Как добывают титан. Металл титан

Основные сведения о титане

Титан (Ti) (Titanium) - химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, tпл.=1668+(-)5°С, tкип.=3260°С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

Свойства титана

По внешнему виду титан похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4°С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42 10-8 до 80 10-6 Ом см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан - парамагнитный металл. У парамагнитных веществ магнитная восприимчивость при нагревании обычно уменьшается. Титан составляет исключение из этого правила - его восприимчивость существенно увеличивается с температурой.

Достоинства титана:

Малая плотность (4500 кг/м3), которая способствует уменьшению массы используемого материала;
-высокая механическая прочность. Важно то, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-очень высокая коррозионная стойкость, обусловленная способностью титана образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.

Применение титана

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Титан (ферротитан) используют в качестве лигирующей добавки к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала титан находится на 4-ом месте, уступая лишь алюминию, железу и магнию. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность титана делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы широко используются в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость титана и его сплавов во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным материалом, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Многих интересует немного загадочный и не до конца изученный титан - металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет - англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией - королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2. Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.


Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.


Добыча титана — дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество — тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап — разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры — +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве . Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли . Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.


У титана очень широкая область применения

Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.

Его применяют в:

  • авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
  • медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
  • технике для работы в криогенной области (здесь используют свойство титана — при снижении температуры усиливается прочность металла и не утрачивается его пластичность).

В процентном соотношении использование титана для производства различных материалов выглядит так:

  • на изготовление краски используется 60 %;
  • пластик потребляет 20 %;
  • в производстве бумаги используют 13 %;
  • машиностроение потребляет 7 % получаемого титана и его сплавов.

Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.

Титан


Большой интерес, проявляемый к титану и титановым сплавам, основан на его ценных свойствах - малом удельном весе, высокой удельной прочности и хорошей сопротивляемости коррозии.
В последние годы в связи с разработкой более совершенных методов получения ковкого и деформируемого титана применение его в различных отраслях промышленности расширилось.
Титан существует в двух полиморфных модификациях; α-Ti, имеющий гексагональную плотноупакованную решетку и существующую при температурах ниже 885°, и β-Ti с кубической объемноцентрированной решеткой - при более высоких температурах. При α→β-превращении изменения объема составляют 5,5%.
Титан слабо реагирует с азотной и разбавленной соляной кислотой. но растворяется в концентрированных соляной и серной кислотах и в аарской водке. В щелочах, во многих солях даже при кипячении и в органических кислотах титан весьма устойчив. Энергично реагирует титан с кислородом, азотом, водородом, углеродом и со многими окислами металлов, что чрезвычайно затрудняет получение чистого титана и вызывает большие трудности при производстве из него полуфабрикатов.
Кислород в большинстве случаев отрицательно влияет на физико-химические и технологические свойства титана. Растворимость кислорода в титане составляет около 30% (атомн.), что отвечает составу ТiO0,42. При нагреве до 600° кислород практически еще не взаимодействует с титаном. При температурах выше 650° кислород воздуха начинает энергично диффундировать в титан, в результате чего образуется весьма твердый поверхностный слой. Скорость окисления титана при температурах от 650 до 800° показана на рис. 7.


Диаграмма состояния системы титан - кислород при содержании кислорода до 30% приведена на рис. 8. По характеру эта диаграмма перитектической системы. В твердом состоянии кислород образует ограниченные области растворов α и β.
В приведенном участке системы имеются две перитектики.
Максимальная растворимость кислорода в β-титане равна 1,8% при 1740°, в α-титане - 14,5% в интервале температур 800-1700°.

Наивысшей температурой плавления 1900° обладает сплав типа твердого раствора а, содержащий 10% кислорода.
Кислород, проникший в кристаллическую решетку титана, сильно искажает ее, поэтому значительно изменяются физические свойства и механическая прочность титана.
Влияние кислорода в пределах 0-1% (атомн.) на предел прочности, удлинение, твердость и удельное электрическое сопротивление йодидного титана приведено на рис. 9.
Титан при содержании 0,25% (атомн.) кислорода может быть прокатан на холоду без появления трещин до 95% обжатия. При большем содержании кислорода трещины появляются уже при 60-70% обжатия.
При ковке и волочении титана необходимо избегать образования трещин, так как они очень трудно затягиваются вследствие быстрого окисления поверхности.

Сплавы, содержащие 0,5-2,0% (атомн.) кислорода, сравнительно легко обрабатываются три сверлении и нарезке, а содержащие 2,5-3,0% (атомн.) кислорода удовлетворительно обрабатываются резанием, но тверды для сверления.
Сплавы с содержанием 3,5-5,0% (атомн.) кислорода чрезвычайно трудно поддаются обработке.
Азот сильно влияет на свойства титана уже при содержании сотых долей процента. Система титан - азот (рис. 10) характеризуется наличием двух перитектических реакций.

Азот значительно увеличивает твердость и прочность титана и резко снижает его пластичность. Сплавы азота с титаном очень трудно обрабатывать в холодном состоянии: при содержании азота свыше 0,5% (вес.) сплав становится хрупким и не поддается обработке.
Уже в небольших количествах азот приводит к образованию игольчатой структуры. Влияние азота на механические свойства и электрическое сопротивление титана приведено на рис. 11.
Изменение физических и прочностных свойств титана от примесей азота связано, по-видимому, с тем, что азот оказывает значительное влияние на параметры кристаллической решетки, главным образом на параметр с, что хорошо видно на рис. 12.
Азот, как и кислород, значительно повышает температуру начала и конца β⇔α-превращепия титана.

Водород в отличие от кислорода, азота и углерода оказывает незначительное влияние на механические свойства титана, но все же является весьма вредной примесью, так как под его влиянием разрушаются изделия из титана и его сплавав при прокатке, ковке или нагреве.
Из диаграммы состояния титан - водород (рис. 13) следует, что по мере увеличения содержания водорода температура фазового превращения снижается, а температурная область существования двухфазной структуры α+β расширяется.
Водород весьма энергично диффундирует в титан и образует растворы внедрения, подобно кислороду, азоту и углероду. При растворении водорода в титане выделяется тепло, при нагреве из сплавов выделяется водород.
При 20° α-титан, содержащий несколько десятитысячных долей процента избыточного водорода, будет иметь в структуре свободные гидриды, которые под микроскопом видны в виде тонких пластинок. Повышение хрупкости сплавов является следствием появления в их структуре увеличивающегося количества гидридов.
Водород в пределах 0,3-0,5% (атомн.), обычно содержащийся в техническом титане, существенно понижает поглощение энергии при ударе без изменения предела прочности на растяжение. На рис. 14 приведены кривые, иллюстрирующие влияние водорода на предел прочности при растяжении, удлинение, твердость и электрическое сопротивление титана.
Углерод сильно влияет на свойства титана. Система титан - углерод (рис. 15) по своему характеру относится к перитектическим системам с химическими соединениями. В этой системе наблюдается перитектический распад β-фазы при ограниченной растворимости углерода в β- и α-титане.

Углерод является α-стабилизатором, он повышает температуру аллотропического превращения титана с 882 до 920°.
При 0,48% углерода и 920° происходит перитектоидное превращение

При высоких температурах углерод энергично соединяется с титаном я образует тугоплавкий карбид титана TiC, который обладает высокой твердостью и высокой температурой плавления (свыше 3000°).
Карбид титана нашел широкое применение для многих целей: для изготовления жаростойких и жаропрочных материалов, как компонент твердых сплавов и как абразивный материал.
Расстворимость углерода в титане значительно уменьшается с понижением температуры. В результате незначительной растворимости углерода в α- и β-титане уже десятые доли процента углерода в сплавах титана с углеродом вызывают хрупкость, так как выделяется карбид титана.
Влияние углерода на механические свойства титана представлено на рис. 16. Как видно, прочность сплавов увеличивается линейно до 0,25% углерода, пластичность сплавов изменяется в обратном направлении.
Основными легирующими добавками в титановых сплавах в настоящее время служат марганец, хром, железо, ванадий, молибден, алюминий, олово. С большинством этих добавок титан образует эвтектоид.
Увеличение прочности титана в зависимости от легирующих добавок характеризуется кривыми, приведенными на рис. 17.

Сплавы титана могут состоять либо из α-фазы, либо из β-фазы или α+β-фазы. Однако широко применяются в промышленности только α+β-сплавы, α-сплавы имеют ограниченное применение, а β-сплавы вовсе не применяются.
Алюминий расширяет область α-фазы и вводится в жаропрочные сплавы. Ванадий не образует эвтектоида с титаном и незначительно повышает прочность сплавов титана. По некоторым данным сплавы титан-ванадий склонны к водородной хрупкости. Марганец сильно замедляет эвтектоидный распад, упрочняет β-фазу и способствует термообработке. Двойные сплавы типа Tl+8% Mn склонны к водородной хрупкости.
Молибден повышает твердость титановых сплавов, а вместе с алюминием придает сплавам жаропрочность. Олово также расширяет область α-фазы и хотя придает титану несколько меньшую жаропрочность, чем алюминий, но в меньшей мере снижает пластичность.
Хром в большинстве случаев вводится в титан в виде феррохрома. Хром замедляет эвтектоидный распад. Детали из сплавов титана с хромом мало пригодны для работы под напряжением и при повышенных температурах. Действие железа подобно хрому. Титан с железом дает сплавы, в которых эвтектоидный распад протекает относительно медленно; железо способствует повышению твердости и снижает прочность при высоких температурах.
Для упрочнения α-титана используются также цирконий и кремний, для упрочнения β-титана - ниобий и вольфрам.
По последним данным, медь, никель и кремний дают с титаном сплавы, в которых эвтектоидный распад протекает очень быстро. Этим сплавам можно придавать желаемые свойства, охлаждая их с различной скоростью.
Одновременная присадка в титан марганца, алюминия или кремния, бериллия и бора, дающих химические соединения, позволяет упрочнять сплавы термической обработкой.
Механические свойства титана в значительной степени зависят от чистоты его и способа получения.
В табл. 21 приведены механические свойства титана, полученного различными методами.

При нагревании прочность титана падает, но даже при 500° предел прочности еще остается около 28 кг/мм2 (рис. 18).
В России, согласно временным техническим условиям, выпускается губчатый титан пяти марок, химический состав и механические свойства которого приведены в табл. 22.

Титановые сплавы


Применяемые в промышленности стандартные титановые сплавы еще недостаточно разработаны, что следует объяснить сравнительной новизной технологии производства самого титана. Однако в настоящее время уже имеется довольно много сплавов на титановой основе с различными физико-механическими свойствами.

В табл. 23 приведены химический состав и механические свойства некоторых титановых сплавов.

Физические и химические свойства титана, получение титана

Применение титана в чистом виде и в виде сплавов, применение титана в виде соединений, физиологическое действие титана

Раздел 1. История и нахождение в природе титана.

Титан — это элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C. Температура плавления 1660±20 °C.

История и нахождение в природе титана

Титан был назван так в честь древнегреческих персонажей Титанов. Назвал его так немецкий химик Мартин Клапрот по своим личным соображениями в отличии от французов которые старались давать названия в соответствии с химическими особенностями элемента, но так как тогда свойства элемента были неизвестны, было выбрано такое название.

Титан является 10 элементов по кол-ву его на нашей планете. Кол-во титана в земной коре равно 0.57 % по массе и 0.001 миллиграмм на 1 литр морской воды. Месторождения титана находятся на территории: Южно Африканской Республики, Украины, России, Казахстана, Японии, Австралии, Индии, Цейлона, Бразилии и Южной Кореи.


По физическим свойствам титан легкий серебристый металл, кроме того характерна высокая вязкость при механической обработке и склонен к прилипанию к режущему инструменту, поэтому используют специальные смазки или напыление для устранения этого эффекта. При комнатной температуре покрывается лассивирующей пленкой оксида TiO2, благодаря этому имеет стойкость к коррозии в большинстве агрессивных сред, кроме щелочей. Титановая пыль имеет свойство взрываться, при этом температура вспышки равна 400 °C. Титановая стружка пожароопасна.

Чтобы произвести титан в чистом виде или его сплавы в большинстве случаев используют диоксид титана с небольшим кол-вом соединений входящих в него. Например, рутиловый концентрат, получаемый при обогащении титановых руд. Но запасы рутила крайне малы и в связи с этим используют так называемый синтетический рутил или титановый шлак, получаемый при обработке ильменитовых концентратов.

Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Англии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана.



В периодической системе элементов Менделеева титан имеет порядковый номер 22. Атомная масса природного титана, вычисленная по результатам исследований его изотопов, составляет 47,926. Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Всего сейчас известно 13 изотопов элемента № 22. Природный титан состоит из смеси пяти стабильных изотопов, наиболее широко представлен титан-48, его доля в природных рудах 73,99%. Титан и другие элементы подгруппы IVВ очень близки по свойствам к элементам подгруппы IIIВ (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместе с этими элементами. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди- три- и, тетрасоединения, с серой и элементами ее группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды.


Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами. Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.



Титан весьма тугоплавкий металл. Долгое время считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Хейс установили температуру плавления для чистого элементарного титана. Она составила 1668±3° С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте. Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см8, а при 100° С - 4,506 г/см3. Титан относится к группе металлов с удельной массой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, кадий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см3, магний (1,7 г/см3), алюминий (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз их превосходит.). Титан обладает значительной твердостью: он в 12 раз тверже алюминия, в 4 раза-железа и меди. Еще одна важная характеристика металла - предел текучести. Чем он выше тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам. Предел текучести у титана почти в 18 раз выше, чем у алюминия. Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.



В отличие от большинства металлов титан обладает значительным электрическим сопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия - 60, железа и платины -15, а титана-всего 3,8. Титан - парамагнитный металл, он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойство можно использовать при строительстве. Титан обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(мК), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз-магния, в 17-20 раз-алюминия и меди. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных материалов: при 20 С он в 1,5 раза ниже чем у железа, в 2 - у меди и почти в 3 - у алюминия. Таким образом, титан - плохой проводник электричества и тепла.



Сегодня титановые сплавы широко применяют в авиационной технике. Титановые сплавы в промышленном масштабе впервые были использованы в конструкциях авиационных реактивных двигателей. Применение титана в конструкции реактивных двигателей позволяет уменьшить их массу на 10...25%. В частности, из титановых сплавов изготавливают диски и лопатки компрессора, детали воздухозаборника, направляющего аппарата и крепежные изделия. Титановые сплавы незаменимы для сверхзвуковых самолетов. Рост скоростей полета летательных аппаратов привел к повышению температуры обшивки, в результате чего алюминиевые сплавы перестали удовлетворять требованиям, которые предъявляются авиационной техникой сверхзвуковых скоростей. Температура обшивки в этом случае достигает 246...316 °С. В этих условиях наиболее приемлемым материалом оказались титановые сплавы. В 70-х годах существенно возросло применение титановых сплавов для планера гражданских самолетов. В среднемагистральном самолете ТУ-204 общая масса деталей из титановых сплавов составляет 2570 кг. Постепенно расширяется применение титана в вертолетах, главным образом, для деталей системы несущего винта, привода, а также системы управления. Важное место занимают титановые сплавы в ракетостроении.

Благодаря высокой коррозионной стойкости в морской воде титан и его сплавы находят применение в судостроении для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении. Постепенно области применения титана расширяются. Титан и его сплавы применяют в химической, нефтехимической, целлюлозно-бумажной и пищевой промышленности, цветной металлургии, энергомашиностроении, электронике, ядерной технике, гальванотехнике, при производстве вооружения, для изготовления броневых плит, хирургического инструмента, хирургических имплантатов, опреснительных установок, деталей гоночных автомобилей, спортинвентаря (клюшки для гольфа, снаряжение альпинистов), деталей ручных часов и даже украшений. Азотирование титана приводит к образованию на его поверхности золотистой пленки, по красоте не уступающей настоящему золоту.

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).


На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА».

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

В чистом виде и в виде сплавов

Титановый памятник Гагарину на Ленинском проспекте в Москве

Металл применяется в: химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга, медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах, спортивных товарах, ювелирных изделиях (Александр Хомов), мобильных телефонах, лёгких сплавах и т. д. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.

Титановое литье выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литье по выплавляемым моделям. Из-за технологических трудностей, в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве.

Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.

Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.

Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.

Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.

Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.

Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, т.к. имеет цвет, похожий на золото.



Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие. Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6).

60 % — краска;

20 % — пластик;

13 % — бумага;

7 % — машиностроение.

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по её твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110.

Цена ферротитана (минимум 70 % титана) на 22.12.2010 $6,82 за килограмм. На 01.01.2010 цена была на уровне $5,00 за килограмм.

В России цены на титан на начало 2012 года составляли 1200-1500 руб/кг.

Достоинства:

малая плотность (4500 кг/м3) способствует уменьшению массы используемого материала;

высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;

необычайнао высокая коррозионная стойкость, обусловленная способностью титана образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;

удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.



Недостатки:

высокая стоимость производства, титан значительно дороже железа, алюминия, меди, магния;

активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего титан и его сплавы можно плавить лишь в вакууме или в среде инертных газов;

трудности вовлечения в производство титановых отходов;

плохие антифрикционные свойства, обусловленные налипанием титана на многие материалы, титан в паре с титаном не может работать на трение;

высокая склонность титана и многих его сплавов к водородной хрупкости и солевой коррозии;

плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;

большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.


Основная часть титана расходуется на нужды авиационной и ракетной техникии и морского судостроения. Титан (ферротитан) используют в качестве лигирующей добавки к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали элетктровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала титан находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность титана делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применеие в технике ввиду своей высокой мехнической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость титана и его сплавов во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным материалом, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применення в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменникн, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостоении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид титана обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид титана — важный компонент сверхтвердых материалов для обработки металлов. Нитрид титана применяется для покрытия инструментов.

При существующих высоких ценах на титан его применяют преимущественно для производства военного оборудования, где главная роль принадлежит не стоимости, а техническим характеристикам. Тем не менее известны случаи использования уникальных свойств титана для гражданских нужд. По мере снижения цен на титан и роста его производства применение этого металла в военных и гражданских целях будет все больше расширяться.



Авиация. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами. В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430° С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов. Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей.

При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей. Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя.

В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов. Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д.

Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана. Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок.


Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д.

Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков.

В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52.

Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг. В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета.

Применение титана позволяет уменьшить вес геликоптеров. Листовой титан используется для полов и дверей. Значительное снижение веса геликоптера (около 30 кг) было достигнуто в результате замены легированной стали титаном для обшивки лопастей его несущих винтов.

Военно-морской флот. Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Военно-морское министерство США обстоятельно исследует коррозионную стойкость титана против воздействия дымовых газов, пара, масла и морской воды. Почти такое же значение в военно-морском деле имеет и высокое значение удельной прочности титана.

Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.



Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.

Артиллерия. По-видимому, наиболее крупным потенциальным потребителем титана может явиться артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана. Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.

Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).

Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.

Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.

Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм) титановой броней одинаковой снарядостойкости (толщиной 16 мм) позволяет получить, по данным этих исследований, экономию в весе до 25%.


Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.

Транспорт. Многие из тех выгод, которые сулит использование титана при производстве бронетанковой материальной части, относятся и к транспортным средствам.

Замена конструкционных материалов, потребляемых в настоящее время предприятиями транспортного машиностроения, титаном должна привести к снижению расхода топлива, росту полезной грузоподъемности, повышению предела усталости деталей кривошипно-шатунных механизмов и т. п. На железных дорогах исключительно важно снизить мертвый груз. Существенное уменьшение общего веса подвижного состава за счет применения титана позволит сэкономить в тяге, уменьшить габариты шеек и букс.

Важное значение вес имеет и для прицепных автотранспортных средств. Здесь замена стали титаном при производстве осей и колес также позволила бы увеличить полезную грузоподъемность.

Все эти возможности можно было бы реализовать при снижении цены титана с 15 до 2—3 долларов за фунт титановых полуфабрикатов.

Химическая промышленность. При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования. Логически следует предположить, что титан мог бы дать ряд выгод при производстве из него оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.

Применение трубопроводов из титана способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла (показана в верхней части снимка). Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.

Прочие области применения. Применение титана целесообразно в пищевой, нефтяной и электротехнической промышленности, а также для изготовления хирургических инструментов и в самой хирургии.

Столы для подготовки пищи, пропарочные столы, изготовленные из титана, по качествам превосходят стальные изделия.

В нефте- и газобурильной областях серьезное значение имеет борьба с коррозией, поэтому применение титана позволит реже заменять корродирующие штанги оборудования. В каталитическом производстве и для изготовления нефтепроводов желательно применять титан, сохраняющий механические свойства при высокой температуре и обладающий хорошей коррозионной устойчивостью.

В электропромышленности титан можно применить для бронирования кабелей благодаря хорошей удельной прочности, высокому электрическому сопротивлению и немагнитным свойствам.

В различных отраслях промышленности начинают применять крепежные детали той или иной формы, изготовленные из титана. Дальнейшее расширение применения титана возможно для изготовления хирургических инструментов главным образом благодаря его коррозионной стойкости. Инструменты из титана в этом отношении превосходят обычные хирургические инструменты при многократном кипячении или обработке в автоклаве.

В области хирургии титан оказался лучше виталлиума и нержавеющих сталей. Присутствие титана в организме вполне допустимо. Пластинка и винты из титана для крепления костей находились в организме животного несколько месяцев, причем имело место прорастание кости в нитки резьбы винтов и в отверстие пластинки.

Преимущество титана заключается также в том, что на пластине образуется мышечная ткань.

Примерно половина производимой в мире титановой продукции направляется обычно в гражданское авиастроение, но его спад после известных трагических событий вынуждает многих участников отрасли искать новые области применения титана. Данный материал представляет первую часть подборки публикаций в зарубежной металлургической прессе, посвященных перспективам титана в современных условиях. По оценкам одного из ведущих американских производителей титана RТ1, из общего объма производства титана в мировом масштабе на уровне 50-60 тыс. тонн в год на долю аэрокосмического сегмента приходится до 40 потребления, на долю промышленных применений и приложений приходится 34, на военную область 16, и около 10 приходится на применение титана в потребительских продуктов. Промышленное применение титана включает в себя химические процессы, энергетику, нефтегазовую отрасль, опреснительные установки. Военное не авиационное применение включает, прежде всего, использование в артиллерии и боевых машинах. Секторами со значительными объмами применения титана являются автомобилестроение, архитектура и строительство, спортивные товары, ювелирные изделия. Практически весь титан в слитках производится в США, Японии и СНГ - на долю Европы приходится всего 3,6 от общемирового объма. Региональные рынки конечного применения титана весьма различаются - наиболее ярким примером своеобразия является Япония, где на гражданский авиакосмический сектор приходится всего 2-3 при использовании 30 от общего потребления титана в оборудовании и конструкционных элементах химических заводов. Примерно 20 от общего спроса в Японии приходится на атомную энергетику и на электростанции на тврдом топливе, остальная доля приходится на архитектуру, медицину и спорт. Противоположная картина наблюдается в США и Европе, где исключительно большое значение имеет потреблениев аэрокосмическом секторе - 60-75 и 50-60 для каждого региона соответственно. В США традиционно сильными конечными рынками являются химическая промышленность, медицинское оборудование, промышленное оборудование, в то время как в Европе наибольшая доля приходится на нефтегазовую промышленность и строительную промышленность. Сильная зависимость от аэрокосмической отрасли была давним предметом беспокойства титановой промышленности, которая пытается расширить области применения титана, что особенно актуально в условиях текущего спада в гражданской авиации в мировом масштабе. По данным Геологической службы США в первом квартале 2003 года произошл значительный спад импорта титановой губки - всего лишь 1319 тонн, что на 62 меньше 3431 тонн за аналогичный период 2002 года. Как считает директор по развитию рынка гигантского американского производителя и поставщика титановой продукции Типе Джон Барбер, аэрокосмический сектор всегда будет одним из ведущих рынков для титана, но мы титановая промышленность должны принять вызов и сделать вс, чтобы быть уверенными, что наша промышленность не будет следовать за циклами развития и спадов в аэрокосмическом секторе. Некоторые из ведущих производителей титановой промышленности видят рост возможностей на уже существующих рынках, одним из которых является рынок оборудования и материалов для подводных работ. Как говорит Мартин Проко, менеджер по продажам и дистрибуции RТ1, титан достаточно давно, с начала 1980-х годов используется в энергетике и при подводных работах, но только в последние пять лет эти направления стали устойчиво развивающимися с соответствующим ростом ниши на рынке. Что касается подводных работ, то здесь рост, прежде всего, обусловлен бурильными работами на большей глубине, где титан является наиболее подходящим материалом. Его, так сказать, подводный жизненный цикл составляет пятьдесят лет, что соответствует обычной продолжительности подводных проектов. Выше уже перечислялись области, в которых вероятен рост применения титана. Как отмечает менеджер по продажам американской компании Howmet Ti-Cast Боб Фаннелл, текущее состояние рынка можно рассматривать, как рост возможностей в новых областях, таких как вращающиеся части устройств турбонадува у грузовиков, ракеты и насосы.



Одним из наших текущих проектов является развитие лгких артиллерийских систем ВАЕ Ноwitzer ХМ777 калибром 155 мм. Ноwmet поставит 17 из 28 узлов структурного титанового литья для каждой орудийной установки, поставки которых в части морской пехоты США должны начаться в августе 2004 года. При общем весе орудия 9800 фунтов приблизительно 4,44 тонн в его конструкции на долю титана приходится около 2600 фунтов приблизительно 1,18 тонн - используется сплав 6А14У с большим количеством отливок, говорит Фрэнк Хрстер, руководитель систем огневой поддержки ВАЕ 8у81ет8. Эта система ХМ777 должна заменить находящуюся на вооружение систему М198 Ноwitzег, которая весит около 17000 фунтов приблизительно 7,71 тонн. Массовое производство запланировано на период с 2006 по 2010 год - первоначально расписаны поставки в США, Великобританию и Италию, но возможно расширение программы для поставок в страны-члены НАТО. Джон Барбер из Timet указывает, что примерами военной техники, в конструкции которой используются значительные объмы титана, являются танк Абраме и боевая машина Брэдли. В течение уже двух лет выполняется совместная программа НАТО, США и Великобритании по интенсификации использования титана в системах вооружений и обороны. Как уже не раз отмечалось, титан очень подходит к использованию в автомобилестроении, правда, доля этого направления довольно скромна - примерно 1 от общего объма потребляемого титана, или 500 тонн в год, по данным итальянской компании Роggipolini, производителя титановых узлов и деталей для Формулы-1 и гоночных мотоциклов. Руководитель отдела исследований и развития этой фирмы Даниеле Стопполини считает, что текущий спрос на титан в этом сегменте рынка на уровне 500 тонн при массовом использовании этого материала в конструкциях клапанов, пружин, выхлопных систем, передаточных валов, болтов может в потенциале подняться на уровень чуть ли не 16000 тонн в год Он добавил, что его компания только начинает развитие автоматизированного производства титановых болтов с целью снижения производственных затрат. По его мнению, сдерживающими факторами, из-за которых использование титана не расширяется значительно в автомобилестроении, являются непредсказуемость спроса и неопределнность с поставками сырья. При этом в автомобилестроении сохраняется большая потенциальная ниша для титана, соединяющего оптимальные весовые и прочностные характеристики для витых пружин и систем вывода отработанных газов. К сожалению, на американском рынке широким использованием титана в этих системах отмечена только достаточно эксклюзивная полуспортивная модель Шевроле-Корветт Z06, которая никак не может претендовать на роль массового автомобиля. Однако вследствие постоянных задач экономии топлива и коррозийной стойкости перспективы для титана в этой области сохраняются. Для утверждения на рынках не авиакосмического и не военного применения недавно было создано совместное предприятие UNITI в его названии обыгрывается слово unity - единство и Тi - обозначение титана в периодической таблице в составе ведущих мировых производителей титана - американской Allegheny Technologies и российской ВСМПО-Ависма. Как сказал президент новой компании Карл Мултон, эти рынки были преднамеренно исключены - мы намерены сделать новую компанию ведущим поставщиком для отраслей промышленности, использующих детали и сборочные узлы из титана, в первую очередь нефтехимической и энергетической. Кроме того, мы намерены вести активный маркетинг в области опресняющих устройств, транспортных средств, потребительских товаров и электроники. Считаю, что наши производства хорошо дополняют друг друга - у ВСМПО выдающиеся возможности для производства конечной продукции, у Allegheny отличные традиции по производству холодного и горячего титанового проката. Как ожидается, доля продукции UNITI на глобальном рынке титановой продукции составит 45 млн. фунтов приблизительно 20411 тонн. Устойчиво развивающимся рынком можно считать рынок медицинского оборудования - по данным английской Titanium International Group ежегодно содержание титана по всему миру в различных имплантантах и протезах составляет около 1000 тонн, и эта цифра будет возрастать, так как растут возможности хирургии по замене человеческих суставов после несчастных случаев или травм. Кроме очевидных преимуществ гибкости, прочности, легкости, титан в высшей степени совместим с организмом в биологическом смысле благодаря отсутствию коррозии к тканям и жидкостям в человеческом теле. В стоматологии также резко увеличивается использование протезов и имплантантов - по данным Американской ассоциации стоматологов, за последние десять лет в три раза, во многом благодаря характеристикам титана. Хотя применение титана в архитектуре насчитывает более 25 лет, его широкое распространение в этой области началось только в последние годы. В работах по расширению аэропорта Абу-Даби в ОАЭ, завершение которых запланировано на 2006 год, будет использовано до 1.5 млн. фунтов приблизительно 680 тонн титана. Достаточно много различных архитектурно-строительных проектов с использованием титана планируется осуществить не только в развитых странах США, Канада, Великобритания, Германия, Швейцария, Бельгия, Сингапур, но и в Египте и Перу.



Сегмент рынка потребительских товаров в настоящее время является наиболее быстро растущим сегментом титанового рынка. В то время как 10 лет назад этот сегмент составлял только 1-2 титанового рынка, сегодня он вырос до 8-10 рынка. В целом потребление титана в производстве потребительских товаров росло примерно в два раза быстрее, чем весь титановый рынок. Использование титана в спорте является наиболее долговременным и занимает наибольшую долю в применении титана в потребительских товарах. Причина популярности использования титана в спортивном инвентаре проста - он позволяет получить превосходящее любой другой металл соотношение веса и прочности. Использование титана в велосипедах началось примерно 25-30 лет назад и было первым применением титана в спортивном инвентаре. В основном используются трубы из сплава Тi3Аl-2.5V АSТМ Grade 9. Другие части производимые из титановых сплавов включают в себя тормоза, звздочки и пружины сидений. Использование титана в производстве клюшек для гольфа впервые началось в конце 80-х - самом начале 90-х годов производителями клюшек в Японии. До 1994-1995 годов это применение титана было практически неизвестно в США и в Европе. Ситуация изменилась, когда компания Callaway представила на рынок свою титановую клюшку, производимую компанией Ruger Titanium и названную Great Big Bertha. В связи с очевидными преимуществами и с помощью хорошо продуманного компанией Callaway маркетинга, титановые клюшки моментально приобрели огромную популярность. В течение короткого периода времени титановые клюшки прошли путь от эксклюзивного и дорогого инвентаря небольшой группы игроков до широкого использования большинством гольфистов по прежнему оставаясь более дорогими по сравнению со стальными клюшками. Хотелось бы привести основные, по моему мнению, тенденции развития гольфого рынка он прошел путь от высокотехнологичного до массового производства в короткий период 4-5 лет следуя путем других производств с высокими трудозатратами таких как производство одежды, игрушек и потребительской электроники, производство гольфовых клюшек ушло в страны с наиболее дешевой рабочей силой сначала на Тайвань, затем в Китай, и сейчас заводы строятся в странах с еще более дешевым трудом, таких как Вьетнам и Таиланд титан определенно используется для драйверов drivers, где его превосходные качества дают очевидное преимущество и оправдывают более высокую цену. Однако, титан пока еще не нашел очень широкого потребления на последующих клюшках, так как значительное увеличение затрат не подкрепляется соответствующим улучшением игры в настоящее время драйверы в основном производятся с кованой ударной поверхностью, кованым или литым верхом и литым низом недавно Профессиональная Гольфовая Ассоциация РОА разрешила увеличить верхний предел так называемого коэффициента возврата, в связи с чем все производители клюшек будут стараться увеличить пружинящие свойства ударной поверхности. Для этого приходится уменьшить толщину ударной поверхности и использовать для нее более прочные сплавы, такие как SР700, 15-3-3-3 и ВТ-23. Теперь остановимся на применении титана и его сплавов на другом спортивном оборудовании. Трубы для гоночных велосипедов и другие детали изготавливают из сплава АSТМ Grade 9 Тi3Аl-2.5V. На удивление значительное количество титанового листа используется при производстве ножей для подводного плавания. Большинство производителей используют сплав Тi6Аl-4V, но этот сплав не обеспечивает долговечность кромки лезвия, как другие более прочные сплавы. Некоторые производители переключаются на использование сплава ВТ23.


Розничная цена титановых ножей для подводного плавания составляет примерно 70-80 долларов. Литые титановые подковы дают значительное уменьшение веса по сравнению со стальными, при этом обеспечивая необходимую прочность. К сожалению, это применение титана не вошло в жизнь, потому что титановые подковы искрили и пугали лошадей. Немногие согласятся использовать титановые подковы после первых неудачных опытов. Компания Titanium Beach, расположенная в Ньюпорт Бич, Калифорния Newport Beach, Саlifornia, разработала лезвия для коньков из сплава Тi6Аl-4V. К сожалению, здесь опять проблема долговечности кромки лезвий. Я думаю, что у этого продукта есть шанс на жизнь при условии использования производителями более прочных сплавов, таких как 15-3-3-3 или ВТ-23. Титан очень широко используется в альпинизме и туризме, практически для всех предметов, которые альпинисты и туристы несут в своих рюкзаках бутылки, чашки розничная цена 20-30 долларов, наборы для приготовления пищи розничная цена примерно 50 долларов, столовая посуда, в основном сделанные из коммерчески чистого титана Grade 1 и 2. Другими примерами альпинистского и туристского снаряжения являются компактные печки, стойки и крепления палаток, ледорубы и ледобуры. Производители вооружения недавно начали производить титановые пистолеты как для спортивной стрельбы, так и для правоохранительных органов.

Потребительская электроника является достаточно новым и быстро растущим рынком для титана. Во многих случаях применение титана в потребительской электронике вызвано не только его великолепными свойствами, но также и привлекательным внешним видом изделий. Коммерчески чистый титан Grade 1 используется для производства корпусов портативных компьютеров, мобильных телефонов, плазменных телевизоров с плоским экраном и другого электронного оборудования. Использование титана в производстве динамиков обеспечивает лучшие акустические свойства в связи с легкостью титана по сравнению со сталью, приводящей к увеличению акустической чувствительности. Титановые часы, впервые внедренные на рынок японскими производителями, сейчас являются одним из наиболее доступных и признанных потребительских титановых продуктов. Мировое потребление титана в производстве традиционных и, так называемых, нательных ювелирных изделий измеряется несколькими десятками тонн. Все чаще можно встретить титановые обручальные кольца, и уж конечно, люди носящие украшения на теле, просто обязаны использовать титан. Титан широко используется в производстве морского крепежа и фурнитуры, где очень важно сочетание высокой коррозионной стойкости и прочности. Компания Atlas Ti, базирующаяся в Лос-Анджелесе, производит широкий ассортимент этих продуктов из сплава ВТЗ-1. Использование титана в производстве инструмента впервые началось в Советском Союзе в начале 80-х годов, когда по заданию правительства были изготовлены легкие и удобные инструменты для облегчения труда рабочих. Советский гигант титанового производства Верхне-Салдинское Металлоперерабатывающее Производственное Объединение производило в то время титановые лопаты, гвоздодеры, монтировки, топорики и ключи.


Позднее японские и американские производители инструмента начали использовать титан в своей продукции. Не так давно ВСМПО заключило контракт с Боингом на поставку титановых плит. Этот контракт, несомненно, очень благотворно сказался на развитии титанового производства России. Титан широко используется в медицине уже в течение многих лет. Преимущества - прочность, сопротивление коррозии, и главное то, что у некоторых людей возникает аллергия на никель обязательный компонент нержавеющих сталей, в то время как ни у кого не обнаружена аллергия на титан. Используемые сплавы - коммерчески чистый титан и Тi6-4Eli. Титан используется в производстве хирургического инструмента, внутренних и внешних протезов, включая такие критические, как сердечный клапан. Из титана изготовляют костыли и инвалидные коляски. Применение титана в искусстве относится к 1967 году, когда в Москве был поставлен первый титановый монумент.

В настоящий момент значительное число титановых монументов и зданий возведено практически на всех континентах, включая такие знаменитые, как музей Гугенхайма, построенный архитектором Френком Гери в Бильбао. Материал очень нравится людям искусства за цвет, внешний вид, прочность и сопротивление коррозии. По этим причинам титан применяют в сувенирах и бижутериигалантерее, где он успешно соперничает с такими драгоценными металлами, как серебро и даже золото Как уже отмечалось в одной из публикаций по титану, одной из главных причин, сдерживающих титановый прорыв на широкие рынки, является его высокая стоимость. Как отмечает Мартин Проко из RTi, в США средняя цена титановой губки составляет 3.80 за фунт, в России 3,20 за фунт. Кроме того, цена на метал сильно зависит от цикличности аэрокосмической промышленности коммерческого назначения. Развитие очень многих проектов может резко ускориться, если удастся найти пути снижения затрат на процессы получения и обработки титана, переработки ломов и технологий выплавки, отмечает Маркус Хольц, управляющий директор немецкой Deutshe Titan. Представитель British Titanium согласен, что расширение производства титановой продукции сдерживается высокими производственными издержками, и до внедрения титана в массовое производство необходимо провести много усовершенствований современных технологий.


Одним из шагов в этом направлении является разработка так называемого FFС-процесса, представляющего новый электролитический процесс получения металлического титана и сплавов, стоимость которого существенно ниже. По мнению Даниеле Стопполини общая стратегия в титановой промышленности требует разработки наиболее подходящих сплавов, технологии производства для каждого нового рынка и области применения титана.

Источники

Википедия - Свободная энциклопедия, WikiPedia

metotech.ru — Метотехника

housetop.ru — House Top

atomsteel.com - Атом технологии

domremstroy.ru — ДомРемСтрой

5ballov.qip.ru — Баллов

Свойства титана

В периодической системе элементов Менделеева титан имеет порядковый номер 22. Его нейтральный атом состоит из ядра, заряд которого равен 22 ед. положительного электричества, и находиться вне ядра 22 электронов.

Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Устойчивых природных изотопов титана всего пять: 46 Ti, 47 Ti, 48 Ti, 49 Ti, 50 Ti. Это установил в 1936 г. немецкий физик Ф. В. Астон. До его исследований считалось, что титан изотопов вообще не имеет. Природные устойчивые изотопы титана распределяются следующим образом (в отн. %): 46 Ti - 7,99; 47 Ti - 7,32; 48 Ti - 73,97; 49 Ti - 5,46; 50 Ti - 5,25.

Кроме естественных, титан может иметь и целый ряд искусственных изотопов, получаемых с помощью его радиоактивного облучения. Так, если бомбардировать титан нейтронами или α-частицами, можно получить радиоактивный изотоп титана 52 Ti с периодом полураспада - 41,9 мин, который дает β- и γ-излучения. Искусственно получены и другие изотопы титана (42 Ti, 43 Ti, 44 Ti, 45 Ti, 51 Ti, 52 Ti, 53 Ti, 54 Ti), некоторые из них сильнорадиоактивные, с различными сроками полураспада. Так, у изотопа 44 Ti период полураспада всего 0,58 с, а у изотопа 45 Ti - 47 лет.

Радиус ядра титана равен 5 фм. Вокруг положительно заряженного ядра титана на четырех орбитах К, L, М, N располагаются электроны: на К - два электрона, на L - восемь, на M - 10, на N - два. С орбит N и М атом титана может свободно отдавать по два электрона. Таким образом, наиболее устойчивый ион титана - четырехвалентный. Пятым электрон с орбиты М "вырвать" невозможно, поэтому титан никогда не бывает больше чем четырехвалентным ионом. В то же время с орбит N и М атом титана может отдавать не четыре, а три, два или один электрон. В этих случаях он становится трех-, двух- или одновалентным ионом

Титан различной валентности имеет неодинаковые ионные радиусы. Так, радиус иона Ti 4+ равен 64 пм, иона Ti 3+ - 69, Ti 2+ - 78, Ti 1+ - 95 пм.

Долгое время не могли точно определить атомную массу титана (атомный вес). В 1813 г. Й. Я. Берцелиус получил неправдоподобно завышенную величину - 288,16. В 1823 г. немецкий химик Генрих Розе установил, что атомный вес титана ранен 61,6. В 1829 г. ученый несколько раз уточнял величину: 50,63; 48,27 и 48,13. Ближе к истинным оказались измерения английского химика Т. Э. Торна - 48,09. Однако это значение продержалось до 1928 г., когда исследования химиков Бакстера и Бутлера дали окончательную величину атомного веса - 47,9. Атомная масса природного титана, вычисленная по результатам исследования его изотопов, составляет 47,926. Эта величина практически идентична значению интернациональных таблиц.

В периодической системе элементов Менделеева титан расположен в группе IVB, в которую, кроме него, входит цирконий, гафний, курчатовий. Элементы данной группы в отличие от элементов группы углерода (IVА) обладают металлическими свойствами. У соединений даже самого титана кислотообразующая способность выражена слабее, чем у любого элемента группы углерода. Хотя титан занимает самое верхнее место в своей подгруппе, он является наименее активным металлическим элементом. Так, двуокись титана амфотерна, а двуокиси циркония и гафния обладают слабо выраженными основными свойствами. Титан больше, чем другие элементы подгруппы IVB, близок к элементам подгруппы IVA - кремнию, германию, олову. Четырехвалентный титан отличается от кремния и германия большей склонностью к образованию комплексных соединений различных типов, чем особенно сходен с оловом.

Титан и другие элементы подгруппы IVB очень близки по свойствам к элементам подгруппы IIIB (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Титан к скандию даже ближе, чем к элементам подгруппы IVA. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместо с этими элементами, изоморфно замещая друг друга.

Из кристаллохимии кислородных соединений известно, что характерное координационное число для титана равно 6, а единственным координационным полиэдром, соответствующим этому числу, является октаэдр. Причем ни в одном из кислородных соединений атомы титана не имеют координационного числа больше 6. В такой координации среднее расстояние между титаном и кислородом равно 2 Å. В структурах, для которых характерно статистическое распределение атомов Ti 4+ и Nb 5+ в октаэдрах, соответствующее среднее расстояние между титаном и ниобием также составляет 2 Å. Из этого следует вывод о близости ионных радиусов титана и ниобия.

Близость ионных радиусов элементов - непременное условие возможности изоморфизма между ними. Для титана наиболее полно этому условию удовлетворяют ниобий, тантал, трехвалентное железо и цирконий.

А теперь рассмотрим, какие же химические соединении с другими элементами может образовывать титан. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди-, три- и тетрасоединения, с серой и элементами её группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды. Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами.

Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии? А дело в том, что реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту шлепку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею "пассивируется", т. е. защищает сам себя от дальнейшего разрушения.

Известно, что коррозионная стойкость любого металла определяется величиной его электродного потенциала, т. е. разностью электрических потенциалов между металлом и раствором электролита. Отрицательные значения электродного потенциала свидетельствуют об убыли ионов металла с его поверхности и о переходе их в раствор, т. е. о растворимости и коррозии металла. Положительное значение указывает на то, что металл обладает стойкостью в данном растворе, не отдает своих ионов и не корродируется. Так вот, для свежеочищенной поверхности титана измеренные значения электродного потенциала в воде, в водных растворах, во многих кислотах и щелочах колеблются от -0,27 до -0,355 В, т. е. металл, казалось бы, должен быстро растворяться. Однако в большинство водных растворов электродный потенциал титана очень быстро поднимается от отрицательных до положительных значений, примерно до +0,5 В, и коррозия практически моментально прекращается: титан пассивируется и становится в высшей степени коррозионно-стойким.

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Об исключительной его стойкости в атмосфере, в пресной и океанической воде даже при нагревании мы уже говорили. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности к прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана по многих агрессивных средах, в таких, как азотная, соляная, серная, "царская водка" и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана в азотной кислоте не превышает 0,1-0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1- 2% и более), как реакция заканчивается, и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С - 0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С - уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5-1%) титан стоек даже при температуре раствора до 50 - 95° С. Стоек он и в более концентрированных растворах (10- 20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005-0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10-20%-ной) начинает растворяться, причем скорость коррозия достигает 9-10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Её можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в "царской водке": в ней при обычных температурах (10-20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей "царской водке", а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинство органических кислот (уксусной, молочной, винной), и разбавленных щелочах, и растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.

В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300-400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно. Главный "враг" титана - плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан "тает", как лед в горячей воде. Фтор - этот "разрушающий всё" (греч.) элемент - бурно реагирует практически со всеми металлами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители - так называемые ингибиторы, например, в растворы соляной и серной кислот - азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20-30% молибдена делает этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.

Каковы же физические свойства титана, сделавшие его лучшим из всех, известных конструкционных металлов?

Титан весьма тугоплавкий металл. Долгое время, считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Xeйc установили температуру плавления для чистого элементарного титана. Она составила 1668±3°C. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, ренин, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте:

Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см 3 , а при 100° С - 4,506 г/см 3 . Титан относится к группе металлов с удельной массой менее 5 г/см 3 . Сюда входят все щелочные металлы (натрий, калий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см 3 , магний (1,7 г/см 3), алюминий (2,7 г/см 3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см 3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз превосходит и алюминий и железо.

Каковы же эти свойства, которые позволяют широко использовать титан как конструкционный материал? Прежде всего, прочность металла, т. е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). В зависимости от вида напряженного состояния - растяжения, сжатия, изгиба и других условий испытания (температура, время) для характеристики прочности металла используются различные показатели: предел текучести, временное сопротивление, предел усталости и др. По всем этим показателям титан значительно превосходит алюминий, железо и даже многие лучшие марки стали.

Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Другие же металлы либо просто не выдерживают таких температур, либо сильно разупрочняются.

Чистый титан - высокопластичный металл, что обусловлено благоприятным соотношением осей "с" и "а" в его гексагональной решетке и наличием в ней множества систем плоскостей скольжения и двойникования. Хотя и считается, что металлы с гексагональной кристаллической решеткой очень пластичны, титан в силу указанных особенностей его кристаллов стоит в одном ряду с высокопластичными металлами, имеющими иной тип кристаллической решетки. В результате чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Интересно отметить, что титан долгие годы, вплоть до получения чистого металла, рассматривали как очень хрупкий материал. Связано это было с наличием в титане примесей, особенно азота, кислорода, углерода и др. Даже их небольшое количество влияет, и весьма существенно, на свойства титана, в том числе на его пластичность. То же самое можно сказать и о твердости титана. Она тем выше, чем больше в металле примесей. Так, твердость титана, содержащего тысячные доли процента кислорода, азота, углерода, железа, составляет 400-600 МПа, а при содержания тех же примесей в сотые доли процента твердость его повышается до 900-1000 МПа.

Почему это происходит? Кислород и азот хорошо растворимы в титане, особенно в его низкотемпературной α-модификации. С их внедрением в октаэдрические пустоты кристаллов титана начинается деформация его кристаллической решетки, повышается жесткость межатомных связей и, как следствие, увеличивается твердость, прочность, предел текучести, снижается пластичность металла. Самой вредной примесью является водород: даже незначительные количества его резко снижают пластичность металла и особенно его ударную вязкость. Углерод растворяется в титане в гораздо меньшей степени и мало влияет на понижение пластичности металла. Железо ухудшает механические свойства титана, только если его содержится 0,5% и выше. Другие металлы почти не воздействуют на эти свойства.

Итак, чистый читан - это твердый, прочный, пластичный, достаточно вязкий и упругий металл. Твердость его по шкале Бринеля составляет около 1000 мн/м 2 . Для сравнения укажем, что железо имеет всего 350-450 мн/м 2 , медь - 350, магний литой - 294, магний деформированный - 353, а алюминий - всего 170 мн/м 2 . Модуль нормальной упругости титана 108 тыс. мн/м 2 , по упругости он лишь немного уступает меди и стали, но является более упругим, чем алюминий и магний.

Титан имеет высокий предел текучести - примерно 250 мн/м 2 . Это выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и почти в 20 раз, чем у алюминия. Следовательно, титан лучше этих металлов сопротивляется сминающим ударим и другим нагрузкам, способным деформировать титановые детали.

Высота и вязкость титана. Он отлично противостоит воздействию сколовых и сдвиговых ударов и нагрузок. Этой выносливостью объясняется еще одно замечательное свойство титана - исключительная стойкость его в условиях кавитации, т. е. при усиленной "бомбардировке" металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вращении металлической детали в жидкой среде. Эти пузырьки воздуха, лопаясь на поверхности металла, вызывают очень сильные микроудары жидкости о поверхность движущегося тела. Они быстро разрушают многие материалы, и металлы в том числе, а вот титан прекрасно противостоит кавитации.

Испытания в морской воде быстровращающихся дисков из титана и других металлов показали, что при вращении в течение двух месяцев титановый диск практически не потерял в массе. Внешние края его, где скорость вращения, а, следовательно, и кавитация максимальны, не изменились. Другие диски не выдержали испытания: у всех внешние края оказались поврежденными, а многие из них вовсе разрушились.

Титан обладает еще одним удивительным свойством - "памятью". В сплаве с некоторыми металлами (например, с никелем) он "запоминает" форму изделия, которую из него сделали при определенной температуре. Если такое изделие потом деформировать, например, свернуть в пружину, изогнуть, то оно останется в таком положении на долгое время. После нагревания до той температуры, при которой это изделие было сделано, оно принимает первоначальную форму. Это свойство титана широко используется в космической технике (на корабле разворачиваются вынесенные в космическое пространство большие антенны, до этого компактно сложенные). Недавно это свойство титана стали использовать медики для бескровных операции на сосудах: в больной, суженный сосуд вводится проволочка из титанового сплава, а потом она, разогреваясь до температуры тела, скручивается в первоначальную пружинку и расширяет сосуд.

Заслуживают внимания температурные, электрические и магнитные свойства титана. Он обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(м К), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз - магния, в 17-20 раз - алюминия и меда. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных металлов: при комнатной температуре (20° С) у титана он равен 8,5 10 -6 /°С, у железа - 11,7 10 -6 /°С, у меди- 17 10 -6 /°С, у алюминия - 23,9/°С. Сравнительно невелика и электропроводность титана. Объясняется, это свойство довольно высоким электрическим сопротивлением титана: при комнатной температуре оно составляет 42,1 10 -6 Ом см. С повышением температуры электросопротивление титана еще больше увеличивается, а с понижением ее резко надает, вблизи абсолютного нуля титан становится сверхпроводимым.

Титан - типичный парамагнетик, его магнитная восприимчивость при 20° С всего 3,2±0,4 10 -6 ед. Как известно, парамагнитными являются алюминий и магний, а вот медь диамагнитна, железо - ферромагнетик.

Мы рассмотрели химические и физические свойства титана, которые в целом благоприятствуют широкому использованию этого металла. Однако у титана есть немало и отрицательных качеств. Например, он может самовозгораться, а в некоторых случаях даже и взрываться.

Уже говорилось, что в концентрированной азотной кислоте титан исключительно стоек, а вот в красной дымящей, пересыщенной окислами азота, защитная пленка диоксида титана на поверхности металла моментально разрушается и чистый титан начинает реагировать с кислотой со взрывом. Такая реакция была причиной взрыва титановых топливных баков одной из американских космических ракет. Со взрывом реагирует титан и с сухим хлором. Есть способ предотвратить эти взрывные реакции. Стоит добавить в дымящую красную азотную кислоту всего 1-2% воды, а в сухой хлор и того меньше - 0,5-1%, и на поверхности металла тут же появится защитная пленка. Дальнейшее окисление титана предотвратится и взрыва не произойдет.

В виде тонкой стружки, опилок или порошка титан может самовозгораться даже без подвода тепла извне. Такие случаи наблюдались при его испытаниях на разрыв в атмосфере кислорода в момент разрыва. Это объясняется опять-таки высокой активностью свежей, неокисленной поверхности титана и сильной экзотермичностью реакции его взаимодействии с кислородом.

Титан может гореть не только в атмосфере кислорода, но даже в атмосфере азота, являющегося также сильным окислителем титана. Поэтому гасить горящий титан азотом, как и водой, углекислым газом, нельзя: они разлагаются, выделяя кислород, который затем взаимодействует с раскаленным титаном и дает взрыв.

Еще одним недостатком титана является его способность сохранять высокие физико-механические свойства лишь до температуры 400-450° С, а с добавками некоторых легирующих металлов - до 600° С, и здесь у него есть серьезные конкуренты - жаропрочные спецстали. Однако в минусовом диапазоне температур титану равных нет. Железо становится хрупким уже при температуре -40° С, специальные низкотемпературные стали - ниже -100° С. А вот титан и его сплавы не разрушаются при температурах до -253° С (в жидком водороде) и даже до -260° С (в жидком гелии). Это очень важное свойство титана открывает ему большие перспективы для использования в криогенной технике и для работы в космическом пространстве.

Титан реагирует со многими металлами. При трении с деталями из более мягкого металла титан может срывать с них металлические частицы и прилеплять к себе металл, а из более твердого, наоборот, частицы титана будут срываться с титановой детали и покрывать другую деталь. Причем никакая жировая или масляная смазка не помогает исключить взаимоналипание частиц. В течение небольшого времени это явление можно ослабить, лишь применив в качестве смазки чешуйчатые молибденит или графит. А вот сваривается титан с другими металлами очень плохо. Практически полностью эта проблема пока не решена, хотя сварка титановых изделий проходит отлично.

Титан - твердый металл, как мы уже знаем, тверже железа, алюминия, меди. Но все же не тверже специальных, особотвёрдых инструментальных сталей, из которых делают острые инструменты, ножи, скальпели. Здесь титан неприменим.

Титан - плохой проводник электричества и тепла. Проводов из него не сделаешь, а вот то, что он один из очень немногих металлов является при низких температурах сверхпроводником электричества, открывает ему большие перспективы в электрической технике передачи энергии на большие расстояния.

Титан - парамагнитный металл: он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойства можно использовать при строительстве, например, немагнитных кораблей, приборов, аппаратов.

Итак, титан имеет больше достоинств, чем недостатков, и то, что он по иным характеристикам уступает некоторым специальным сталям и сплавам, компенсируется одним важнейшим обстоятельством. Легкость, прочность, пластичность, твердость, стойкость и многие другие качества соединены в одном металле так органично, что это сулит титану большое будущее.

Прежде чем рассказать, как используются титан, его сплавы и соединения сегодня и какие перспективы открываются перед этим металлом в недалеком завтра, рассмотрим подробно, как распространен этот удивительный металл в нашей Вселенной, на планете Земля, в каком виде встречается в породах земной коры, какие месторождения образует, как добываются, обогащаются руды, перерабатываются концентраты. Проследим долгий и нелегкий путь получения чистого титана, его обработки и использования человеком.