитов крови
-усиливает процессы обработки и презентации антигенов
-повышает синтез антител
-обладает детоксицирующими свойствами

Показания к применению:
1.Локальные и генерализованные гнойно-септические заболевания

2. Хронические и рецидивирующие гнойно-воспалительные заболевания любой этиологии, не поддающиеся традиционной терапии, в том числе рецидивирующий герпес, урогенитальные инфекции.

3. Химио - и лучевая терапия опухолей по 6 мг 2 раза в неделю. Курс 2-3 месяца.

4.Активация регенераторных процессов (переломы , ожоги , некрозы).

5.Профилактика послеоперационных осложнений у хирургических больных.

6.Коррекция вторичных иммунодефицитов, возникающих вследствие старения или воздействия неблагоприятных факторов.

Стимуляторы Т-клеточного звена иммунитета .
1. Гормоны тимуса.
1. Тактивин (Россия). Применяют по 100 мкг в/м N10, у детей 1-2 мкг/кг 4-5 дней
2. Тималин (Россия) - по 1 мл 0,01% р-ра в/м N10, у детей 0,1-0,2 мг/кг 5 дней
3. Тимоптин (Россия) по 100 мкг в/м с интервалом 4 дня N4-5
4. Тимактид сублингвально 250 мкг, с интервалом 3-5 дней N4, затем 2 раза с интервалом 2 дня, затем 3 раза с интервалом в неделю.
5. Тимоген 100 мкг в/м N10 или интраназально по 100 мкг в 3-4 приема 10 дней. У детей – до 1 года – 20 мкг, 1-3 года – 20 мкг, 3-5 лет – 30 мкг. Интраназально (по 1 капле на 1 г. жизни) – 1 р/день – 10 дней.
6. Мега-Реаким(Германия-Ирландия) -по 100 мкг п/к 2 раза в неделю N8-10 или по 0,25 г. в день рассасывать 15-30 мин. с интервалом в 4 дня N-7.
7. ТП-1-Сероно (тимостимулин, Швейцария) - по 1 мг/кг в/м ежедневно N7, затем по 1 мг/кг 2 раза в неделю. Длительность индивидуальна.
8. Тим-увокал
9. Тимомодулин (Европа, германия).

Механизм действия:
Оказывают преимущественное действие на Т-систему иммунитета:
-усиливают пролиферацию и дифференцировку Т-лимфоцитов
-увеличивают количество Т-лимфоцитов
-повышают функциональную активность Т-лимфоцитов
-усиливают активность Т-киллеров
-нормализуют Т-В клеточные взаимодействия.

Показания к применению:
геморрагическая ветряная оспа
2.хронические и вялотекущие инфекции, сопровождающиеся нарушениями Т-клеточного звена иммунитета: туберкулез легких, лепра , пневмония, хронический бронхит, вялотекущие инфекции мочеполовой системы, гнойно-воспалительные заболевания челюстно-лицевой области.
3. с профилактической целью после оперативных вмешательств, при лучевой и химиотерапии опухолей, в период реконвалесценции после тяжелых инфекций.

Тимоген в интраназальной форме используют для лечения и профилактики ОРВИ и гриппа инфекций.

Иммунофан. Представляет собой иммунорегуляторный пептид в комплексе с антиоксидантом.
Способ применения: п/к или в/м по 1-2 мкг/кг массы тела 1 раз в сутки.

Механизм действия:
-нормализует соотношений субпопуляций Т-лимфоцитов
-восстанавливает гуморальный иммунитет, усиливает продукцию специфических антител -повышает функциональную активность фагоцитирующих клеток
-усиливает выведение ЦИКов, снижает интенсивность аллергического воспаления.

Показания к применению:
1.ОРВИ (профилактика и лечение)
2.Хронические вирусные и бактериальные инфекции (хронический гепатит В, иерсиниоз, бруцеллез , туберкулез)
3.Лучевая болезнь
4.Химиолучевая терапия
5.Нарко- и токсикомания.
6.Атопическая и инфекционно-аллергическая бронхиальная астма
7.Ревматоидный артрит
Препарат плохо сочетается с другими иммунокорректорами.

Синтетические стимуляторы Т-клеточного звена иммунитета.
Левамизол (Декарис, Венгрия)
Способ применения: взрослые - 150 мг-3 раза в неделю - месяц, дети - 2,5 мг/кг - 3 раза в неделю 2-3 недели.
Механизм действия:
-усиливает функциональную активность Т-хелперов
-усиливает антителообразование
-стимулирует фагоцитоз
-усиливает активность комплемента

Показания к применению:

1.Острые и хронические вирусные инфекции: хронический персистирующий гепатит, хронический активный гепатит, вирусные бронхолегочные инфекции, вирусные энцефалиты, геморрагическая ветряная оспа , рецидивирующий простой герпес, вирусные суперинфекции при злокачественных новообразованиях.
2.Ревматоидный артрит, болезнь Крона, СКВ, опухоли бронхов, толстой кишки, молочных желез.

Диуцифон (Россия)
Способ применения: Взрослые - 0,3 г., дети 1-2 лет - 0,1 г., 3-4 года - 0,15 г., 5-7 лет 0,2 г. Принимают внутрь 1 раз в сутки через день N10.
Механизм действия:
-повышает количество Т-лимфоцитов, их функциональную активность
-повышает синтез цитокинов

Показания к применению:
1.Хронические инфекции, сопровождающиеся недостаточностью Т-клеточного звена иммунитета.
2.Ревматоидный артрит, системная склеродермия.

Изопринозин (Израиль)

Способ применения: по 50 мг/кг веса в 3-4 приема 5-7 дней. В острый период тяжелых инфекций по 100 мкг/кг в 3-4 приема - 5 дней.

Механизм действия: противовирусное и иммуномодулирующее
-усиливает продукцию интерлейкинов
-повышает хемотаксическую и фагоцитарную активность моноцитов и макрофагов
-повышает пролиферацию Т-лимфоцитов, Т-хелперов, естественных киллеров
-повышает синтез антител

Показания к применению:
1.Грипп и ОРВИ, герпеc 1 и 2 типа, опоясывающий лишай, вирусные менингоэнцефалиты, папилломавирусная инфекция, вульгарные бородавки , контагиозный моллюск.
2.Хронические инфекции, сопровождающиеся недостаточностью Т-клеточного звена иммунитета.

Стимуляторы гуморального звена иммунитета:
Миелопид (Россия). Препарат костного мозга.
Способ применения: 0,04-0,06 мг/кг в/м, п/к, в/в через день N3-5.
Механизм действия:
-восстанавливает количественные и функциональные показатели Т- и В-систем иммунитета
-стимулирует гуморальное звено иммунитета, усиливает антителообразование
-стимулирует функциональную активность макрофагов и нейтрофилов

Показания к применению:
1. Гнойные и септические процессы, сопровождающиеся снижением уровня иммуноглобулинов
2. Хронические неспецифические заболевания легких, мочевыводящих путей, протекающие на фоне недостаточности гуморального звена иммунитета.
3. Профилактика инфекционных осложнений при тяжелых ожогах, травмах, хирургических операциях.
4. Комплексная терапия лейкозов .

Препараты иммуноглобулинов.(заместительная терапия).

Веноглобулин (Франция)
Интраглобин (Германия)
Иммуноглобулин человеческий (Австрия)
Сандоглобулин (Швейцария)
Октагам (Австрия, Швейцария, Израиль)
Иммуноглобулин нормальный человеческий (Нижний Новгород, Россия)
Эндоглобин (Австрия)

Эти препараты на на 90-99% содержат IgG
Пентаглобин (Германия) обогащен IgM
Препараты иммуноглобулинов содержат обширный спектр специфических антимикробных антител, в том числе противовирусных - против кори, краснухи, ветряной оспы, гриппа, полиомиелита, паротита, гепатита В, С и т. д.), противобактериальных антител - антистафилококковых, антистрептококковых, антименингококковых и т.д.) КИП (Россия). Комплексный иммуноглобулиновый препарат выпускается в таблетках для энтерального применения, в свечах для ректального и интравагинального применения. Препарат содержит IgA, IgM, IgG. Содержит высокие титры антител к шигеллам, эшерихиям, сальмонеллам.

Механизм действия препаратов иммуноглобулинов:
Заместительная терапия, вводимые иммуноглобулины выполняют в организме функцию нормальных антител.

Показания к применению:
1.Первичные иммунодефициты с поражением гуморального звена иммунитета (болезнь Брутона, ОВИН)
2. Тяжелые системные инфекционные заболевания: септицемия новорожденных, септический шок, инфекционо-токсический шок у детей и взрослых и другие септические и септико-пиемические состояния.
3. Тяжелые инфекции ЦНС.
4. Тяжело протекающие вирусные инфекции(корь , грипп , гепатит)
5. Профилактика инфекций у недоношенных детей с низким весом (менее 1500 г. и менее)
6. Дефицит иммуноглобулинов при лимфолейкозе, СПИДе, нефротическом синдроме, ожоговой болезни, тяжелых диареях.

КИП применяют у детей старше 1 месяца и взрослых при лечении острых кишечных инфекций, дисбактериозов (особенно на фоне лечения антибиотиками, химио и радиотерапии). Для профилактики кишечных инфекций при иммунодефицитах, у пожилых людей, ослабленных детей.
Применяют орально за 30 минут до еды по 5 доз в течение 5 дней.

Существуют препараты иммуноглобулинов специфического действия: Специфические иммуноглобулины - источник готовых антител к тому инфекционному агенту, который вызвал инфекционный процесс.

Цитотект (Германия)
Препарат обогащен антителами к ЦМВ, применяют для лечения острой ЦМВИ, для профилактики и лечения ЦМВИ у больных с иммунодепрессией.

Иммуноглобулин антистафилококковый (Россия)
Иммуноглобулин противокоревой
противодифтерийный
противогерпетический

Мукозальные вакцины. (Бактериальные препараты).
Мукозальные вакцины - препараты, которые вводятся не парентерально, а через рот, аэрозольно или в инстиляциях. Наиболее активно действуют на местный иммунитет. Сочетают в себе свойство многокомпонентных вакцин и неспецифических иммунокорректоров.

Механизм действия:
-содержат специфические антигены возбудителей, наиболее часто вызывающих инфекции слизистых оболочек и формируют специфический иммунитет к этим инфекциям.
-эффективно стимулируют неспецифические факторы защиты

Поливакцины для лечения дыхательных путей:
ВП-4 (Россия). Вакцина содержит антигены стафилококка, пневмококка, протея, кишечной палочки

Рибомунил (Франция).
Препарат содержит рибосомальные антигены клебсиеллы, пневмококка, пиогенного стрептококка, гемофильной палочки.
Способ применения: по 3 табл. натощак - 4 дня подряд каждой недели - 3 недели. Затем по 3 табл. натощак - 4 дня подряд в начале каждого месяца - 5 месяцев.

Бронхомунал (Югославия)
Бронхомунал-П (детская форма).
Содержит антигены пневмококка, гемофильной палочки, нейссерий, золотистого стафилококка, пиогенного стрептококка.
Способ применения: применяют перорально по 1 капсуле первые 10 дней каждого месяца - 3 месяца.

ИРС19 (IRS19).
Лизат инактивированных бактерий для интраназального применения. Содержит 19 антигенов.
Способ применения: В целях профилактики респираторных инфекций верхних дыхательных путей - по 1 дозе препарата интраназально в каждый носовой ход - 2 раза в день - 14 дней. В острой фазе заболеваний впрыскивают по одной дозе препарата в каждый носовой ход от 2 до 5 раз в день до исчезновения симптомов инфекции.

Механизм действия мукозальных вакцин:
-повышают функциональную активность фагоцитирующих клеток местного и системного иммунитета,
-повышают количество лизоцима, секреторного IgA в бронхиальном секрете, носовой слизи, отделяемом ЖКТ.
-повышают количество СД3, СД4, СД8 - клеток.

Показания к применению:
Профилактика и лечение хронических и рецидивирующих инфекционно-воспалительных заболеваний ЛОР-органов, верхних и нижних дыхательных путей (риниты, синуситы, фарингиты, ларингиты, трахеиты, бронхиты, пневмонии).

Поливакцины для лечения мочеполовых путей
Солкотриховак
Смесь лиофилизированных лактобацилл.
Способ применения: по 0,5 мл в/м трехкратно с интервалом в 2 недели. Ревакцинацию проводят однократно через год.
Показания к применению: трихомониаз, неспецифические бактериальные вагиниты.

Солкоуровак
В состав входят инактивированые кишечные палочки, протей, клебсиеллы, стрептококки. Способ применения: по 0,5 мл в/м трехкратно с интервалом в 2 недели. Детям 5-14 лет по 0,25 мл. Ревакцинацию проводят однократно через год.
Показания к применению: лечение хронических и рецидивирующих урогенитальных инфекций, вызванных микроорганизмами, входящими в состав солкоуровака.

ПРИНЦИПЫ ВЫЯВЛЕНИЯ ДЕТЕЙ С ИММУНОЛОГИЧЕСКОЙ НЕДОСТАТОЧНОСТЬЮ.

Основываются на анализе данных анамнеза текущего заболевания, анамнеза жизни, результатов клинико-лабораторного и иммунологического обследований.

Цель диагностики иммунодефицитных состояний: прогноз и предупреждение у детей группы риска развития иммунопатологических состояний, своевременное назначение иммуномодулирующих средств, контроль за их эффективностью, проведение противорецидивной терапии.

I этапом иммунологического обследования является выявление у больного клинических признаков иммунодефицита. Для этого необходимы: общая оценка клинического состояния больного, тщательный сбор анамнеза текущего заболевания и анамнеза жизни, объективный осмотр, включающий тщательное исследование лимфатических узлов, миндалин, селезенки.

Запись осмотра больного с целью выявления у него иммунной недостаточности:
1. Жалобы на момент осмотра.
2. Анамнез настоящего заболевания.
При анализе an. morbi необходимо обратить внимание на этиологию текущего инфекционного процесса. Корь, инфекционный мононуклеоз , гепатит, герпес , ЦМВИ, грипп, ветряная оспа сопровождаются транзиторным иммунодефицитом, поскольку возбудители этих инфекций инфицируют клетки иммунной системы и снижают их функциональную активность. Выраженным иммунодефицитом сопровождаются внутриутробные инфекции, хронические и персистирующие инфекции (хронический гепатит, герпес, хламидиоз), рецидивирующие грибковые инфекции.
Об иммунодефиците может свидетельствовать:
-тяжелые и осложненные формы инфекционного заболевания,
-возникновение суперинфекций, вызванных условно-патогенной, внутригоспитальной флорой
-затяжные формы инфекционного процесса, резистентные к антибактериальной терапии.
-хронические и рецидивирующие формы инфекционных заболеваний.

3.Анамнез жизни.
При сборе анамнеза жизни учитывается:
А.
-неблагоприятное течение беременности (ранние и поздние гестозы , анемии, бактериальные и вирусные инфекции у матери, профессиональные вредности, угроза прерывания, хронические заболевания у мамы)
-роды: срочные, преждевременные, позже срока, естественным путем, с помощью кесарева сечения.
-осложнения в родах
-масса, длина тела при рождении
-было ли внутриутробное поражение ЦНС, нарушение гемоликвородинамики, асфиксия, родовая травма, недоношенность , гемолитическая болезнь
-отмечалась ли патология в неонатальном периоде:
-грудное вскармливание до скольких месяцев
-наличие аномалий конституции: экссудативный, лимфатико-гипопластический, нервно-артритический
Б.
Прививочный анамнез
С.
уточняется наличие в анамнезе:
1) инфекционных заболеваний
-хронические и рецидивирующие заболевания ЛОР-органов, верхних и нижних дыхательных путей (гнойные синуситы, отиты, гаймориты, бронхиты, пневмонии)
-рецидивирующие бактериальные инфекции кожи и подкожной клетчатки (пиодермии, фурункулезы, абсцессы, флегмоны, септические гранулемы, бактериальные и грибковые поражения кожи)
-повторные лимфоадениты, лимфоаденопатии
-хронические и рецидивирующие урогенитальные инфекции (пиелонефрит, цистит)
-генерализованные бактериальные инфекции (менингиты, менингоэнцефалиты, сепсис)
-туберкулез
-гастроэнтеропатии с персистирующей диареей, дисбактериозом
-тяжело и/или атипично протекающие корь, краснуха, эпидпаротит, ветряная оспа
-хронические вирусные гепатиты В, С, Д
-рецидивирующий герпес кожи и слизистых
-внутриутробные инфекции (ЦМВ, герпес, краснуха, хламидии)
-вялотекущие инфекции любой локализации, вызываемые условно-патогенными возбудителями
-ОРВИ более 6-7 раз в году

2) аллергических заболеваний:
-бронхиальная астма
-атопический дерматит
-поллиноз
-рецидивирующий отек Квинке
-хроническая и рецидивирующая крапивница
-лекарственная аллергия

3) аутоиммунных заболеваний:
-ювенильный ревматоидный артрит
-дерматомиозит
-системные васкулиты
-гломерулонефрит
-аутоиммунные гемолитические анемии , тромбоцитопении , нейтропении

4) иммунопролиферативных заболеваний:
-острый и хронический лимфолейкоз
-миелолейкоз
-опухолей любой локализации

5) а также таких заболеваний, как
-инсулинзависимый сахарный диабет
-уремия

Учитываются:
-возраст больного (1-й год жизни и пубертатный период соотвествуют физиологическому иммунодефициту)
-маловесность и недоношенность
-длительное действие на больного химикатов, канцерогенов, облучения, гербицидов.
-длительное применение больным кортикостероидных, цитостатических, антибактериальных препаратов
-наличие в анамнезе спленэктомии, аппенд- и тонзиллэктомии
-повторные переливания крови
-перенесение в последнее время травм, ожогов, больших операций

4.Объективный осмотр

На основании данных анамнеза определяется наличие у больного одного или нескольких синдромов иммунологической недостаточности: инфекционного, аллергического, аутоиммунного, иммунопролиферативного.

Схема обоснования предварительного заключения у больного с иммунологической недостаточностью: Учитывая анамнез настоящего заболевания: тяжелая форма, резистентность к антибактериальной терапии, затяжное течение (длительно сохраняющиеся симптомы интоксикации, гепатомегалия, патологический характер стула, кашель с мокротой, отделяемое из носа и т.д., отсутствие положительной динамики физикальных и параклинических данных), генерализация инфекции, формирование осложнений, присоединение суперинфекций,

Данные анамнеза жизни (наличие у больного инфекционно-воспалительных заболеваний, ревматоидного артрита, дерматомиозита, системных васкулитов, гломерулонефрита и т.д.), а также возраст больного, соответствующий периоду физиологического иммунодефицита можно предположить у больного вторичное (первичное, транзиторное) иммунодефицитное состояние с ведущим инфекционным, аллергическим, аутоиммунным, иммунопролиферативным синдромом.

II этапом иммунологического обследования является лабораторное исследование иммунного статуса (иммунограмма), необходимое для подтверждения диагноза и установления уровня иммунологического дефекта.

После выполнения иммунограммы выделяется лабораторный синдром иммунной недостаточности: недостаточность Т-клеточного звена иммунитета, системы фагоцитирующих клеток, гуморального звена иммунитета, недостаточность неспецифических факторов защиты, системы НК-клеток.

Обоснование окончательного заключения: Учитывая мнение, высказанное в предварительном заключении (больной относится к группе риска по иммунной недостаточности с ведущим инфекционно-воспалительным, аллергическим, аутоиммунным синдромом), данные иммунограммы (признаки недостаточности неспецифических факторов защиты -, Т-клеточного -, гуморального - звена иммунитета, системы фагоцитирующих клеток), можно поставить диагноз: Вторичное иммунодефицитное состояние (вторичная иммунная недостаточность) с нарушением неспецифических факторов защиты, системы фагоцитоза, Т-клеточного, гуморального звена иммунитета.
Урология:

"Варнинг"

Копирование материалов без размещения ссылки на наш сайт ЗАПРЕЩЕНО!!!
Авторские права на все материалы принадлежат их авторам.
Представленная на сайте информация не должна использоваться для самостоятельной диагностики и лечения и не может служить заменой очной консультации лечащего врача.

Антитела к р24

Антитела к gр120

Рис. 4.49. Динамика содержания в крови инфицированных вирусом иммунодефицита человека самого вируса и антител к двум его белкам

Т-клетками, что позволяет им избегать давления со стороны Т-клеточного иммунитета. Таким образом, клеточный иммунный ответ не способен элиминировать вирус из организма в связи с высокой приспособляемостью вируса, основанной на изменчивости. Неэффективны оказываются и NK-клетки, хотя они не являются объектом прямого инфицирования вирусом.

Отражением взаимоотношений между ВИЧ-инфекцией и макроорганизмом служит динамика содержания в циркуляции вирусных антигенов

и антивирусных антител (рис. 4.49). Всплеск антигенемии в ранний период развития ВИЧ-инфекции (2–8 нед после инфицирования) отражает интенсивную репликацию вирусов, внедрившихся в клетки. При сохранной иммунной системе хозяина это вызывает наработку нейтрализующих антител (преимущественно к поверхностным белкам gp120, gp41, группоспецифическому gag-антигену р17), что можно выявить по подъему титра сывороточных антител к указанным антигенам, начиная с 8-й недели от момента заражения. Такую смену циркуляции антигена на присутствие в кровотоке антител обозначают термином «сероконверсия ». Антитела к оболочечным (env) белкам стабильно сохраняются в течение всего заболевания, тогда как специфичные к gag антитела исчезают на определенных этапах его развития, и вирусные антигены повторно появляются в кровотоке. Одновременно с накоплением в сыворотке крови антител к вирусным антигенам повышается концентрация всех сывороточных иммуноглобулинов, включая IgE.

Циркулирующие антитела способны нейтрализовать свободный вирус

и связывать его растворимые белки. При ответе на gp120 это в наибольшей степени относится к антителам, специфичным к иммунодоминантному эпитопу 303–337, локализованному в 3-м гипервариабельном домене (V3) молекулы. Это подтверждается тем фактом, что пассивно введенные антитела могут предохранить от заражения ВИЧ. Нейтрализующие антитела, особенно направленные против gp120, способны блокировать инфициро-

вание клеток. Вероятно, это играет определенную роль в первоначальном сдерживании ВИЧ-инфекции и в какой-то степени обусловливают длительный латентный период, характерный для данного заболевания. В то же время эффекторная активность этих антител ограничена и их защитную роль при ВИЧ-инфекции нельзя считать доказанной.

Формирование иммунодефицита при синдроме приобретенного иммунодефицита

(см. табл. 4.20)

Основная причина иммунодефицита при СПИДе - гибель CD4+ T-кле- ток. Очевидная причина гибели инфицированных клеток - цитопатогенное действие вируса. При этом клетки погибают по механизму некроза вследствие нарушения целостности их мембраны. Так, при заражении ВИЧ клеток крови численность CD4+ Т-клеток, начиная с 3-х суток, резко уменьшается одновременно с высвобождением вирионов в среду. В наибольшей степени страдает популяция СD4+ Т-клеток слизистой оболочки кишечника.

Помимо этого механизма гибели инфицированных клеток при СПИДе выявляют высокий уровень апоптоза. Поражение Т-клеточного звена иммунной системы значительно превосходит ожидаемое на основании оценки числа инфицированных клеток. В лимфоидных органах инфицировано не более 10–15% CD4+ Т-клеток, а в крови это количество составляет только 1%, однако апоптозу подвергается значительно больший процент CD4+ Т-лимфоцитов. Помимо инфицированных, апоптотирует значительная часть неинфицированных вирусом клеток, прежде всего CD4+ Т-лимфоцитов, специфичных к антигенам ВИЧ (до 7% этих клеток). Индукторами апоптоза служат белки gp120 и регуляторный белок Vpr, активные в растворимой форме. Белок gp120 понижает уровень антиапоптотического белка Bcl-2 и повышает уровень проапоптотических белков р53, Bax, Bak. Белок Vpr нарушает целостность митохондриальной мембраны, вытесняя Bсl-2. Происходит выход из митохондрии цитохромас и активация каспазы 9, что приводит к апоптозу CD4+ Т-клеток, в том числе не инфицированных, но ВИЧ-специфичных.

Взаимодействие вирусного белка gp120 с мембранным гликопротеином CD4+ Т-лимфоцитов служит причиной еще одного процесса, происходящего при ВИЧ-инфекции и участвующего в гибели и функциональной инактивации клеток хозяина - формированию синцития. В результате взаимодействия gp120 и CD4 происходит слияние клеток с формированием многоядерной структуры, не способной выполнять нормальные функции и обреченной на гибель.

Среди клеток, инфицируемых ВИЧ, погибают только Т-лимфоциты и мегакариоциты, подвергаясь цитопатогенному действию или вступая в апоптоз. Ни макрофаги, ни эпителиальные или другие клетки, инфицированные вирусом, не теряют жизнеспособности, хотя их функция может нарушаться. Дисфункцию может вызывать не только ВИЧ как таковой, но и его изолированные белки, например, gp120 или продукт генаtat р14. Хотя ВИЧ не способен вызывать злокачественную трансформацию лимфоцитов (в отличие, например, от вируса HTLV-1), белок tat (р14) участвует в индукции саркомы Капоши при ВИЧ-инфекции.

Резкое снижение содержания CD4+ Т-лимфоцитов - самый яркий лабораторный признак ВИЧ-инфекции и ее эволюции в СПИД. Условная

4.7. Иммунодефициты

граница содержания этих клеток, за которой обычно следуют клинические проявления СПИД, - 200–250 клеток в 1 мкл крови (в относительных цифрах - около 20%). Соотношение CD4/CD8 на пике заболевания снижается до 0,3 и ниже. В этот период проявляется общая лимфопения с уменьшением содержания не только CD4+ , но и CD8+ клеток и В-лимфо- цитов. Ответ лимфоцитов на митогены и выраженность кожных реакций на распространенные антигены продолжает снижаться до полной анергии. К разнообразным причинам неспособности эффекторных Т-клеток элиминировать ВИЧ добавляется высокая мутабельность ВИЧ с образованием все новых эпитопов, не распознаваемых цитотоксическими Т-клетками.

Естественно, что среди иммунологических расстройств при СПИДе доминируют нарушения Т-клеточных и Т-зависимых процессов. К факторам, определяющим эти нарушения, относят:

снижение числа CD4 + Т-хелперов вследствие их гибели;

ослабление функций CD4 + Т-клеток под влиянием инфицирования и действия растворимых продуктов ВИЧ, особенно gp120;

нарушение баланса популяции Т-клеток со сдвигом соотношения Th1/Th2 в сторону Th2, тогда как защите от вируса способствуют Th1-зависимые процессы;

индукция регуляторных Т-клеток белком gp120 и ВИЧ-ассоциирован- ным белком р67.

Снижение способности организма к иммунной защите затрагивает как ее клеточные, так и гуморальные факторы. В результате формируется комбинированный иммунодефицит, делающий организм уязвимым к инфекционным агентам, в том числе условно-патогенным (отсюда - развитие оппортунистических инфекций). Дефицит клеточного иммунитета играет определенную роль в развитии лимфотропных опухолей, а сочетание иммунодефицита и действия некоторых белков ВИЧ - в развитии саркомы Капоши.

Клинические проявления иммунодефицита при инфекции вирусом иммунодефицита человека и синдроме приобретенного иммунодефицита

Основные клинические проявления СПИДа состоят в развитии инфекционных заболеваний, главным образом, оппортунистических. Наиболее характерны для СПИДа следующие заболевания: пневмонии, вызываемые Pneumocystis carinii ; диарея, вызываемая криптоспоридиями, токсоплазмами, жиардиями, амебами; стронгилоидоз и токсоплазмоз головного мозга и легких; кандидоз полости рта и пищевода; криптококкоз, диссеминированный или локализованный в ЦНС; кокцидиомикоз, гистоплазмоз, мукормикоз, аспергиллез различной локализации; инфекции нетипичными микобактериями различной локализации; сальмонеллезная бактериемия; цитомегаловирусная инфекция легких, ЦНС, пищеварительного тракта; герпетическая инфекция кожи и слизистых оболочек; инфекция вирусом Эпштейна–Барр; мультифокальная паповавирусная инфекция с энцефалопатией.

Другую группу связанных со СПИДом патологических процессов составляют опухоли, отличие которых от неассоциированных со СПИДом, состоит в том, что они развиваются в более молодом возрасте, чем обычно (до 60 лет). При СПИДе часто развиваются саркома Капоши и неходжкинские лимфомы, локализующиеся преимущественно в головном мозгу.

Развитию патологического процесса способствуют некоторые реакции макрооргнаизма, провоцируемые ВИЧ-инфекцией. Так, активация CD4+ Т-клеток в ответ на действие вирусных антигенов способствует реализации цитопатогенного эффекта, особенно апоптоза Т-лимфоцитов. Большинство образуемых при этом Т-клетками и макрофагами цитокинов благоприятствуют прогрессированию ВИЧ-инфекции. Наконец, в патогенезе СПИДа важную роль играет аутоиммунная составляющая. Ее основу составляет гомология между белками ВИЧ и некоторыми белками организма, например между gp120 и молекулами MHC. Однако эти нарушения, усугубляя иммунодефицит, не формируют специфических аутоиммунных синдромов.

Уже на доклинической стадии ВИЧ-инфекции возникает необходимость использования иммунологичеких методов диагностики. С этой целью используют иммуноферментные тест-наборы, позволяющие определять наличие в сыворотке крови антител к белкам ВИЧ. Существующие тестсистемы основаны на твердофазном иммуносорбентном тестировании антител (ELISA). Первоначально применяли тест-наборы с использованием в качестве антигенного материала вирусных лизатов. Позже с этой целью стали применять рекомбинантные белки ВИЧ и синтетические пептиды, воспроизводящие эпитопы, с которыми взаимодействуют сывороточные антитела ВИЧ-инфицированных людей.

В связи с исключительно высокой ответственностью врачей, делающих заключение об инфицированности ВИЧ на основании лабораторных анализов, принята практика повторной постановки анализов на антитела (иногда с помощью альтерантивных методов, например иммуноблоттинга, см. раздел 3.2.1.4), а также определение вируса с помощью полимеразной цепной реакции.

Лечение СПИДа основано на применении противовирусных препаратов, среди которых наиболее широко используют зидовудин, действующий как антиметаболит. Успехи достигнуты в контроле течения СПИДа, существенно увеличивающем продолжительность жизни больных. Основной терапевтический подход - использование антиметаболитов нуклеиновых кислот в варианте высокоактивной антиретровирусной терапии (High active antiretroviral therapy - HAART). Эффективным дополнением к антиретровирусной терапии служит применение препаратов интерферонов, а также лечение сопутствующих заболеваний и вирусных инфекций, способствующих прогрессированию СПИД.

Летальность от СПИД до сих пор составляет 100%. Наиболее частой причиной смерти являются оппортунистические инфекции, особенно пневмоцистные пневмонии. Другие причины смерти - сопутствующие опухоли, поражение центральной нервной системы и пищеварительного тракта.

4.7.3. Вторичные иммунодефициты

Вторичные иммунодефицитные состояния - это нарушения иммунной защиты организма вследствие действия ненаследственных индукторных факторов (табл. 4.21). Они не являются самостоятельными нозологическими формами, а лишь сопутствуют заболеваниям или действию иммунотоксических факторов. В большей или меньшей степени нарушения иммуни-

4.7. Иммунодефициты

тета сопутствуют большинству заболеваний, и это существенно осложняет определение места вторичных иммунодефицитов в развитии патологии.

Таблица 4.21. Основные отличия первичных и вторичных иммунодефицитов

Критерий

Первичные

Вторичные

иммунодефициты

иммунодефициты

Наличие генетического

дефекта с установлен-

ным типом наследова-

Роль индуцирующего

Раннее проявление

Выражено

Время проявления имму-

недостаточности имму-

нодефицита определяет-

ся действием индуциру-

ющего фактора

Оппортунистические

Развиваются первично

Развиваются после дейст-

инфекции

вия индуцирующего

Заместительная, противо-

Устранение индуци-

инфекционная терапия.

рующего фактора.

Генотерапия

Заместительная, проти-

воинфекционная тера-

Часто бывает трудно дифференцировать вклад в развитие нарушений иммунитета наследственных факторов и индукторных воздействий. Во всяком случае, реакция на иммунотоксические агенты зависит от наследственных факторов. Примером сложностей в интерпретации основ нарушений иммунитета могут служить заболевания, отнесенные к группе «часто болеющие дети». Основа чувствительности к инфекции, в частности, респираторной вирусной, - генетически (полигенно) детерминированная иммунологическая конституция, хотя в качестве этиологических факторов выступают конкретные возбудители. Однако на тип иммунологической конституции оказывают влияние факторы внешней среды и ранее перенесенные заболевания. Практическая значимость точного вычленения наследственно обусловленного и приобретенного компонентов патогенеза иммунологической недостаточности будет возрастать по мере разработки методов дифференцированного терапевтического воздействия на эти формы иммунодефицитов, в том числе методов адаптивной клеточной терапии и генотерапии.

Основой иммунодефицитов, не вызванных генетическими дефектами, может служить:

гибель клеток иммунной системы - тотальная или избирательная;

нарушение функции иммуноцитов;

несбалансированное преобладание активности регуляторных клеток и супрессорных факторов.

4.7.3.1. Иммунодефицитные состояния, обусловленные гибелью иммуноцитов

Классические примеры таких иммунодефицитов - нарушения иммунитета, вызванные действием ионизирующей радиации и цитотоксических лекарственных средств.

Лимфоциты относят к немногочисленным клеткам, реагирующим на действие ряда факторов, в частности повреждающих ДНК, развитием апоптоза. Этот эффект проявляется при действии ионизирующей радиации и многих цитостатиков, используемых в лечении злокачественных опухолей (например, цисплатина, внедряющегося в двойную спираль ДНК). Причина развития апоптоза в этих случаях - накопление нерепарированных разрывов, регистрируемых клеткой с участием киназы АТМ (см. раздел 4.7.1.5), от которой сигнал поступает по нескольким направлениям, в том числе к белку р53. Этот белок отвечает за запуск апоптоза, биологический смысл которого состоит в защите многоклеточного организма ценой гибели единичных клеток, которые несут генетические нарушения, чреватые риском малигнизации клетки. В большинстве других клеток (как правило, покоящихся) срабатыванию этого механизма противодействует защита от апоптоза, обусловленная повышенной экспрессией белков Bcl-2 и Bcl-XL .

Радиационные иммунодефициты

Уже в первое десятилетие после открытия ионизирующих излучений была обнаружена их способность ослаблять резистентность к инфекционным заболеваниям и избирательно снижать содержание лимфоцитов в крови и лимфоидных органах.

Радиационный иммунодефицит развивается сразу после облучения организма. Действие радиации обусловлено преимущественно двумя эффектами:

нарушением естественных барьеров, прежде всего слизистых оболочек, что приводит к усилению доступа в организм патогенов;

избирательным повреждением лимфоцитов, а также всех делящихся

клеток, включая предшественники клеток иммунной системы и клетки, вовлекаемые в иммунный ответ.

Предметом изучения радиационной иммунологии является, главным образом, второй эффект. Радиационная гибель клеток реализуется по двум механизмам - митотическому и интерфазному. Причина митотической гибели - нерепарируемые повреждения ДНК и хромосомного аппарата, препятствующие осуществлению митозов. Интерфазная гибель затрагивает покоящиеся клетки. Ее причиной служит развитие апоптоза по р53/АТМзависимому механизму (см. выше).

Если чувствительность всех типов клеток к митозу примерно одинакова (D0 - около 1 Гр), то по чувствительности к интерфазной гибели лимфоциты значительно превосходят все остальные клетки: большинство их погибает при облучении в дозах 1–3 Гр, тогда как клетки других типов погибают при дозах, превышающих 10 Гр. Высокая радиочувствительность лимфоцитов обусловлена, как уже сказано, низким уровнем экспрессии антиапоптотических факторов Bcl-2 и Bcl-XL . Различные популяции и субпопуляции лимфоцитов несущественно различаются по чувствительности к апоптозу (В-клетки несколько чувствительнее Т-лимфоцитов; D0 для них составляет соответственно 1,7–2,2 и 2,5–3,0 Гр). В процессе лимфопоэза чувстви-

4.7. Иммунодефициты

тельность к цитотоксическим воздействиям изменяется в соответствии с уровнем экспрессии в клетках антиапоптотических факторов: она наиболее высока в периоды селекции клеток (для Т-лифмоцитов - стадия кортикальных CD4+ CD8+ тимоцитов, D0 - 0,5–1,0 Гр). Радиочувствительность высока у покоящихся клеток, она дополнительно возрастает на начальных этапах активации, а затем резко снижается. Высокой радиочувствительностью характеризуется процесс пролиферативной экспансии лимфоцитов, причем при вступлении в пролиферацию могут погибнуть клетки, подвергшиеся действию излучения ранее и несущие нерепарированные разрывы ДНК. Сформировавшиеся эффекторные клетки, особенно плазматические, устойчивы к действию радиации (D0 - десятки Гр). В то же время клетки памяти радиочувствительны примерно в той же степени, что и наивные лимфоциты. Клетки врожденного иммунитета радиорезистентны. Радиочувствительны только периоды их пролиферации во время развития. Исключение составляют NK-клетки, а также дендритные клетки (погибают при дозах 6–7 Гр), которые по радиочувствительности занимают промежуточное положение между другими лимфоидными и миелоидными клетками.

Хотя зрелые миелоидные клетки и опосредуемые ими реакции радиорезистентны, в ранние сроки после облучения максимально проявляется именно недостаточность миелоидных клеток, в первую очередь нейтрофилов, вызванная радиационным нарушением гемопоэза. Его последствия раньше и тяжелее всего сказываются на нейтрофильных гранулоцитах как популяции клеток с наиболее быстрым обменом пула зрелых клеток. Это обусловливает резкое ослабление первой линии защиты, нагрузка на которую именно в этот период значительно возрастает в связи с нарушением барьеров и бесконтрольным поступлением в организм патогенов и других чужеродных агентов. Ослабление этого звена иммунитета служит главной причиной радиационной гибели в ранние сроки после облучения. В более поздние сроки последствия поражения факторов врожденного иммунитета сказываются значительно слабее. Функциональные проявления врожденного иммунитета сами по себе устойчивы к действию ионизирующих излучений.

Через 3–4 сут после облучения в дозах 4–6 Гр у мышей погибает более 90% лимфоидных клеток и происходит опустошение лимфоидных органов. Функциональная активность выживших клеток снижается. Резко нарушается хоминг лимфоцитов - их способность мигрировать в процессе рециркуляции во вторичные лимфоидные органы. Реакции адаптивного иммунитета при действии этих доз ослабляются в соответствии со степенью радиочувствительности клеток, которые опосредуют эти реакции. В наибольшей степени от действия радиации страдают те формы иммунного ответа, развитие которых нуждается во взаимодействиях радиочувствительных клеток. Поэтому клеточный иммунный ответ более радиорезистентен, чем гуморальный, а тимуснезависимое антителообразование более радиорезистентно, чем тимусзависимый гуморальный ответ.

Дозы радиации в интервале 0,1–0,5 Гр не вызывают повреждения периферических лимфоцитов и нередко оказывают стимулирующее действие на иммунный ответ, обусловленный прямой способностью квантов излучения,

генерирующих активные формы кислорода, активировать в лимфоцитах сигнальные пути. Иммуностимулирующее действие радиации, особенно в отношении IgE-ответа, закономерно проявляется при облучении после иммунизации. Полагают, что в этом случае стимулирующий эффект обусловлен относительно более высокой радиочувствительностью регуляторных Т-клеток, контролирующих эту форму иммунного ответа, по сравнению с эффекторными клетками. Стимулирующее действие радиации на клетки врожденного иммунитета проявляется даже при действии высоких доз, особенно в отношении способности клеток продуцировать цитокины (IL-1, TNF α и др.). Помимо прямого стимулирующего действия радиации на клетки, проявлению усиливающего эффекта способствует стимуляция этих клеток продуктами патогенов, поступающих в организм через поврежденные барьеры. Однако повышение активности клеток врожденного иммунитета под действием ионизирующей радиации не является адаптивным и не обеспечивает адекватной защиты. В связи с этим превалирует отрицательное действие облучения, проявляющееся в подавлении (при дозах, превышающих 1 Гр) адаптивного антигенспецифичекого иммунного ответа (рис. 4.50).

Уже в период развивающегося опустошения лимфоидной ткани включаются восстановительные процессы. Восстановление происходит двумя основными путями. С одной стороны, активизируются процессы лимфопоэза за счет дифференцировки всех разновидностей лимфоцитов из кроветворных стволовых клеток. В случае Т-лимфопоэза к этому добавляется развитие Т-лимфоцитов из внутритимусных предшественников. При этом в определенной степени повторяется последовательность событий,

7 Дендритные

Медуллярные 3 тимоциты

1 Кортикальные

тимоциты 0,5–1,0 Гр

Ответ Т:клеток

IgM: антител на

в СКЛ - 1,25 Гр

ЭБ - 1,0–1,2 Гр

Ответ В:клеток

Образование

in vitro на ЛПС -

IgG: антител на

ЭБ - 0,8–1,0 Гр

Рис. 4.50. Радиочувствительность некоторых клеток иммунной системы и опосредуемых ими реакций. Представлены величины D0 . ЭБ - эритроциты барана

4.7. Иммунодефициты

свойственных Т-лимфопоэзу в эмбриональном периоде: сначала образуются γδТ-клетки, затем - αβТ-клетки. Процессу восстановления предшествует омоложение эпителиальных клеток тимуса, сопровождающееся повышением выработки ими пептидных гормонов. Численность тимоцитов быстро возрастает, достигая максимума к 15-м суткам, после чего происходит вторичная атрофия органа вследствие исчерпания популяции внутритимусных клеток-предшественников. Эта атрофия мало сказывается на численности периферических Т-лимфоцитов, поскольку к этому времени включается второй источник восстановления популяции лимфоцитов.

Этот источник - гомеостатическая пролиферация выживших зрелых лимфоцитов. Стимул к реализации этого механизма регенерации лимфоидных клеток - выработка IL-7, IL-15 и BAFF, служащих гомеостатическими цитокинами соответственно для Т-, NK- и В-клеток. Восстановление Т-лим- фоцитов происходит наиболее медленно, поскольку для реализации гомеостатической пролиферации необходим контакт Т-лимфоцитов с дендритными клетками, экспресирующими молекулы MHC. Численность дендритных клеток и экспрессия на них молекул MHC (особенно класса II) после облучения снижены. Эти изменения можно трактовать как индуцированные радиацией изменениия микроокружения лимфоцитов - лимфоцитарных ниш. С этим связана задержка восстановления пула лимфоидных клеток, особенно существенная для CD4+ Т-клеток, которая реализуется в неполном объеме.

Т-клетки, формирующиеся в процессе гомеостатической пролиферации, имеют фенотипические признаки клеток памяти (см. раздел 3.4.2.6). Для них характерны пути рециркуляции, свойственные этим клеткам (миграция в барьерные ткани и нелимфоидные органы, ослабление миграции в Т-зоны вторичных лимфоидных органов). Именно поэтому численность Т-лим- фоцитов в лимфоузлах практически не восстанавливается до нормы, в то время как в селезенке она восстанавливается полностью. Иммунный ответ, развивающийся в лимфатических узлах, также не достигает нормального уровня при его полной нормализации в селезенке. Таким образом, под влиянием ионизирующей радиации изменяется пространственная организация иммунной системы. Другое следствие конверсии фенотипа Т-лимфоцитов в процессе гомеостатической пролиферации - учащение аутоиммунных процессов вследствие повышения вероятности распознавания аутоантигенов при миграции в нелимфоидные органы, облегчения активации Т-клеток памяти и отставания регенерации регуляторных Т-клеток по сравнению с остальными субпопуляциями. Многие изменения в иммунной системе, индуцированные радиацией, напоминают следствия обычного старения; особенно наглядно это проявляется в тимусе, возрастное снижение активности которого ускоряется облучением.

Варьирование дозы облучения, его мощности, применение фракционированного, местного, внутреннего облучения (инкорпорированных радионуклидов) придает определенную специфику иммунологическим нарушениям в пострадиационном периоде. Однако принципиальные основы радиационного поражения и пострадиационного восстановления во всех этих случаях не отличаются от рассмотренных выше.

Особую практическую значимость действие умеренных и малых доз радиации приобрело в связи с радиационными катастрофами, особен-

но в Чернобыле. Сложно точно оценить эффекты малых доз радиации и дифференцировать влияние радиации от роли привходящих факторов (особенно таких, как стресс). В этом случае могут проявляться уже упоминавшееся стимулирующее действие радиации как часть эффекта гормезиса. Радиационную иммуностимуляцию нельзя рассматривать как положительное явление, поскольку оно, во-первых, не адаптивно, во-вторых сопряжено с разбалансировкой иммунных процессов. Пока затруднительно объективно оценить влияние на иммунную систему человека того незначительного повышения естественного фона радиации, которое наблюдается в местностях, прилегающих к зонам катастроф или связанных с особенностями производственной деятельности. В подобных случаях радиация становится одним из неблагоприятных факторов среды и ситуацию следует анализировать в контексте экологической медицины.

Иммунодефицитные состояния, вызываемые нерадиационной гибелью лимфоцитов

Массовая гибель лимфоцитов составляет основу иммунодефицитов, развивающихся при ряде инфекционных заболеваний как бактериальной, так и вирусной природы, особенно при участии суперантигенов. Суперантигены - субстанции, способные активировать CD4+ Т-лимфоциты с участием АПК и их молекул MHC-II. Действие суперантигенов отличается от эффекта обычной презентации антигенов.

Суперантиген не расщепляется до пептидов и встраивается не в анти-

генсвязывающую щель, а подсоединяется к «боковой поверхности» β-цепи молекулы MHC-II.

Суперантиген распознается Т-клеткой по их сродству не к антигенсвязывающему центру TCR, а к так называемому 4-му гипервариабельно-

му участку - последовательности 65–85, локализованной на боковой поверхности β-цепей TCR, относящихся к определенным семействам.

Таким образом, распознавание суперантигена не является клональным, а обусловлено принадлежностью TCR к тем или иным β-семействам. В результате суперантигены вовлекают в ответ значительное количество CD4+ Т-лимфоцитов (до 20–30%). Так, в ответе на стафилококковый экзотоксин SEB участвуют CD4+ Т-клетки мышей, экспрессирующих TCR, относящиеся к семействам Vβ7 и Vβ8. После периода активации и пролиферации, сопровождающихся гиперпродукцией цитокинов, эти клетки подвергаются апоптозу, что обусловливает значительную степень лимфопении, а поскольку гибнут только CD4+ Т-клетки, то нарушается также баланс субпопуляций лимфоцитов. Этот механизм лежит в основе Т-клеточного иммунодефицита, развивающегося на фоне некоторых вирусных и бактериальных инфекций.

4.7.3.2. Вторичные иммунодефициты, обусловленные функциональными нарушениями лимфоцитов

Вероятно, именно эта группа вторичных иммунодефицитов является преобладающей. Однако в настоящее время практически отсутствуют сколько-нибудь точные данные о механизмах снижения функции лимфоцитов при различных соматических заболеваниях и воздействии вредных факторов. Только в единичных случаях удается установить точные механизмы,

Возрастные особенности иммунологического статуса животных

В эмбриональный период иммунологический статус организма плода характеризуется синтезом собственных защитных факторов. При этом синтез факторов естественной резистентности опережает развитие механизмов специфического реагирования.

Из факторов естественной резистентности первыми появляются клеточные элементы: вначале моноциты, затем нейтрофилы и эозинофилы. В эмбриональный период они функционируют как фагоциты, обладая захватывающей и переваривающей способностью. Причем переваривающая способность преобладает и существенно не изменяется даже после приема новорожденными животными молозива. К концу эмбрионального периода в кровотоке плода накапливаются лизоцим, пропердин и в меньшей степени комплемент. По мере развития плода уровень этих факторов постепенно повышается. В предплодный и плодный периоды в фетальной сыворотке крови появляются иммуноглобулины в основном класса М и реже класса G. Они обладают функцией преимущественно неполных антител.

У новорожденных животных содержание всех факторов защиты повышается, но соответствует уровню материнского организма лишь лизоцим. После приема молозива в организме новорожденных и их матерей содержание всех факторов, за исключением комплемента, выравнивается. Концентрация комплемента не достигает уровня материнского организма даже в сыворотке 6-месячных телят.

Насыщение кровотока новорожденных животных иммунными факторами происходит лишь колостральным путем. В молозиве содержатся в убывающем количестве IgG1, IgM, IgA, IgG2. Иммуноглобулин Gl примерно за две недели до отела селективно переходит из кровотока коров и накапливается в вымени. Остальные молозивные иммуноглобулины синтезируются молочной железой. В ней же образуются лизоцим и лактоферрин, которые вместе с иммуноглобулинами представляют гуморальные факторы локального иммунитета вымени. Молозивные иммуноглобулины переходят в лимфо-, а затем кровоток новорожденного животного путем пиноцитоза. В криптах тонкого отдела кишечника специальные клетки избирательно транспортируют молекулы молозивных иммуноглобулинов. Иммуноглобулины активнее всего всасываются при выпаивании молозива телятам в первые 4..5 ч после рождения.

Механизм естественной резистентности изменяется в соответствии с общим физиологическим состоянием организма животных и с возрастом. У старых животных отмечается снижение иммунологической реактивности за счет аутоиммунных процессов, так как в этот период происходит накопление мутантных форм соматических клеток, при этом иммунокомпетентные клетки сами могут мутировать и становиться агрессивными против нормальных клеток своего организма. Установлено снижение гуморального ответа за счет уменьшения количества образующихся плазматических клеток в ответ на введенный антиген. Также снижается активность клеточного иммунитета. В частности, с возрастом количество Т-лимфоцитов в крови значительно меньше, наблюдается снижение реактивности на введенный антиген. В отношении поглотительной и переваривающей активности макрофагов не установлено различий между молодыми животными и старыми, хотя процесс освобождения крови от чужеродных субстанций и микроорганизмов у старых замедлен. Способность макрофагов кооперировать с другими клетками с возрастом не изменяется.

Иммунопатологические реакции.

Иммунопатология изучает патологические реакции и болезни, развитие которых обусловлено иммунологическими факторами и механизмами. Объектом иммунопатологии являются разнообразные нарушения способности иммунокомпетентных клеток организма различать «свое» и «чужое», собственные и чужеродные антигены.

Иммунопатология включает в себя три типа реакций: реакция на собственные антигены, когда иммунокомпетентные клетки распознают их как чужеродные (аутоиммуногенные); патологически сильно выраженная иммунная реакция на аллерген снижение способности иммунокомпетентных клеток к развитию иммунного ответа на чужеродные вещества (иммунодефицитные заболевания и др.).

Аутоиммунитет. Установлено, что при некоторых болезнях наступает распад тканей, сопровождающийся образованием аутоантигенов. Аутоантигенами являются компоненты собственных тканей, возникающие в этих тканях под воздействием бактерий, вирусов, лекарственных веществ, ионизирующей радиации. Кроме того, причиной аутоиммунных реакций может служить введение в организм микробов, обладающих общими антигенами с тканями млекопитающих (перекрестные антигены). В этих случаях, организм животного, отражая атаку чужеродного антигена, попутно поражает компоненты собственных тканей (чаще сердца, синовиальных оболочек) в виду общности антигенных детерминант микро - и макроорганизмов.

Аллергия. Аллергия (от греч. alios - другой, ergon - действие) - измененная реактивность, или чувствительность, организма по отношению к тому или иному веществу, чаще при повторном поступлении его в организм. Все вещества, изменяющие реактивность организма, называют аллергенами. Аллергенами могут быть различные вещества животного или растительного происхождения, липоиды, сложные углеводы, лекарственные вещества и др. В зависимости от типа аллергенов различают инфекционную, пищевую (идиосинкразия), лекарственную и другие аллергии. Аллергические реакции проявляются благодаря включению факторов специфической защиты и развиваются, как и все другие иммунные реакции , в ответ на проникновение аллергена в организм. Реакции эти могут быть повышены по сравнению с нормой - гиперергия, могут быть понижены - гипоергия или полностью отсутствовать - анергия.

Аллергические реакции подразделяют по проявлению на гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). ГНТ возникает после повторного введения антигена (аллергена) спустя несколько минут; ГЗТ проявляется спустя несколько часов (12...48), а иногда и дней. Оба типа аллергии отличаются не только быстротой клинического проявления, но и механизмом их развития. К ГНТ относят анафилаксию, атопические реакции и сывороточную болезнь.

Анафилаксия (от греч. ana - против, phylaxia - защита) - состояние повышенной чувствительности сенсибилизированного организма на повторное парентеральное введение чужеродного белка. Анафилаксия впервые была открыта Портье и Рише в 1902г. Первая доза антигена (белка), вызывающая повышенную чувствительность, называется сенсибилизирующей (лат. sensibilitas - чувствительность), вторую дозу, после введения которой развивается анафилаксия, - разрешающей, причем разрешающая доза должна в несколько раз превышать сенсибилизирующую.

Пассивная анафилаксия. Анафилаксию можно искусственно воспроизвести у здоровых животных пассивным путем, т. е. введением иммунной сыворотки сенсибилизированного животного. В результате у животного через несколько часов (4...24) развивается состояние сенсибилизации. При введении такому животному специфического антигена проявляется пассивная анафилаксия.

Атопии (греч. atopos - странный, необычный). К ГНТ относят атопии, которые представляют собой естественную сверхчувствительность, спонтанно возникающую у предрасположенных к аллергии людей и животных. Атопические заболевания более изучены у людей - это бронхиальная астма , аллергический ринит и конъюнктивит, крапивница, пищевая аллергия к землянике, меду, яичному белку, цитрусовым и др. Пищевая аллергия описана у собак и кошек на рыбу, молоко и другие продукты, у крупного рогатого скота отмечена атопическая реакция типа сенной лихорадки при переводе на другие пастбища. В последние годы очень часто регистрируют атопические реакции, вызванные лекарственными препаратами - антибиотиками, сульфаниламидами и др.

Сывороточная болезнь. Сывороточная болезнь развивается через 8... 10 суток после однократного введения чужеродной сыворотки. Болезнь у людей характеризуется появлением сыпи, напоминающей крапивницу, и сопровождается сильным зудом, повышением температуры тела, нарушением сердечно-сосудистой деятельности, опуханием лимфатических узлов и протекает без смертельных исходов.

Гиперчувствительность замедленного типа (ГЗТ). Впервые этот тип реакции обнаружил Р. Кох в 1890 г. у больного туберкулезом при подкожном введении туберкулина. В дальнейшем было установлено, что существует ряд антигенов, которые стимулируют преимущественно Т-лимфоциты и обусловливают главным образом формирование клеточного иммунитета. В организме, сенсибилизированном такими антигенами, на основе клеточного иммунитета формируется специфическая гиперчувствительность, которая проявляется в том, что через 12...48 ч на месте повторного введения антигена развивается воспалительная реакция. Ее типичным примером является туберкулиновая проба. Внутрикожное введение туберкулина больному туберкулезом животному вызывает на месте инъекции отечную болезненную припухлость, повышение местной температуры. Реакция достигает максимума к 48 ч.

Повышенную чувствительность к аллергенам (антигенам) патогенных микробов и продуктам их жизнедеятельности называют инфекционной аллергией. Она играет важную роль в патогенезе и развитии таких инфекционных болезней, как туберкулез, бруцеллез, сап, аспергиллез и др. При выздоровлении животного гиперергическое состояние еще долго сохраняется. Специфичность инфекционных аллергических реакций позволяет использовать их с диагностической целью. Промышленным способом на биофабриках готовят различные аллергены - туберкулин, маллеин, бруцеллогидролизат, тулярин и др.

Следует отметить, что в некоторых случаях аллергическая реакция отсутствует у больного (сенсибилизированного) животного, это явление получило название анергии (ареактивности). Анергия может быть положительной и отрицательной. Положительная анергия отмечается, когда иммунобиологические процессы в организме активированы и контакт организма с аллергеном быстро приводит к его элиминации без развития воспалительной реакции. Отрицательная анергия обусловливается ареактивностью клеток организма и возникает, когда защитные механизмы подавлены, что свидетельствует о беззащитности организма.

При диагностике инфекционных болезней, сопровождающихся аллергией, иногда отмечают явления парааллергии и псевдоаллергии. Парааллергия - явление, когда сенсибилизированный (больной) организм дает реакцию на аллергены, приготовленные из микробов, имеющих общие или родственные аллергены, например микобактерии туберкулеза и атипичные микобактерии.

Псевдоаллергия (гетероаллергия) - наличие неспецифической аллергической реакции в результате аутоаллергизации организма продуктами распада тканей при развитии патологического процесса. Например, аллергическая реакция на туберкулин у крупного рогатого скота, больного лейкозом, эхинококкозом или другими болезнями.

В развитии аллергических реакций выделены три стадии:

· иммунологическая - соединение аллергена с антителами или сенсибилизированными лимфоцитами, эта стадия специфична;

· патохимическая - результат взаимодействия аллергена с антителами и сенсибилизированными клетками. Из клеток выделяются медиаторы, медленно реагирующая субстанция, а также лимфокины и монокины;

· патофизиологическая - результат действия различных биологически активных веществ на ткани. Характеризуется расстройством кровообращения, спазмом гладких мышц бронхов, кишечника, изменением проницаемости капилляров, отечностью, зудом и др.

Таким образом, при аллергических реакциях мы наблюдаем клинические проявления, характерные не для прямого действия антигена (микробов, чужеродных белков), а довольно однотипные, свойственные аллергическим реакциям симптомы.

Иммунодефициты

Иммунодефицитные состояния характеризуются тем, что иммунная система не способна реагировать полноценным иммунным ответом на различные антигены. Иммунный ответ – это не просто отсутствие или снижение иммунного ответа, а неспособность организма осуществлять то или иное звено иммунного реагирования. Проявляются иммунодефициты снижением или полным отсутствием иммунного ответа вследствие нарушения одного или нескольких звеньев иммунной системы.

Иммунодефициты могут быть первичными (врожденными) и вторичными (приобретенными).

Первичные иммунодефициты характеризуются дефектом клеточного и гуморального иммунитета (комбинированный иммунодефицит), либо только клеточного, либо только гуморального. Возникают первичные иммунодефициты в результате генетических дефектов, а также в результате неполноценного кормления матерей в период беременности первичные иммунодефициты могут наблюдаться у новорожденных животных. Такие животные рождаются с признаками гипотрофии и обычно нежизнеспособны. При комбинированном иммунодефиците отмечают отсутствие или гипоплазию тимуса, костного мозга, лимфоузлов, селезенки, лимфопению и низкое содержание иммуноглобулинов в крови. Клинически иммунодефициты могут проявляться в виде задержки физического развития, пневмонии, гастроэнтериты, сепсис, обусловленные условно-патогенной инфекцией.

Возрастные иммунодефициты наблюдаются у молодых и старых организмов. У молодых чаще встречаются дефицит гуморального иммунитета в результате недостаточной зрелости иммунной системы в период новорожденности и до второй-третьей недели жизни. У таких особей в крови отмечается недостаток иммуноглобулинов, В-лимфоцитов, слабая фагоцитарная активность микро - и макрофагов. В лимфатических узлах и селезенке мало вторичных лимфоидных фолликулов с крупными реактивными центрами и плазматических клеток. У животных возникают гастроэнтериты, бронхопневмонии, обусловленные действием условно-патогенной микрофлоры. Дефицит гуморального иммунитета в период новорожденности компенсируется полноценным молозивом матери, а в более позднее время – полноценным кормлением и хорошими условиями содержания.

У старых животных иммунодефицит обусловлен возрастной инволюцией тимуса, уменьшением в лимфоузлах и селезенке количества Т-лимфоцитов. У таких организмов часто возникают опухоли.

Вторичные иммунодефициты возникают в связи с болезнью или в результате лечения иммунодепрессантами. Развитие таких иммунодефицитов наблюдается при инфекционных заболеваниях, злокачественных опухолях, длительном применении антибиотиков, гомонов, неполноценном кормлении. Вторичные иммунодефициты обычно сопровождаются нарушением клеточного и гуморального иммунитета, т. е. являются комбинированными. Они проявляются инволюцией тимуса, опустошением лимфоузлов и селезенки, резким уменьшением количества лимфоцитов в крови. Вторичные дефициты, в отличие от первичных, при ликвидации основного заболевания могут полностью исчезать. На фоне вторичных и возрастных иммунодефицитов лекарственные препараты могут быть неэффективными, а вакцинация не создает напряженного иммунитета против заразных болезней. Таким образом, иммунодефицитные состояния необходимо учитывать при селекции, разработке лечебно-профилактических мероприятий в хозяйстве. Кроме того, на иммунную систему можно воздействовать с целью коррекции, стимуляции или угнетения определенных иммунных реакций. Такое воздействие возможно с помощью иммунодепрессантов и иммуностимуляторов.